首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
BackgroundSeveral infectious diseases are associated with hypothalamic-pituitary-adrenal (HPA) axis disorders by elevating circulating glucocorticoids (GCs), which are known to have an immunosuppressive potential. We conducted this study in golden hamsters, a suitable model for human visceral leishmaniasis (VL), to investigate the relationship of Leishmania (L.) infantum infection on cortisol production and VL severity.MethodsL. infantum-infected (n = 42) and uninfected hamsters (n = 30) were followed-up at 30, 120, and 180 days post-infection (dpi). Plasma cortisol was analyzed by radioimmunoassay and cytokines, inducible nitric oxide synthase (iNOS), and arginase by RT-qPCR.ResultsAll hamsters showed splenomegaly at 180 dpi. Increased parasite burden was associated with higher arginase expression and lower iNOS induction. Cortisol levels were elevated in infected animals in all-time points evaluated. Except for monocytes, all other leucocytes showed a strong negative correlation with cortisol, while transaminases were positively correlated. Immunological markers as interleukin (IL)-6, IL-1β, IL-10, and transforming growth-factor-β (TGF-β) were positively correlated to cortisol production, while interferon-γ (IFN-γ) presented a negative correlation. A network analysis showed cortisol as an important knot linking clinical status and immunological parameters.ConclusionsThese results suggest that L. infantum increases the systemic levels of cortisol, which showed to be associated with hematological, biochemical, and immunological parameters associated to VL severity.  相似文献   

3.
Visceral leishmaniasis (VL) is associated with increased circulating levels of multiple pro-inflammatory cytokines and chemokines, including IL-12, IFNγ, and TNFα, and elevated expression of IFNγ mRNA in lesional tissue such as the spleen and bone marrow. However, an immunological feature of VL patients is that their peripheral blood mononuclear cells (PBMCs) typically fail to respond to stimulation with leishmanial antigen. Unexpectedly, it was recently shown that Leishmania specific IFNγ, can readily be detected when a whole blood stimulation assay (WBA) is used. We sought to define the conditions that permit whole blood cells to respond to antigen stimulation, and clarify the biological role of the IFNγ found to be released by cells from VL patients. CD4+ T cells were found to be crucial for and the main source of the IFNγ production in Leishmania stimulated whole blood (WB) cultures. Complement, antibodies and red blood cells present in whole blood do not play a significant role in the IFNγ response. The IFNγ production was reduced by blockade of human leukocyte antigen (HLA)-DR, indicating that the response to leishmanial antigens observed in WB of active VL patients is a classical HLA- T cell receptor (TCR) driven reaction. Most importantly, blockade of IFNγ in ex-vivo splenic aspirate cultures demonstrated that despite the progressive nature of their disease, the endogenous IFNγ produced in patients with active VL serves to limit parasite growth.  相似文献   

4.
A rapid and accurate method to detect and quantify Leishmania parasite is urgently needed to facilitate early diagnosis of Leishmaniasis and monitoring of antileishmania therapy. In this study, real-time assay was applied to estimate parasite load in clinical samples of visceral leishmaniasis (VL) and post kala-azar dermal leishmaniasis (PKDL) patients. The mean parasite load in blood of VL patients (n = 31) was 8,372 parasites/ml, while the mean parasite load in bone marrow aspirate (BMA) was 194,962 parasites/million nucleated cells (n = 12). Parasite load was undetectable after treatment with amphotericin B (n = 9) in VL, while a residual parasite burden was detected in 2 of 6 patients following treatment with sodium antimony gluconate. Further, circulating levels of IFN-γ, TNF-α, IL-10, IL-6, IL-4 and IL-2 were analysed in VL patients (n = 29) by Cytometric Bead Array to evaluate correlation with parasitic load. Interestingly, IL-10 levels correlated significantly with parasite load (r = 0.82, P<0.0001). The mean parasite load in dermal lesions of PKDL patients was 9,502 parasites/µg tissue DNA at pre-treatment stage (n = 25), with no detectable parasites after therapy (n = 5). Parasite burden was distinctly higher (P<0.0001) in nodular lesions (n = 12) (19,586 parasites/µg tissue DNA) compared to papular/macular lesions (n = 13, 193 parasites/µg tissue DNA). Further, chronic PKDL lesions showed significantly (P = 0.0166) higher parasite load in comparison with acute lesions. Results indicate that chronic, nodular cases constitute the major parasite reservoir for anthroponotic transmission. Our results establish that the high parasite load in VL is strongly correlated with a high level of IL-10, implicating IL-10 as a marker of disease severity. The assay is applicable for diagnosis as well as prognosis of both VL and PKDL, providing a simple molecular tool to monitor the efficacy of antileishmanial drugs or vaccines.  相似文献   

5.

Background

Post kala-azar dermal leishmaniasis (PKDL), a dermal sequel of visceral leishmaniasis, caused by Leishmania donovani, constitutes an important reservoir for the parasite. Parallel functioning of counter acting immune responses (Th1/Th2) reflects a complex immunological scenario, suggesting the involvement of additional regulatory molecules in the disease pathogenesis.

Methodology/Principal Findings

In the present study, human cytokine/chemokine/receptor specific cDNA array technique was employed to identify modulations in gene expression of host immuno-determinants during PKDL, followed by evaluation of Th17 type responses by analyzing mRNA and protein expression of Th17 markers (IL-23, IL-17, RORγt) and performing functional assays using Leishmania antigen (TSLA) or recombinant (rec)IL-17. Array analysis identified key immuno-regulatory molecules including cytokines (TNF-α, IFN-γ, IL-10, IL-17), chemokines (MCP-1, MIP-1α), apoptotic molecules (FasL, TRAIL, IRF-1) and receptors (CD40, Fas). Up regulation in lesional expression of Th17 markers was observed during PKDL compared to control (IL-17 and IL-23, P = 0.0008; RORγt, P = 0.02). In follow-up samples, chemotherapy significantly down regulated expression of all markers. In addition, lesional expression of IL-17 was confirmed at protein level by Immuno-histochemistry. Further, systemic presence of Th17 responses (IL-17 and IL-23) was observed in plasma samples from PKDL patients. In functional assays, TSLA stimulated the secretion of IL-17 and IL-23 from PBMCs of PKDL patients, while recIL-17 enhanced the production of TNF-α as well as nitric oxide (NO) in PKDL compared to control (TNF-α, P = 0.0002; NO, P = 0.0013). Further, a positive correlation was evident between lesional mRNA expression of IL-17 and TNF-α during PKDL.

Conclusion/Significance

The results highlight key immune modulators in PKDL and provide evidence for the involvement of Th17 type responses in the disease pathogenesis.  相似文献   

6.
BackgroundVisceral leishmaniasis (VL) in HIV-positive individuals is a global health problem. HIV-Leishmania coinfection worsens prognosis and mortality risk, and HIV-Leishmania coinfected individuals are more susceptible to VL relapses. Early initiation of antiretroviral therapy can protect against Leishmania infection in individuals living in VL-endemic areas, and regular use of antiretrovirals might prevent VL relapses in these individuals. We conducted a cross-sectional study in Petrolina, Brazil, an VL-endemic area, to estimate the prevalence of asymptomatic Leishmania cases among HIV-positive outpatients.MethodsWe invited any HIV-positive patients, aged ≥ 18-years-old, under antiretroviral therapy, and who were asymptomatic for VL. Patients were tested for Leishmania with enzyme-linked immunosorbent assays (ELISA)-rK39, immunochromatographic test (ICT)-rK39, direct agglutination test (DAT), latex agglutination test (KAtex), and conventional polymerase chain reaction (PCR). HIV-Leishmania coinfection was diagnosed when at least one VL test was positive.ResultsA total of 483 patients were included. The sample was predominantly composed of single, < 48-years-old, black/pardo, heterosexual males, with fewer than 8 years of schooling. The prevalence of asymptomatic HIV-Leishmania coinfection was 9.11% (44/483). HIV mono-infected and HIV-Leishmania coinfected groups differed statistically significantly in terms of race (p = 0.045), marital status (p = 0.030), and HIV viral load (p = 0.046). Black/pardo patients, married patients, and those with an HIV viral load up to 100,000 copies/ml presented higher odds for HIV-Leishmania coinfection.ConclusionsA considerable number of asymptomatic Leishmania cases were observed among HIV-positive individuals in a VL-endemic area. Given the potential impact on transmission and health costs, as well as the impact on these coinfected individuals, studies of asymptomatic Leishmania carriers can be useful for guiding public health policies in VL-endemic areas aiming to control and eliminate the disease.  相似文献   

7.
Leishmania infantum infection in humans and dogs can evolve with a wide range of clinical presentations, varying from asymptomatic infections to visceral leishmaniasis. We hypothesized that the immune response elicited by L. infantum infection could modulate whether the host will remain asymptomatic or progress to disease. A total of 44 dogs naturally infected with L. infantum were studied. Leishmania burden was estimated in the blood and spleen by qPCR. The expression of IFN-γ, TNF-α, IL-10 and Iron Regulatory Protein 2 (IRP2) were determined in the spleen by quantitative PCR. Sera cytokines were evaluated by ELISA. Dogs were grouped in quartiles according parasite burden. Increased expression of IFN-γ and TNF-α was associated with reduced Leishmania burden, whereas increased IL-10 and IRP2 expressions were associated with higher Leishmania load. Increased plasma albumin and IFN-γ expression explained 22.8% of the decrease in parasite burden in the spleen. These data confirm that lower IFN-γ response and higher IL-10 correlated with increased parasite load and severity of the visceral leishmaniasis in dogs. The balance between the branches of immune response and the intracellular iron availability could determine, in part, the course of Leishmania infection.  相似文献   

8.
Mazumder S  Maji M  Das A  Ali N 《PloS one》2011,6(2):e14644

Background

Visceral leishmaniasis (VL) caused by an intracellular protozoan parasite Leishmania, is fatal in the absence of treatment. At present there are no effective vaccines against any form of leishmaniasis. Here, we evaluate the potency, efficacy and durability of DNA/DNA, DNA-prime/Protein-boost, and Protein/Protein based vaccination against VL in a susceptible murine model.

Methods and Findings

To compare the potency, efficacy, and durability of DNA, protein and heterologous prime-boost (HPB) vaccination against Leishmania donovani, major surface glycoprotein gp63 was cloned into mammalian expression vector pcDNA3.1 for DNA based vaccines. We demonstrated that gp63 DNA based vaccination induced immune responses and conferred protection against challenge infection. However, vaccination with HPB approach showed comparatively enhanced cellular and humoral responses than other regimens and elicited early mixed Th1/Th2 responses before infection. Moreover, challenge with parasites induced polarized Th1 responses with enhanced IFN-γ, IL-12, nitric oxide, IgG2a/IgG1 ratio and reduced IL-4 and IL-10 responses compared to other vaccination strategies. Although, vaccination with gp63 DNA either alone or mixed with CpG- ODN or heterologously prime-boosting with CpG- ODN showed comparable levels of protection at short-term protection study, DNA-prime/Protein-boost in presence of CpG significantly reduced hepatic and splenic parasite load by 107 fold and 1010 fold respectively, in long-term study. The extent of protection, obtained in this study has till now not been achieved in long-term protection through HPB approach in susceptible BALB/c model against VL. Interestingly, the HPB regimen also showed marked reduction in the footpad swelling of BALB/c mice against Leishmania major infection.

Conclusion/Significance

HPB approach based on gp63 in association with CpG, resulted in robust cellular and humoral responses correlating with durable protection against L. donovani challenge till twelve weeks post-vaccination. These results emphasize the potential of DNA-prime/Protein-boost vaccination over DNA/DNA and Protein/Protein based vaccination in maintaining long-term immunity against intracellular pathogen like Leishmania.  相似文献   

9.
Antimony resistance is frequently encountered during treatment of visceral leishmaniasis (VL) and the differences are well characterized by inadequate IFN-γ dominant type-1 protection mechanisms. The part played by Leishmania parasites derived from antimony treated patients in the outcome of an immune response largely remains to be investigated. In the present study we observed that macrophages of BALB/c mice infected with antimony non-responder (SAG-NR) isolates had a greater amastigote burden than antimony responder (SAG-R) isolates. Later it was observed that antigen from SAG-NR and R L. donovani isolates elicit different cytokine responses in peritoneal blood mononuclear cells (PBMCs) from patients with VL. The production of IFN-γ by T-cells in VL patients increased in response to Leishmania derived from responder patients but this response within same T-cells was lower when sensitized from Leishmania from a non-responder VL patient. On the other hand, IL-4 and IL-10 expression was increased when primed with parasites from non-responder VL source. Such a differential pattern of cytokine expression by the same T-cell population produced to Leishmania from different donors, needs further exploration.  相似文献   

10.
11.
Background/AimMultiple sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous system. Effector T helper cells, mainly Th1 and Th17, cytotoxic T-cells, B-cells, macrophages, microglia, and the cytokines they secrete, are implicated in the initiation and maintenance of a deregulated immune response to myelin antigens and the ensuing immune-mediated demyelination. In this study, we investigated whether signature cytokines exist in MS patients at presentation to gain an insight into the underlying immunopathogenic processes at the early stage of the disease.MethodsWe collected serum and cerebrospinal fluid (CSF) samples from 123 patients at presentation, eventually diagnosed with MS or non-inflammatory (NIND) or inflammatory neurological diseases (IND) or symptomatic controls (SC). The levels of cytokines IFN-γ, TNF-α, TGF-β1, IL-2, IL-4, IL-6, IL-10 and IL-17 were measured, and cytokine ratios, such as Th1/Th2, Th1/Th17, and Type-1/Type-2, were calculated. All parameters were tested for their correlations with the intrathecal IgG synthesis.ResultsCytokine levels in CSF were lower than in serum in all the patients, with the exception of IL-6. Serum or CSF cytokine levels of MS patients did not differ significantly from NIND or SC, with the exception of serum IFN-γ and TNF-α that were significantly higher in NIND. IND patients presented with the highest levels of all cytokines in serum and CSF, with the exception of serum IL-10 and CSF IL-17. MS patients had a significantly lower serum Th1/Th2 ratio compared to the NIND and IND groups, and significantly lower serum Type-1/Type-2, IFN-γ/IL-10 and CSF Th1/Th17 ratios compared to IND patients. MS patients had a significantly higher CSF IL-17/IL-10 ratio compared to IND patients. The IgG index was higher in MS patients compared to the control groups; the differences reached statistical significance between the MS and the NIND and SC groups. Reiber-Felgenhauer analysis of the QIgG and QAlb indices revealed higher intrathecal IgG synthesis in MS patients, and higher blood-CSF barrier dysfunction in IND patients. The IgG index correlated with CSF IL-4 in MS patients only.ConclusionsWe found no signature cytokines or profiles thereof in MS patients at presentation. Only IND patients presented with a clear Th1 cytokine polarization in serum and CSF. The parameters that distinguished MS patients from patients with other neurological disorders were IgG intrathecal synthesis, the IgG index and its correlation with CSF IL-4 levels.  相似文献   

12.
BackgroundVisceral leishmaniasis (VL) caused by the protozoan parasite Leishmania donovani causes severe disease. Age appears to be critical in determining the clinical outcome of VL and at present there is no effective vaccine available against VL for any age group. Previously, we showed that genetically modified live attenuated L. donovani parasites (LdCen-/-) induced a strong protective innate and adaptive immune response in young mice. In this study we analyzed LdCen-/- parasite mediated modulation of innate and adaptive immune response in aged mice (18 months) and compared to young (2 months) mice.MethodologyAnalysis of innate immune response in bone marrow derived dendritic cells (BMDCs) from both young and aged mice upon infection with LdCen-/- parasites, showed significant enhancement of innate effector responses, which consequently augmented CD4+ Th1 cell effector function compared to LdWT infected BMDCs in vitro. Similarly, parasitized splenic dendritic cells from LdCen-/- infected young and aged mice also revealed induction of proinflammatory cytokines (IL-12, IL-6, IFN-γ and TNF) and subsequent down regulation of anti-inflammatory cytokine (IL-10) genes compared to LdWT infected mice. We also evaluated in vivo protection of the LdCen-/- immunized young and aged mice against virulent L. donovani challenge. Immunization with LdCen-/- induced higher IgG2a antibodies, lymphoproliferative response, pro- and anti-inflammatory cytokine responses and stimulated splenocytes for heightened leishmanicidal activity associated with nitric oxide production in young and aged mice. Furthermore, upon virulent L. donovani challenge, LdCen-/- immunized mice from both age groups displayed multifunctional Th1-type CD4 and cytotoxic CD8 T cells correlating to a significantly reduced parasite burden in the spleen and liver compared to naïve mice. It is interesting to note that even though there was no difference in the LdCen-/- induced innate response in dendritic cells between aged and young mice; the adaptive response specifically in terms of T cell and B cell activation in aged animals was reduced compared to young mice which correlated with less protection in old mice compared to young mice.ConclusionsTaken together, LdCen-/- immunization induced a significant but diminished host protective response in aged mice after challenge with virulent L. donovani parasites compared to young mice.  相似文献   

13.

Background

Uncoupling protein 2 (UCP2) is a mitochondrial transporter that has been shown to lower the production of reactive oxygen species (ROS). Intracellular pathogens such as Leishmania upregulate UCP2 and thereby suppress ROS production in infected host tissues, allowing the multiplication of parasites within murine phagocytes. This makes host UCP2 and ROS production potential targets in the development of antileishmanial therapies. Here we explore how UCP2 affects the outcome of cutaneous leishmaniosis (CL) and visceral leishmaniosis (VL) in wild-type (WT) C57BL/6 mice and in C57BL/6 mice lacking the UCP2 gene (UCP2KO).

Methodology and Findings

To investigate the effects of host UCP2 deficiency on Leishmania infection, we evaluated parasite loads and cytokine production in target organs. Parasite loads were significantly lower in infected UCP2KO mice than in infected WT mice. We also found that UCP2KO mice produced significantly more interferon-γ (IFN-γ), IL-17 and IL-13 than WT mice (P<0.05), suggesting that UCP2KO mice are resistant to Leishmania infection.

Conclusions

In this way, UCP2KO mice were better able than their WT counterparts to overcome L. major and L. infantum infections. These findings suggest that upregulating host ROS levels, perhaps by inhibiting UPC2, may be an effective approach to preventing leishmaniosis.  相似文献   

14.

Background

The development of cost-effective prophylactic strategies to prevent leishmaniasis has become a high-priority. The present study has used the phage display technology to identify new immunogens, which were evaluated as vaccines in the murine model of visceral leishmaniasis (VL). Epitope-based immunogens, represented by phage-fused peptides that mimic Leishmania infantum antigens, were selected according to their affinity to antibodies from asymptomatic and symptomatic VL dogs'' sera.

Methodology/Main Findings

Twenty phage clones were selected after three selection cycles, and were evaluated by means of in vitro assays of the immune stimulation of spleen cells derived from naive and chronically infected with L. infantum BALB/c mice. Clones that were able to induce specific Th1 immune response, represented by high levels of IFN-γ and low levels of IL-4 were selected, and based on their selectivity and specificity, two clones, namely B10 and C01, were further employed in the vaccination protocols. BALB/c mice vaccinated with clones plus saponin showed both a high and specific production of IFN-γ, IL-12, and GM-CSF after in vitro stimulation with individual clones or L. infantum extracts. Additionally, these animals, when compared to control groups (saline, saponin, wild-type phage plus saponin, or non-relevant phage clone plus saponin), showed significant reductions in the parasite burden in the liver, spleen, bone marrow, and paws'' draining lymph nodes. Protection was associated with an IL-12-dependent production of IFN-γ, mainly by CD8+ T cells, against parasite proteins. These animals also presented decreased parasite-mediated IL-4 and IL-10 responses, and increased levels of parasite-specific IgG2a antibodies.

Conclusions/Significance

This study describes two phage clones that mimic L. infantum antigens, which were directly used as immunogens in vaccines and presented Th1-type immune responses, and that significantly reduced the parasite burden. This is the first study that describes phage-displayed peptides as successful immunogens in vaccine formulations against VL.  相似文献   

15.

Background

Visceral leishmaniasis (VL) is a severe disease caused by infection with protozoa of the genus Leishmania. Classic VL is characterized by a systemic infection of phagocytic cells and an intense activation of the inflammatory response. It is unclear why 90% of infected individuals do not develop the disease while a minority develop the classical form. Furthermore, among those that develop disease, a small group progresses to more severe form that is unresponsive to treatment. The presence of inflammatory mediators in serum could theoretically help to control the infection. However, there is also a release of anti-inflammatory mediators that could interfere with the control of parasite multiplication. In this study, we took advantage of the spectrum of outcomes to test the hypothesis that the immune profile of individuals infected with Leishmania (L.) infantum is associated with the development and severity of disease.

Methodology/Principal Findings

Sera from patients with confirmed diagnosis of VL were evaluated for the presence of numerous molecules, and levels compared with healthy control and asymptomatic infected individuals.

Conclusions/Principal Findings

Although differences were not observed in LPS levels, higher levels of sCD14 were detected in VL patients. Our data suggest that L. infantum may activate the inflammatory response via CD14, stimulating a generalized inflammatory response with production of several cytokines and soluble molecules, including IFN-γ, IL-27, IL-10, IL-6 and sCD14. These molecules were strongly associated with hepatosplenomegaly, neutropenia and thrombocytopenia. We also observed that IL-6 levels greater than 200 pg/ml were strongly associated with death. Together our data reinforce the close relationship of IFN-γ, IL-10, IL-6, TNF-α and IL-27 in the immune dynamics of VL and suggest the direct participation of sCD14 in the activation of the immune response against L. infantum.  相似文献   

16.
Leishmaniasis, resulting from infection with the protozoan parasite Leishmania, consists of a wide spectrum of clinical manifestations, from healing cutaneous lesions to fatal visceral infections. A particularly severe form of cutaneous leishmaniasis, termed mucosal leishmaniasis, exhibits decreased IL-10 levels and an exaggerated inflammatory response that perpetuates the disease. Using a mouse model of leishmaniasis, we investigated what cytokines contribute to increased pathology when IL-10-mediated regulation is absent. Leishmania major infected C57BL/6 mice lacking IL-10 regulation developed larger lesions than controls, but fewer parasites. Both IFN-γ and IL-17 levels were substantially elevated in mice lacking the capacity to respond to IL-10. IFN-γ promoted an increased infiltration of monocytes, while IL-17 contributed to an increase in neutrophils. Surprisingly, however, we found that IFN-γ did not contribute to increased pathology, but instead regulated the IL-17 response. Thus, blocking IFN-γ led to a significant increase in IL-17, neutrophils and disease. Similarly, the production of IL-17 by cells from leishmaniasis patients was also regulated by IL-10 and IFN-γ. Additional studies found that the IL-1 receptor was required for both the IL-17 response and increased pathology. Therefore, we propose that regulating IL-17, possibly by downregulating IL-1β, may be a useful approach for controlling immunopathology in leishmaniasis.  相似文献   

17.
BackgroundVisceral leishmaniasis (VL) is a life-threatening disease caused by protozoan parasites of the Leishmania donovani complex. Early case detection followed by adequate treatment is essential to the control of VL. However, the available diagnostic tests are either invasive and require considerable expertise (parasitological demonstration of the parasite in tissue smears) or unable to distinguish between past and active infection (serological methods). Therefore, we aimed to develop a lateral flow assay in the form of an immunochromatographic test (ICT) device based on the detection of a circulating Leishmania antigen using monoclonal antibodies (mAbs).Conclusion/SignificanceThe newly developed ICT is an easy to use and more accurate diagnostic tool which fulfils the performance and operational characteristics required for VL case detection under field and laboratory conditions. As our ICT detects a circulating antigen, it will also be useful in monitoring treatment success and diagnosing VL in immunocompromised patients.  相似文献   

18.
Host resistance to Leishmania infection is mediated by cellular immune responses leading to macrophage activation and parasite killing. Interleukin-18 (IL-18) known as interferon-γ (IFN-γ) inducing factor, stimulates IFN-γ production by T cells. Taking into account the important role of IL-18 in the defense against visceral leishmaniasis (VL) and the known effect of IL-18 gene polymorphisms on its production, the aim of this study was to investigate the probable relationship between IL-18 gene polymorphisms and the susceptibility to VL. The study groups included 118 pediatric patients who suffered from VL and 156 non-relative healthy people as the controls from the same endemic area. IL-18 gene polymorphisms at the positions ?656 G/T, ?137 G/C and +105A/C (codon 35/3) were analyzed by polymerase chain reaction-restricted fragment length polymorphism (PCR–RFLP). The results showed that the frequency of T allele at the position -656 was significantly higher in the controls, compared with that in the patients (P = 0.047), but it couldn’t tolerate Bonferroni correction. Regarding the IL-18 genotypes, there was no significant difference between the patients and controls. Although the frequencies of ATG single haplotype and AGG/ATG double haplotype were significantly higher in the controls (P = 0.043) and the patients (P = 0.044), respectively, the two P values couldn’t tolerate Bonferroni correction. Furthermore, a strong linkage disequilibrium was observed among the ?656, ?137 and +105 single nucleotide polymorphisms of IL-18 gene (all Ps < 0.001). In conclusion, this study suggests that the inheritance of T allele at the position ?656 may be considered as a genetic factor for resistance to VL.  相似文献   

19.

Background

Visceral leishmaniasis (VL) is distinguished by a complex interplay of immune response and parasite multiplication inside host cells. However, the direct association between different immunological correlates and parasite numbers remains largely unknown.

Methodology/Principal Findings

We examined the plasma levels of different disease promoting/protective as well as Th17 cytokines and found IL-10, TGFβ and IL-17 to be significantly correlated with parasite load in VL patients (r = 0.52, 0.53 and 0.51 for IL-10, TGFβ and IL-17, respectively). We then extended our investigation to a more antigen-specific response and found leishmanial antigen stimulated levels of both IL-10 and TGFβ to be significantly associated with parasite load (r = 0.71 and 0.72 for IL-10 and TGFβ respectively). In addition to cytokines we also looked for different cellular subtypes that could contribute to cytokine secretion and parasite persistence. Our observations manifested an association between different Treg cell markers and disease progression as absolute numbers of CD4+CD25+ (r = 0.55), CD4+CD25hi (r = 0.61) as well as percentages of CD4+CD25+FoxP3+ T cells (r = 0.68) all correlated with parasite load. Encouraged by these results, we investigated a link between these immunological components and interestingly found both CD4+CD25+ and CD4+CD25+FoxP3+ Treg cells to secrete significantly (p<0.05) higher amounts of not only IL-10 but also TGFβ in comparison to corresponding CD25- T cells.

Conclusions/Significance

Our findings shed some light on source(s) of TGFβ and suggest an association between these disease promoting cytokines and Treg cells with parasite load during active disease. Moreover, the direct evidence of CD4+CD25+FoxP3+ Treg cells as a source of IL-10 and TGFβ during active VL could open new avenues for immunotherapy towards cure of this potentially fatal disease.  相似文献   

20.
DUSP4, an inducible protein has a substrate specificity toward ERK1/2, a component of MAP kinase which is enhanced during Leishmania infection. The DUSP4?/? mice show increased susceptibility towards the infection caused by Toxoplasma gondii and Leishmania mexicana. These observations emphatically established the fact that unlike DUSP1, DUSP4 has host protective role. In our study, it has been Leishmania donovani, the causative agent of visceral leishmaniasis (VL) significantly reduced the expression of DUSP4 during infection. In order to find out the host protective role of DUSP4 in macrophages during VL, we silenced DUSP4 prior to infection and the parasite number within macrophage was counted. Under DUSP4 knock-down condition, phosphorylation of p38 MAPK and generation of pro-inflammatory response like IL-12, TNF-α, and iNOS was decreased significantly. Silencing DUSP4 promoted the phosphorylation of ERK1/2 and the generation of anti-inflammatory response like- IL-10, TGF-β with increased Arginase-1 and Cox-2 activity. Glycyrrhizic Acid (GA), an immunomodulator, already known to suppress L. donovani infection, found to up-regulate DUSP4 expression during L. donovani infection. On the other hand, GA failed to increase Th1 cytokine production and decrease Th2 response during DUSP4 knock-down condition suggesting the key role of DUSP4 while providing protection during L. donovani infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号