首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Loss of mechanical loading induces rapid bone loss resulting from reduced osteoblastogenesis and decreased bone formation. The signaling mechanisms involved in this deleterious effect on skeletal metabolism remain poorly understood. We have previously shown that hindlimb suspension in rats increases osteoblast apoptosis associated with decreased phosphatidylinositol 3-kinase (PI3K) signaling. In this study, we investigated whether transforming growth factor (TGF)-beta2 may prevent the altered signaling and osteoblast apoptosis induced by skeletal unloading in vivo. Hindlimb suspension-induced decreased bone volume was associated with reduced alpha(5)beta(1)-integrin protein levels and PI3K/Akt signaling in unloaded bone. Continuous administration of TGF-beta2 using osmotic minipumps prevented the decreased alpha(5)beta(1)-integrin expression and the reduced PI3K/Akt signaling in unloaded bone, resulting in the prevention of osteoblast apoptosis. We also show that TGF-beta2 prevented the decreased Bcl-2 levels induced by unloading, which suggests that TGF-beta2 targets Bcl-2 via PI3K/Akt to prevent osteoblast apoptosis in unloaded bone. Furthermore, we show that TGF-beta2 prevented the decrease in phosphorylated Bad, the inactive form of the proapoptotic protein Bad, induced by unloading. These results identify a protective role for TGF-beta2 in osteoblast apoptosis induced by mechanical unloading via the alpha(5)beta(1)/PI3K/Akt signaling cascade and downstream Bcl-2 and phospho-Bad survival proteins. We thus propose a novel role for TGF-beta2 in protection from unloading-induced apoptosis in vivo.  相似文献   

2.
The influence of aging on skeletal myocyte apoptosis is not well understood. In this study we examined apoptosis and apoptotic regulatory factor responses to muscle atrophy induced via limb unloading following loading-induced hypertrophy. Muscle hypertrophy was induced by attaching a weight to one wing of young and aged Japanese quails for 14 days. Removing the weight for 7 or 14 days after the initial 14 days of loading induced muscle atrophy. The contralateral wing served as the intra-animal control. A time-released bromodeoxyuridine (BrdU) pellet was implanted subcutaneously with wing weighting to identify activated satellite cells/muscle precursor cells throughout the experimental period. Bcl-2 mRNA and protein levels decreased after 7 days of unloading, but they were unchanged after 14 days of unloading in young muscles. Bcl-2 protein level but not mRNA level decreased after 7 days of unloading in muscles of aged birds. Seven days of unloading increased the mRNA level of Bax in muscles from both young and aged birds. Fourteen days of unloading increased mRNA and protein levels of Bcl-2, decreased protein levels of Bax, and decreased nuclear apoptosis-inducing factor (AIF) protein level in muscles of aged birds. BrdU-positive nuclei were found in all unloaded muscles from both age groups, but the number of BrdU-positive nuclei relative to the total nuclei decreased after 14 days of unloading compared with 7 days of unloading. The TdT-mediated dUTP nick end labeling (TUNEL) index was higher after 7 days of unloading in both young and aged muscles and after 14 days of unloading in aged muscles. Immunofluorescent staining revealed that almost all of the TUNEL-positive nuclei were also BrdU immunopositive, suggesting that activated satellite cell nuclei (both fused and nonfused) underwent nuclear apoptosis during unloading. There were significant correlations among levels of Bcl-2, Bax, and AIF and TUNEL index. Our data are consistent with the hypothesis that apoptosis regulates, at least in part, unloading-induced muscle atrophy and loss of activated satellite cell nuclei in previously loaded muscles. Moreover, these data suggest that aging influences the apoptotic responses to prolonged unloading following hypertrophy in skeletal myocytes. satellite cells; Bcl-2 protein family  相似文献   

3.
Apoptosis of osteocytes and osteoblasts precedes bone resorption and bone loss with reduced mechanical stimulation, and receptor activator of NF-κB ligand (RANKL) expression is increased with unloading in mice. Because osteocytes are major RANKL producers, we hypothesized that apoptotic osteocytes signal to neighboring osteocytes to increase RANKL expression, which, in turn, increases osteoclastogenesis and bone resorption. The traditional bisphosphonate (BP) alendronate (Aln) or IG9402, a BP analog that does not inhibit resorption, prevented the increase in osteocyte apoptosis and osteocytic RANKL expression. The BPs also inhibited osteoblast apoptosis but did not prevent the increase in osteoblastic RANKL. Unloaded mice exhibited high serum levels of the bone resorption marker C-telopeptide fragments of type I collagen (CTX), elevated osteoclastogenesis, and increased osteoclasts in bone. Aln, but not IG9402, prevented all of these effects. In addition, Aln prevented the reduction in spinal and femoral bone mineral density, spinal bone volume/tissue volume, trabecular thickness, mechanical strength, and material strength induced by unloading. Although IG9402 did not prevent the loss of bone mass, it partially prevented the loss of strength, suggesting a contribution of osteocyte viability to strength independent of bone mass. These results demonstrate that osteocyte apoptosis leads to increased osteocytic RANKL. However, blockade of these events is not sufficient to restrain osteoclast formation, inhibit resorption, or stop bone loss induced by skeletal unloading.  相似文献   

4.
IGF-I stimulates osteoblast proliferation, bone formation, and increases bone volume in normal weight-bearing animals. During skeletal unloading or loss of weight bearing, bone becomes unresponsive to the anabolic effects of insulin-like growth factor I (IGF-I). To determine whether skeletal reloading after a period of unloading increases bone responsiveness to IGF-I, we examined bone structure and formation in response to IGF-I under different loading conditions. Twelve-week-old rats were divided into six groups: loaded (4 wk), unloaded (4 wk), and unloaded/reloaded (2/2 wk), and treated with IGF-I (2.5 mg x kg(-1) x day(-1)) or vehicle during the final 2 wk. Cortical bone formation rate (BFR), cancellous bone volume and architecture in the secondary spongiosa (tibia and vertebrae), and total volume and calcified volume in the primary spongiosa (tibia) were assessed. Periosteal BFR decreased during unloading, remained low during reloading in the vehicle-treated group, but was dramatically increased in IGF-I-treated animals. Cancellous bone volume decreased with unloading and increased with reloading, but the effect was exaggerated in the tibia of IGF-I-treated animals. Total and calcified volumes in the primary spongiosa decreased during unloading in the vehicle-treated animals. IGF-I treatment prevented the loss in volume. These data show that reloading after a period of skeletal unloading increases bone responsiveness to IGF-I, and they suggest that IGF-I may be of therapeutic use in patients who have lost bone as a consequence of prolonged skeletal disuse.  相似文献   

5.
Reduced mechanical stress is a major cause of osteoporosis in the elderly, and the osteocyte network, which comprises a communication system through processes and canaliculi throughout bone, is thought to be a mechanosensor and mechanotransduction system; however, the functions of osteocytes are still controversial and remain to be clarified. Unexpectedly, we found that overexpression of BCL2 in osteoblasts eventually caused osteocyte apoptosis. Osteoblast and osteoclast differentiation were unaffected by BCL2 transgene in vitro. However, the cortical bone mass increased due to enhanced osteoblast function and suppressed osteoclastogenesis at 4 months of age, when the frequency of TUNEL-positive lacunae reached 75%. In the unloaded condition, the trabecular bone mass decreased in both wild-type and BCL2 transgenic mice at 6 weeks of age, while it decreased due to impaired osteoblast function and enhanced osteoclastogenesis in wild-type mice but not in BCL2 transgenic mice at 4 months of age. Rankl and Opg were highly expressed in osteocytes, but Rankl expression in osteoblasts but not in osteocytes was increased at unloading in wild-type mice but not in BCL2 transgenic mice at 4 months of age. Sost was locally induced at unloading in wild-type mice but not in BCL2 transgenic mice, and the dissemination of Sost was severely interrupted in BCL2 transgenic mice, showing the severely impaired osteocyte network. These findings indicate that the osteocyte network is required for the upregulation of Rankl in osteoblasts and Sost in osteocytes in the unloaded condition. These findings suggest that the osteocyte network negatively regulate bone mass by inhibiting osteoblast function and activating osteoclastogenesis, and these functions are augmented in the unloaded condition at least partly through the upregulation of Rankl expression in osteoblasts and that of Sost in osteocytes, although it cannot be excluded that low BCL2 transgene expression in osteoblasts contributed to the enhanced osteoblast function.  相似文献   

6.
Bone unloading results in osteocyte apoptosis, which attracts osteoclasts leading to bone loss. Loading of bone drives fluid flow over osteocytes which respond by releasing signaling molecules, like nitric oxide (NO), that inhibit osteocyte apoptosis and alter osteoblast and osteoclast activity thereby preventing bone loss. However, which apoptosis-related genes are modulated by loading is unknown. We studied apoptosis-related gene expression in response to pulsating fluid flow (PFF) in osteocytes, osteoblasts, and fibroblasts, and whether this is mediated by loading-induced NO production. PFF (0.7 ± 0.3 Pa, 5 Hz, 1 h) upregulated Bcl-2 and downregulated caspase-3 expression in osteocytes. l-NAME attenuated this effect. In osteocytes PFF did not affect p53 and c-Jun, but l-NAME upregulated c-Jun expression. In osteoblasts and fibroblasts PFF upregulated c-Jun, but not Bcl-2, caspase-3, and p53 expression. This suggests that PFF inhibits osteocyte apoptosis via alterations in Bcl-2 and caspase-3 gene expression, which is at least partially regulated by NO.  相似文献   

7.
To determine the local mechanisms involved in the effects of skeletal unloading on bone formation, we studied the temporal pattern of mRNA levels for insulin-like growth factor-I (IGF-I), IGF-I receptor type I (IGF-IR), and transforming growth factor beta receptor type II (TGF-betaRII) in relation to osteoblast phenotypic markers and osteoblast activity in hindlimb suspended rats. Skeletal unloading decreased bone volume and the mineralizing and osteoblastic surfaces at 4, 7, and 14 days in the tibial metaphysis, whereas the mineral appositional rate returned to normal at 14 days of suspension. RT-PCR analysis showed that skeletal unloading decreased type 1 collagen (Col 1) and osteocalcin (OC) mRNA levels in metaphyseal bone at days 4 and 7, and the levels returned to normal at 14 days of suspension. Unloading also decreased mRNA levels for IGF-I, IGF-IR, and TGF-betaRII at 4-7 days in the metaphyseal bone. However, IGF-I and IGF-IR levels rose above normal at 14 days of suspension. The biphasic changes in IGF-I mRNA levels were strongly correlated with Col 1 and OC mRNA levels. The associated biphasic pattern of IGF-I/IGF-IR expression, osteoblast markers, and osteoblast activity strongly suggests an important role for IGF-I signaling in the local effect of skeletal unloading on metaphyseal bone formation.  相似文献   

8.
Age-related skeletal changes is closely associated with imbalanced bone remodeling characterized by elevated osteocyte apoptosis and osteoclast activation. Since osteocytes are the commander of bone remodeling, attenuating increased osteocyte apoptosis may improve age-related bone loss. Exosomes, derived from mesenchymal stem cells, hold promising potential for cell-free therapy due to multiple abilities, such as promoting proliferation and suppressing apoptosis. We aimed to explore the effect of exosomes derived from adipose mesenchymal stem cell (ADSCs-exo) on osteocyte apoptosis and osteocyte-mediated osteoclastogenesis in vitro. The osteocyte-like cell line MLO-Y4 was used as a model, and apoptosis was induced by hypoxia and serum deprivation (H/SD). Our results showed that ADSCs-exo noticeably reduced H/SD-induced apoptosis in MLO-Y4 cells via upregulating the radio of Bcl-2/Bax, diminishing the production of reactive oxygen species and cytochrome c, and subsequent activation of caspase-9 and caspase-3. Additionally, ADSCs-exo lowered the expression of RANKL both at the mRNA and protein levels, as well as the ratio of RANKL/OPG at the gene level. As determined by tartrate-resistant acid phosphatase staining, reduced osteoclastogenesis was further validated in bone marrow monocytes cultured under conditioned medium from exosome-treated MLO-Y4. Together, ADSCs-exo could antagonize H/SD induced osteocyte apoptosis and osteocyte-mediated osteoclastogenesis, indicating the therapeutic potential of ADSCs-exo in age-related bone disease.  相似文献   

9.
The study was designed to determine whether beta1-integrin plays a role in mediating the acute skeletal response to mechanical unloading. Transgenic (TG) mice were generated to express a dominant negative form of beta1-integrin under the control of the osteocalcin promoter, which targets expression of the transgene to mature osteoblasts. At 63 days of age, wild-type (WT) and TG mice were subjected to hindlimb unloading by tail suspension for 1 wk. Pair-fed, normally loaded WT and TG mice served as age-matched controls. Bone samples from each mouse were processed for quantitative bone histomorphometry and biomechanical testing. The skeletal phenotype of TG mice was characterized by lower cancellous bone mass in the distal femoral metaphysis (-52%) and lumbar vertebral body (-20%), reduced curvature of the proximal tibia (-20%), and decreased bone strength (-20%) and stiffness (-23%) of the femoral diaphysis with relatively normal indexes of cancellous bone turnover. Hindlimb unloading for only 1 wk induced a 10% decline in tibial curvature and a 30% loss of cancellous bone in the distal femur due to a combination of increased bone resorption and decreased bone formation in both WT and TG mice. However, the strength and stiffness of the femoral diaphysis were unaffected by short-term hindlimb unloading in both genotypes. The observed increase in osteoclast surface was greater in unloaded TG mice (92%) than in unloaded WT mice (52%). Cancellous bone formation rate was decreased in unloaded WT (-29%) and TG (-15%) mice, but, in contrast to osteoclast surface, the genotype by loading interaction was not statistically significant. The results indicate that altered integrin function in mature osteoblasts may enhance the osteoclastic response to mechanical unloading but that it does not have a major effect on the development of cancellous osteopenia in mice during the early stages of hindlimb unloading.  相似文献   

10.
Epirubicin is an anthracycline and is widely used in tumor treatment, but has toxic and undesirable side effects on wide range of cells and hematopoietic stem cells (HSC). Osteoblasts play important roles in bone development and in supporting HSC differentiation and maturation. It remains unknown whether epirubicin-induced bone loss and hematological toxicity are associated with its effect on osteoblasts. In primary osteoblast cell cultures, epirubicin inhibited cell growth and decreased mineralization. Moreover, epirubicin arrested osteoblasts in the G2/M phase, and this arrest was followed by apoptosis in which both the extrinsic (death receptor-mediated) and intrinsic (mitochondrial-mediated) apoptotic pathways were evoked. The factors involved in the extrinsic apoptotic pathway were increased FasL and FADD as well as activated caspase-8. Those involved in the intrinsic apoptotic pathway were decreased Bcl-2; increased reactive oxygen species, Bax, cytochrome c; and activated caspase-9 and caspase-3. These results demonstrate that epirubicin induced osteoblast apoptosis through the extrinsic and intrinsic apoptotic pathways, leading to the destruction of osteoblasts and consequent lessening of their functions in maintaining bone density and supporting hematopoietic stem cell differentiation and maturation.  相似文献   

11.
Shear stress inhibits while disuse promotes osteocyte apoptosis   总被引:5,自引:0,他引:5  
Cell apoptosis operates as an organizing mechanism in biology in addition to removing effete cells. We have recently proposed that during bone remodeling, osteocyte apoptosis steers osteonal alignment in relation to mechanical loading of the whole bone [J. Biomech. 36 (2003) 1453]. Here we present evidence that osteocyte apoptosis in cell culture is modulated by shear stress. Under static culture conditions, serum starved osteocytes exposed phosphatidylserine (PS) on their cell membrane 6x more often than periosteal fibroblasts and 3x more often than osteoblasts. Treatment with shear stress reduced the number of osteocytes that exposed PS by 90%, but did not affect the other cell types. Fluid shear stress of increasing magnitude, dose-dependently stimulated Bcl-2 mRNA expression in human bone cells, while shear stress did not change Bax expression. These data suggest that disuse promotes osteocyte apoptosis, while mechanical stimulation by fluid shear stress promotes osteocyte survival, by modulating the Bcl-2/Bax expression ratio.  相似文献   

12.
Although apoptosis has been demonstrated in soleus during hindlimb suspension (HS), it is not known whether apoptosis is also involved in the loss of muscles dominated by mixed fibers. Therefore, we examined the apoptotic responses in gastrocnemius muscles of young adult and aged Fischer 344 x Brown Norway rats after 14 days of HS. The medial gastrocnemius muscle wet weight significantly decreased by 30 and 32%, and muscle wet weight normalized to the animal body weight decreased by 11 and 15% in young adult and aged animals, respectively, after HS. The extent of apoptotic DNA fragmentation increased by 119 and 61% in suspended muscles from young and aged rats, respectively. Bax mRNA increased by 73% in young muscles after HS. Bax and Bcl-2 protein levels were greater in suspended muscles relative to control muscles in both age groups. The level of cytosolic mitochondria-housed apoptotic factor cytochrome c was significantly increased in the mitochondria-free cytosol of suspended muscles from young and aged rats. In contrast, the release/accumulation of AIF, a caspase-independent apoptogenic factor, was exclusively expressed in the suspended muscles from aged rats. Our data also show that aging favors the proapoptotic signaling in skeletal muscle by altering the contents of Bax, Bcl-2, Apaf-1, AIF, caspases, XIAP, Smac/DIABLO, and cytochrome c. Furthermore, these results indicate that apoptosis occurs not only in slow-twitch soleus muscle but also in the mixed-fiber (predominately fast fibered) gastrocnemius muscle. Our data are consistent with the hypothesis that apoptotic signaling differs in young adult and aged gastrocnemius muscles during HS.  相似文献   

13.
Glycogen synthase kinase-3β (GSK3β) controls the survival of osteoblasts during bone development through Wnt canonical signaling. GSK3β is a key factor for osteoblastogenesis, but relatively less is known regarding its role in osteoblast apoptosis. Genotoxic stress induced by etoposide promoted apoptotic signaling by GSK3β activation in C3H10T1/2 cells, a mouse mesenchymal cell line. Etoposide led to the time-dependent activation of GSK3β and caspase-3, which resulted in PARP cleavage. LiCl (a specific inhibitor) and siRNA (gene knock-down) of GSK3β prevented the effects of etoposide on apoptosis. Staurosporine also induced apoptosis in C3H10T1/2 cells, but LiCl could not rescue. Bcl-2 was decreased in the cells by exposure to etoposide. LiCl completely recovered Bcl-2 expression as shown by both the mRNA and the protein expression levels. In conclusion, etoposide-induced apoptosis in C3H10T1/2 cells is mediated by GSK3β, which leads to caspase-3 activation via decrease in Bcl-2 expression. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
目的:在体外条件下,探讨周期张应力作用对人牙周膜成纤维细胞凋亡的影响及PI3k/Akt信号通路在细胞凋亡中的作用。方法:应用多通道细胞牵张应力加载系统,以HPDLFs(人牙周膜成纤维细胞)为对象构建细胞体外培养-力学刺激模型,对照组为0h,0h+LY294002,加力组1 h,6 h,12 h,12 h+LY294002,24 h,力值定为15%,频率为1/6HZ,即10循环/分钟。采用Hoechst33258染色检测细胞形态和凋亡情况,应用RT-PCR技术检测Bcl-2、Bax的表达情况。结果:Hoechst 33258细胞染色结果显示,对照组的细胞核为弥散均匀的圆形或椭圆形荧光,实验组的细胞核或细胞质内出现可见致密浓染的颗粒、新月体或环状荧,RT-PCR结果显示Bcl-2与Bax基因表达均呈现时间依赖性。12 h HPDLFs的细胞凋亡数达最高峰值(P<0.01),24 h细胞凋亡峰值开始下降,但仍高于未加力组(P<0.05)。与对照组相比加入LY294002后,Bcl-2/Bax比值较加载相同时间的加力组小(P<0.05)。结论:一定的时间范围内,周期性张应力能促进HPDLFs凋亡;随着时间的延长(24h),细胞凋亡受到抑制;PI3K/Akt信号传导通路可能参与在周期性张应力介导的HPDLFs的凋亡。  相似文献   

15.
Both aging and loss of sex steroids have adverse effects on skeletal homeostasis, but whether and how they may influence each others negative impact on bone remains unknown. We report herein that both female and male C57BL/6 mice progressively lost strength (as determined by load-to-failure measurements) and bone mineral density in the spine and femur between the ages of 4 and 31 months. These changes were temporally associated with decreased rate of remodeling as evidenced by decreased osteoblast and osteoclast numbers and decreased bone formation rate; as well as increased osteoblast and osteocyte apoptosis, increased reactive oxygen species levels, and decreased glutathione reductase activity and a corresponding increase in the phosphorylation of p53 and p66(shc), two key components of a signaling cascade that are activated by reactive oxygen species and influences apoptosis and lifespan. Exactly the same changes in oxidative stress were acutely reproduced by gonadectomy in 5-month-old females or males and reversed by estrogens or androgens in vivo as well as in vitro.We conclude that the oxidative stress that underlies physiologic organismal aging in mice may be a pivotal pathogenetic mechanism of the age-related bone loss and strength. Loss of estrogens or androgens accelerates the effects of aging on bone by decreasing defense against oxidative stress.  相似文献   

16.
The sympathetic nervous system (SNS) plays an important role in mediating bone remodeling. However, the exact role that beta-1 adrenergic receptors (beta1AR) have in this process has not been elucidated. We have previously demonstrated the ability of dobutamine (DOB), primarily a beta1AR agonist, to inhibit reductions in cancellous bone formation and mitigate disuse-induced loss of bone mass. The purpose of this study was to characterize the independent and combined effects of DOB and hindlimb unloading (HU) on cancellous bone microarchitecture, tissue-level bone cell activity, and osteocyte apoptosis. Male Sprague-Dawley rats, aged 6-mos, were assigned to either normal cage activity (CC) or HU (n = 18/group) for 28 days. Animals were administered either daily DOB (4 mg/kg BW/d) or an equal volume of saline (VEH) (n = 9/gp). Unloading resulted in significantly lower distal femur cancellous BV/TV (−33%), Tb.Th (−11%), and Tb.N (−25%) compared to ambulatory controls (CC-VEH). DOB treatment during HU attenuated these changes in cancellous bone microarchitecture, resulting in greater BV/TV (+29%), Tb.Th (+7%), and Tb.N (+21%) vs. HU-VEH. Distal femur cancellous vBMD (+11%) and total BMC (+8%) were significantly greater in DOB- vs. VEH-treated unloaded rats. Administration of DOB during HU resulted in significantly greater osteoid surface (+158%) and osteoblast surface (+110%) vs. HU-VEH group. Furthermore, Oc.S/BS was significantly greater in HU-DOB (+55%) vs. CC-DOB group. DOB treatment during unloading fully restored bone formation, resulting in significantly greater bone formation rate (+200%) than in HU-VEH rats. HU resulted in an increased percentage of apoptotic cancellous osteocytes (+85%), reduced osteocyte number (−16%), lower percentage of occupied osteocytic lacunae (−30%) as compared to CC-VEH, these parameters were all normalized with DOB treatment. Altogether, these data indicate that beta1AR agonist treatment during disuse mitigates negative changes in cancellous bone microarchitecture and inhibits increases in osteocyte apoptosis.  相似文献   

17.
18.
The osteogenic growth peptide (OGP) is a naturally occurring tetradecapeptide that has attracted considerable clinical interest as a bone anabolic agent and hematopoietic stimulator. In vivo studies on animals have demonstrated that the synthetic peptide OGP (10-14), reproducing the OGP C-terminal active portion [H-Tyr-Gly-Phe-Gly-Gly-OH] increases bone formation, trabecular bone density and fracture healing. In vitro studies performed on cellular systems based on osteoblastic-like cell lines or mouse stromal cells, have demonstrated that OGP (10-14) increases osteoblast proliferation, alkaline phosphatase (ALKP) activity and matrix synthesis and mineralization. In view of a potential application of OGP (10-14) in clinical therapy, we have tested different concentrations of OGP (10-14) on primary human osteoblast (hOB) cultures. We have observed significant increases of hOB proliferation (+35%), ALKP activity (+60%), osteocalcin secretion (+50%), and mineralized nodules formation (+49%). Our experimental model based on mature hOBs was used to investigate if OGP (10-14) could prevent the effects on bone loss induced by sustained glucocorticoid (GC) treatments. A strong decrease in bone formation has been attributed to the effects of GCs on osteoblastogenesis and osteocyte apoptosis, while an increase in bone resorption was due to a transient osteoblastic stimulation, mediated by the OPG/RANKL/RANK system, of osteoclasts recruitment and activation. Moreover, GCs act on hOBs decreasing the release of osteoprotegerin (OPG) a regulator of the RANKL/RANK interaction. Here, we provide evidences that OGP (10-14) inhibits hOB apoptosis induced by an excess of dexamethasone (-48% of apoptotic cells). Furthermore, we show that OGP (10-14) can increase OPG secretion (+20%) and can restore the altered expression of OPG induced by GCs to physiological levels. Our results support the employment of OGP (10-14) in clinical trials addressed to the treatment of different bone remodeling alterations including the GC-induced osteoporosis.  相似文献   

19.
It has been shown previously using in vivo and ex vivo animal models, that cyclical mechanical stimulation is capable of maintaining osteocyte viability through the control of apoptotic cell death. Here we have studied the effect of mechanical stimulation on osteocyte viability in human trabecular bone maintained in a 3-D bioreactor system. Bone samples, maintained in the bioreactor system for periods of 3, 7 and 27 days, were subjected to either cyclical mechanical stimulation which engendered a maximum of 3,000 microstrain in a waveform corresponding to physiological jumping exercise for 5 minutes daily or control unloading. Unloading resulted in a decrease in osteocyte viability within 3 days that was accompanied by increased levels of cellular apoptosis. Mechanical stimulation significantly reduced apoptosis (p< or =0.032) and improved the maintenance of osteocyte viability in bone from all patient samples. The percentage Alkaline Phosphatase (ALP) labelled bone surface was significantly increased (p< or =0.05) in response to mechanical stimulation in all samples as was the Bone Formation Rate (BFR/BS) (p=0.005) as determined by calcein label incorporation in the 27-day experiment. These data indicate that in this model system, mechanical stimulation is capable of maintaining osteocyte viability in human bone.  相似文献   

20.
Apoptosis is a highly conserved process that plays an important role in controlling tissue development, homeostasis, and architecture. Dysregulation of apoptosis is a hallmark of numerous human pathologies including hypertension. In the present work we studied the effect of hypertension on apoptosis and the expression of several apoptotic signaling and/or regulatory proteins in four functionally and metabolically distinct muscles. Specifically, we examined these markers in soleus, red gastrocnemius, white gastrocnemius, and left ventricle (LV) of 20-wk-old normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). Compared with WKY rats SHR had a significantly greater heart weight, LV weight, and mean arterial pressure. In general, SHR skeletal muscle had increased Bax protein, procaspase-3 protein, caspase-3 activity, cleaved poly(ADP-ribose) polymerase protein, and DNA fragmentation as well as decreased Bcl-2 protein and a lower Bcl-2-to-Bax ratio. Subcellular distribution studies demonstrated increased levels of apoptosis-inducing factor protein in cytosolic or nuclear extracts as well as elevated nuclear Bax protein in SHR skeletal muscle. Moreover, heat shock protein 70 in red gastrocnemius and soleus was significantly correlated to several apoptotic factors. With the exception of lower heat shock protein 90 levels in SHR no additional differences in any apoptotic markers were observed in LV between groups. Collectively, this report provides the first evidence that apoptotic signaling is altered in skeletal muscle of hypertensive animals, an effect that may be mediated by both caspase-dependent and -independent mechanisms. This proapoptotic state may provide some understanding for the morphological and functional abnormalities observed in skeletal muscle of hypertensive animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号