首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The Arabidopsis thaliana Em1 gene has been mapped to the lower arm of chromosome III. Fine analysis of 60 kb around this gene, based largely on identification and sequencing of cognate cDNAs, has allowed us to identify 15 genes or putative genes. Cognate cDNAs exist for ten of these genes, indicating that they are effectively expressed. Analysis by sequence alignment and intracellular localization prediction programs allows attribution of a potential protein product to these genes which show no obvious functional relationship. Comparison of the true exon/intron structure based on cDNA sequences with that proposed by three commonly used prediction programs shows that, in the absence of further information, the results of these predictions on anonymous genomic sequences should be interpreted with caution. Examination of the non-coding sequence showed the presence of a novel repeated, palindromic element. The results of this detailed analysis show that in-depth studies will be necessary to exploit correctly the complete A. thaliana genome sequence.  相似文献   

3.
Citrus is a cold-sensitive genus and most commercially important varieties of citrus are susceptible to freezes. On the other hand, Poncirus trifoliata (L.) Raf. is an interfertile Citrus relative that can tolerate temperatures as low as −26°C when fully cold acclimated. Therefore, it has been used for improving cold tolerance in cold-sensitive commercial citrus rootstock varieties and in attempts to improve scion varieties. In this study, cDNA libraries were constructed from both 2-day cold-acclimated and from non-acclimated Poncirus seedlings using a subtractive hybridization method with the objective of identifying cold-regulated genes. A total of 192 randomly picked clones, 136 from the cold-induced library and 56 from the cold-repressed library, were sequenced. The majority of these clones showed sequence homology to previously identified cold-induced and/or environmental stress-regulated genes in Arabidopsis. In addition, some of them shared homology with cold and/or environmental stress-induced genes previously identified in other herbaceous and woody perennial plants and some showed no homology with sequences in GenBank. When these 192 cDNAs were analyzed by reverse northern blot with cold-acclimated and non-acclimated probes, 92 of the cDNAs displayed significantly increased expression, ranging from 2 to 49-fold, during cold acclimation; all 92 were from the cold-induced library. Surprisingly no clones displayed significantly repressed expression in response to cold. Analysis of a number of selected genes individually in northern blots of mRNA from cold-acclimated and non-acclimated plants largely confirmed the reverse northern analysis, verifying induction of expression of selected cDNAs in response to cold. The results showed that subtractive hybridization is an efficient method for identification of cold-induced genes in plants with limited sequence information available. This study also revealed that genes induced during cold acclimation of the cold-hardy citrus relative P. trifoliata are similar to those in Arabidopsis, indicating that similar pathways may be present and activated during cold acclimation in woody perennial plants.  相似文献   

4.
The alcohol dehydrogenase genes of cotton   总被引:2,自引:0,他引:2  
  相似文献   

5.
6.
7.
8.
9.
10.
cDNAs for alcohol dehydrogenase (ADH) isozymes were cloned and sequenced from two tephritid fruit flies, the medfly Ceratitis capitata and the olive fly Bactrocera oleae. Because of the high sequence divergence compared with the Drosophila sequences, the medfly cDNAs were cloned using sequence information from the purified proteins, and the olive fly cDNAs were cloned by functional complementation in yeast. The medfly peptide sequences are about 83% identical to each other, and the corresponding mRNAs have the tissue distribution shown by the corresponding isozymes, ADH-1 and ADH-2. The olive fly peptide sequence is more closely related to medfly ADH-2. The tephritid ADHs share less than 40% sequence identity with Drosophila ADH and ADH-related genes but are >57% identical to the ADH of the flesh fly Sarcophaga peregrina, a more distantly related species. To explain this unexpected finding, it is proposed that the ADH: genes of the family Drosophilidae may not be orthologous to the ADH: genes of the other two families, Tephritidae and Sarcophagidae.  相似文献   

11.
A cDNA library of rice (Oryza sativa ssp. indica cv. "Guangluai 4") etiolated shoot was constructed using Lambda ZAP Ⅱ vector. After analysing the partial sequences of 100 randomly selected clones and database comparison to rice and other plants, 13 % cDNA clones could be identified and 12 % cDNAs had high degree of sequence similarity to partial sequence from rice or other species, whose function is still unknown. The remaining 75% cDNAs showed little or no similarity to genes in the database and might represent novel genes. It demonstrates the suitability of this library for large-scale sequencing from which more information of functional genes will result.  相似文献   

12.
Wild crop relatives represent a source of novel alleles for crop genetic improvement. Screening biodiversity for useful or diverse gene homologues has often been based upon the amplification of targeted genes using available sequence information to design primers that amplify the target gene region across species. The crucial requirement of this approach is the presence of sequences with sufficient conservation across species to allow for the design of universal primers. This approach is often not successful with diverse organisms or highly variable genes. Massively parallel sequencing (MPS) can quickly produce large amounts of sequence data and provides a viable option for characterizing homologues of known genes in poorly described genomes. MPS of genomic DNA was used to obtain species‐specific sequence information for 18 rice genes related to domestication characteristics in a wild relative of rice, Microlaena stipoides. Species‐specific primers were available for 16 genes compared with 12 genes using the universal primer method. The use of species‐specific primers had the potential to cover 92% of the sequence of these genes, while traditional universal primers could only be designed to cover 80%. A total of 24 species‐specific primer pairs were used to amplify gene homologues, and 11 primer pairs were successful in capturing six gene homologues. The 23 million, 36‐base pair (bp) paired end reads, equated to an average of 2X genome coverage, facilitated the successful amplification and sequencing of six target gene homologues, illustrating an important approach to the discovery of useful genes in wild crop relatives.  相似文献   

13.
The suppression subtractive hybridization (SSH) approach, a PCR based approach which amplifies differentially expressed cDNAs (complementary DNAs), while simultaneously suppressing amplification of common cDNAs, was employed to identify immuneinducible genes in insects. This technique has been used as a suitable tool for experimental identification of novel genes in eukaryotes as well as prokaryotes; whose genomes have been sequenced, or the species whose genomes have yet to be sequenced. In this article, I have proposed a method for in silico functional characterization of immune-inducible genes from insects. Apart from immune-inducible genes from insects, this method can be applied for the analysis of genes from other species, starting from bacteria to plants and animals. This article is provided with a background of SSH-based method taking specific examples from innate immune-inducible genes in insects, and subsequently a bioinformatics pipeline is proposed for functional characterization of newly sequenced genes. The proposed workflow presented here, can also be applied for any newly sequenced species generated from Next Generation Sequencing (NGS) platforms.  相似文献   

14.
Although major histocompatibility complex (MHC) class I molecules are, as a rule, highly polymorphic in mammalian species, those of the New World primate Saguinus oedipus (cotton-top tamarin) exhibit limited polymorphism. We have cloned and sequenced twelve MHC class I cDNAs from this species. Since cloned cotton-top tamarin cell lines express three to six MHC class I molecules, this species must have at least three functional MHC class I loci. There was, however, no evidence of locus-specific substitutions in the tamarin cDNAs. Unlike all other species studied, tamarin MHC class I cDNAs displayed limited nucleotide sequence variation. The sequence similarity between the two most divergent tamarin cDNAs was 95%. To ensure that the polymerase chain reaction (PCR) primers employed in these studies had amplified all of the tamarins' expressed MHC class I genes, we used another set of primers to amplify only exons 2 and 3 from RNA and DNA. PCR of genomic DNA resulted in the amplification of six distinct clones, of which only three were well expressed. Two of these nonexpressed genes were pseudogenes and the other was a nonclassical gene. Southern blot analysis demonstrated that the tamarin has 8–11 MHC class I genes, suggesting we had indeed cloned the majority of these genes. Cotton-top tamarins are, therefore, unique among mammalian species studied to date in that they express MHC class I molecules with limited nucleotide sequence variation.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers M38403-15.  相似文献   

15.
16.
17.
Carotenoids play essential biological roles in plants, and genes involved in the carotenoid biosynthesis pathway are evolutionarily conserved. Orange sweetpotato is an important source of β-carotene, a precursor of vitamin A. In spite of this, only a few research studies have focussed on the molecular aspects of carotenoid genes regarding their specific sequence and structure. In this study, we used published carotenoid gene sequences from Ipomoea and other species for “exon-primed intron-crossing” approaches. Fifteen pairs of primers representing six carotenoid genes were designed for different introns, eleven of which amplified scorable and reproducible alleles. The sequence of PCR products showed high homology to the original ones. Moreover, the structure and sequence of the introns and exons from five carotenoid structural genes were partially defined. Intron length polymorphism and intron single nucleotide polymorphisms were detected in amplified sequences. Marker dosages and allelic segregations were analysed in a mapping population. The developed markers were evaluated in a set of Ipomoeas batatas accessions so as to analyse genetic diversity and conservation applicability. Using CG strategy combined with EPIC-PCR technique, we developed carotenoid gene markers in sweetpotato. We reported the first set of polymorphic Candidate Gene markers for I. batatas, and demonstrated transferability in seven wild Ipomoea species. We described the sequence and structure of carotenoid genes and introduced new information about genomic constitution and allele dosage.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号