首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interleukin (IL)-17, a proinflammatory cytokine, is produced primarily by activated Th17 cells. IL-17 consists of six ligands that signal through five receptors (IL-17Rs); IL-17A and IL-17F share the highest homology in the family. Matrix metalloproteinases (MMPs) degrade the extracellular matrix during cartilage remodeling whereas tissue inhibitor of metalloproteinases (TIMPs) inhibit the action of MMPs. In the present study, we examined the effect of IL-17F on the degradation and synthesis of the extracellular matrix in cartilage using human articular chondrocytes. We examined the effect of IL-17F on the expression of IL-17Rs, MMPs, TIMPs, type II collagen, aggrecan, link protein, and cyclooxygenases (COXs), as well as on prostaglandin E2 (PGE2) production. We also examined the indirect effect of PGE2 on the above IL-17F-induced/reduced components using NS-398, a specific inhibitor of COX-2. Cells were cultured with or without IL-17F in the presence or absence of either an IL-17R antibody or NS-398 for up to 28 days. Expression of IL-17Rs, MMPs, TIMPs, type II collagen, aggrecan, link protein, and COXs at mRNA and protein levels was determined using real-time polymerase chain reaction and enzyme-linked immunosorbent assay (ELISA), respectively. PGE2 production was determined by ELISA. The expression of all types of IL-17Rs was detected in chondrocytes. However, IL-17RE expression was extremely low, compared with other IL-17Rs. The expression of MMP-1, MMP-3, MMP-13, and COX-2 as well as PGE2 production were increased by addition of IL-17F, whereas the expression of IL-17RD, TIMP-2, TIMP-4, type II collagen, aggrecan, link protein, and COX-1 was decreased. The expression of IL-17RA, IL-17RB, IL-17RC, MMP-2, MMP-14, TIMP-1, and TIMP-3 was unaffected by addition of IL-17F. The IL-17R antibody blocked the stimulating/reducing effect of IL-17F on the expression of MMP-1, MMP-3, MMP-13, TIMP-2, TIMP-4, type II collagen, aggrecan, and link protein. NS-398 blocked the reducing effect of IL-17F on aggrecan expression, whereas it did not completely block the stimulating/reducing effects of IL-17F on the expression of MMP-1, MMP-3, MMP-13, TIMP-2, TIMP-4, type II collagen, and link protein. Our results suggest that IL-17F stimulates cartilage degradation by increasing the expression of collagenases (MMP-1 and -13) and stromelysin-1 (MMP-3) and by decreasing expression of their inhibitors (TIMP-2 and -4), type II collagen, aggrecan, and link protein in chondrocytes. Furthermore, our results suggest that the expression of aggrecan, link protein, and TIMP-4 decrease through the autocrine action of PGE2 in chondrocytes.  相似文献   

2.
The mechanism of the stimulatory effect of prostaglandin (PG) F on the production of hexosamine-containing substances by cultured fibroblasts was studied with special reference to adenosine 3′:5′- cyclic monophosphate (cAMP). At the stationary phase, the cells were exposed for 6 hrs to PGF, E1, cAMP or dibutyryl-cAMP in a wide range of concentrations. cAMP itself showed a slight stimulation on the production of hexosamine-containing substances, and the effect was enhanced by using the dibutyryl derivative. PGF had much a greater capacity than either the exogeneous cAMP or the dibutyryl-cAMP for enhancing the production of hexosamine-containing substances. To know whether cAMP is involved in the stimulatory effect of PGF, intracellular cAMP level was concomitantly measured in both PGF and PGE1 treated cultures. Although the cellular cAMP level in PGE1 treated cultures was much higher than that in the PGF treated cultures, the stimulatory effect on the production of hexosamine-containing substances in PGE1 treated cultures was always much smaller than that in the PGF treated cultures. Moreover, PGF had a significant stimulatory effect on the production of hexosamine-containing substances even at a low concentration as 100 pg/ml, which is small enough not to increase any cellular cAMP level. From these results, it was concluded that the stimulatory effect of PGF on the production of hexosamine-containing substances by cultured fibroblasts is not mediated by cAMP and is caused by a mechanism different from that caused by cAMP.  相似文献   

3.

Introduction

Nerve growth factor (NGF) level is increased in osteoarthritis (OA) joints and is involved in pain associated with OA. Stimuli responsible for NGF stimulation in chondrocytes are unknown. We investigated whether mechanical stress and proinflammatory cytokines may influence NGF synthesis by chondrocytes.

Methods

Primary cultures of human OA chondrocytes, newborn mouse articular chondrocytes or cartilage explants were stimulated by increasing amounts of IL-1β, prostaglandin E2 (PGE2), visfatin/nicotinamide phosphoribosyltransferase (NAMPT) or by cyclic mechanical compression (0.5 Hz, 1 MPa). Before stimulation, chondrocytes were pretreated with indomethacin, Apo866, a specific inhibitor of NAMPT enzymatic activity, or transfected by siRNA targeting visfatin/NAMPT. mRNA NGF levels were assessed by real-time quantitative PCR and NGF released into media was determined by ELISA.

Results

Unstimulated human and mouse articular chondrocytes expressed low levels of NGF (19.2 ± 8.7 pg/mL, 13.5 ± 1.0 pg/mL and 4.4 ± 0.8 pg/mL/mg tissue for human and mouse articular chondrocytes and costal explants, respectively). Mechanical stress induced NGF release in conditioned media. When stimulated by IL-1β or visfatin/NAMPT, a proinflammatory adipokine produced by chondocytes in response to IL-1β, a dose-dependent increase in NGF mRNA expression and NGF release in both human and mouse chondrocyte conditioned media was observed. Visfatin/NAMPT is also an intracellular enzyme acting as the rate-limiting enzyme of the generation of NAD. The expression of NGF induced by visfatin/NAMPT was inhibited by Apo866, whereas IL-1β-mediated NGF expression was not modified by siRNA targeting visfatin/NAMPT. Interestingly, PGE2, which is produced by chondrocytes in response to IL-1β and visfatin/NAMPT, did not stimulate NGF production. Consistently, indomethacin, a cyclooxygenase inhibitor, did not counteract IL-1β-induced NGF production.

Conclusions

These results show that mechanical stress, IL-1β and extracellular visfatin/NAMPT, all stimulated the expression and release of NGF by chondrocytes and thus suggest that the overexpression of visfatin/NAMPT and IL-1β in the OA joint and the increased mechanical loading of cartilage may mediate OA pain via the stimulation of NGF expression and release by chondrocytes.  相似文献   

4.
5.
Bovine articular chondrocytes, cultured as cell suspensions and monolayers, produced prostaglandin (PG) E2 and PGI2 (assayed as 6 keto PGF1α), rather less PGF2α and irregular quantities of thromboxane (Tx) B2. Addition of foetal calf serum to the medium greatly stimulated PG production (a sixfold increase in PGE2 and a twofold increase in 6 keto PGF1α).Prostanoid production by cell suspension grown in serum-free medium generally plateaued after 24 hours. In the presence of 20% foetal calf serum, prostanoid production in long-term monolayer cultures increased during the first 6 days of culture. Levels of PGE2α levels remained high. Indomethacin (10-6M) inhibited chondrocyte PG production both in the presence and absence of added arachidonic acid (10-4M). Prostanoids produced by chondrocytes may play a role in the modulation of cartilage metabolism .  相似文献   

6.
Recent experimental studies indicated that prostaglandin E2 (PGE2) is the most abundant prostanoid synthesized by rabbit articular chondrocytes. Exogenous PGE2 stimulates cyclic AMP (cAMP) synthesis in these cells. Analogues of cAMP and forskolin have now been shown to suppress the biosynthesis of PGE2 in the presence of serum in a time-dependent manner. The most abundant prostanoid, PGE2 was most markedly affected. PGF was unaffected. These results indicated that intracellular accumulation of cAMP in chondrocytes and relative resistance of cAMP to phosphodiesterases control prostanoid synthesis in a negative feedback loop.  相似文献   

7.
Insulin-like growth factor-1, IGF-1, is believed to be an important anabolic modulator of cartilage metabolism and its bioactivity and bioavailability is regulated, in part, by IGF-1 binding protein 3 (IGFBP-3). Prostaglandin E2 (PGE2) stimulates IGF-1 production by articular chondrocytes and we determined whether the eicosanoid could regulate IGFBP-3 and, as such, act as a modifier of IGF-1 action at a different level. Using human articular chondrocytes in high density primary culture, Western and Western ligand blotting to measure secreted IGFBP-3 protein, and Northern analysis to monitor IGFBP-3 mRNA levels, we demonstrated that PGE2 provoked a 3.9 ± 1.1 (n = 3) fold increase in IGFBP-3 mRNA and protein. This effect was reversed by the Ca++ channel blockers, verapamil and nifedipine, and the Ca++/calmodulin inhibitor, W-7. The Ca++ ionophore, ionomycin, mimicked the effects of PGE2 as did the phorbol ester PMA, which activates Ca++-phospholipid-dependent protein kinase C (PKC). Cyclic AMP mimetics, such as forskolin, IBMX, Ro-20-1724, and Sp-cAMP, inhibited the expression and synthesis of the binding protein. PGE2 did not increase the levels of cAMP or protein kinase A (PKA) activity in chondrocytes. The PGE2 secretagogue, IL-1β, down-regulated control levels of IGFBP-3 which could be completely abrogated by pre-incubation with the tyrosine kinase inhibitor, erbstatin, and partially reversed (50 ± 8%) by KT-5720, a PKA inhibitor. These observations suggested that PGE2 does not mediate the effect of its secretagogue and that IL-1β signalling in chondrocytes may involve multiple kinases of diverse substrate specificities. Dexamethasone down-regulated control, constitutive levels of IGFBP-3 mRNA and protein eliminating the previously demonstrated possibility of cross-talk between glucocorticoid receptor (GR) and PGE2 receptor signalling pathways. Taken together, our results suggest that PGE2 modulates IGFBP-3 expression, protein synthesis, and secretion, and that such regulation may modify human chondrocyte responsiveness to IGF-1 and influence cartilage metabolism. © 1996 Wiley-Liss, Inc.  相似文献   

8.
The interaction of chondrocytes with the extracellular-matrix environment is mediated mainly by integrins. Ligated integrins are recruited to focal adhesions (FAs) together with scaffolding proteins and kinases, such as integrin-linked kinase (Ilk). Ilk binds the cytoplasmic domain of β1-, β2- and β3-integrins and recruits adaptors and kinases, and is thought to stimulate downstream signalling events through phosphorylation of protein kinase B/Akt (Pkb/Akt) and glycogen synthase kinase 3-β (GSK3-β). Here, we show that mice with a chondrocyte-specific disruption of the gene encoding Ilk develop chondrodysplasia, and die at birth due to respiratory distress. The chondrodysplasia was characterized by abnormal chondrocyte shape and decreased chondrocyte proliferation. In addition, Ilk-deficient chondrocytes showed adhesion defects, failed to spread and formed fewer FAs and actin stress fibres. Surprisingly, phosphorylation of Pkb/Akt and GSK3-β is unaffected in Ilk-deficient chondrocytes. These findings suggest that Ilk regulates actin reorganization in chondrocytes and modulates chondrocyte growth independently of phosphorylation of Pkb/Akt and GSK3-β.  相似文献   

9.
Mechanical overloading of cartilage producing hydrostatic stress, tensile strain, and fluid flow can adversely affect chondrocyte function and precipitate osteoarthritis (OA). Application of high fluid shear stress to chondrocytes recapitulates the earmarks of OA, as evidenced by the release of pro-inflammatory mediators, matrix degradation, and chondrocyte apoptosis. Elevated levels of cyclooxygenase-2 (COX-2), prostaglandin (PG) E2, and interleukin (IL)-6 have been reported in OA cartilage in vivo, and in shear-activated chondrocytes in vitro. Although PGE2 positively regulates IL-6 synthesis in chondrocytes, the underlying signaling pathway of shear-induced IL-6 expression remains unknown. Using the human T/C-28a2 chondrocyte cell line as a model system, we demonstrate that COX-2-derived PGE2 signals via up-regulation of E prostanoid (EP) 2 and down-regulation of EP3 receptors to raise intracellular cAMP, and activate protein kinase A (PKA) and phosphatidylinositol 3-kinase (PI3-K)/Akt pathways. PKA and PI3-K/Akt transactivate the NF-κB p65 subunit via phosphorylation at Ser-276 and Ser-536, respectively. Binding of p65 to the IL-6 promoter elicits IL-6 synthesis in sheared chondrocytes. Selective knockdown of EP2 or ectopic expression of EP3 blocks PKA- and PI3-K/Akt-dependent p65 activation and markedly diminishes shear-induced IL-6 expression. Similar inhibitory effects on IL-6 synthesis were observed by inhibiting PKA, PI3-K, or NF-κB using pharmacological and/or genetic interventions. Reconstructing the signaling network regulating shear-induced IL-6 expression in chondrocytes may provide insights for developing therapeutic strategies for arthritic disorders and for culturing artificial cartilage in bioreactors.  相似文献   

10.

Introduction

Recent evidence suggests that GSK3 activity is chondroprotective in osteoarthritis (OA), but at the same time, its inactivation has been proposed as an anti-inflammatory therapeutic option. Here we evaluated the extent of GSK3β inactivation in vivo in OA knee cartilage and the molecular events downstream GSK3β inactivation in vitro to assess their contribution to cell senescence and hypertrophy.

Methods

In vivo level of phosphorylated GSK3β was analyzed in cartilage and oxidative damage was assessed by 8-oxo-deoxyguanosine staining. The in vitro effects of GSK3β inactivation (using either LiCl or SB216763) were evaluated on proliferating primary human chondrocytes by combined confocal microscopy analysis of Mitotracker staining and reactive oxygen species (ROS) production (2'',7''-dichlorofluorescin diacetate staining). Downstream effects on DNA damage and senescence were investigated by western blot (γH2AX, GADD45β and p21), flow cytometric analysis of cell cycle and light scattering properties, quantitative assessment of senescence associated β galactosidase activity, and PAS staining.

Results

In vivo chondrocytes from obese OA patients showed higher levels of phosphorylated GSK3β, oxidative damage and expression of GADD45β and p21, in comparison with chondrocytes of nonobese OA patients. LiCl mediated GSK3β inactivation in vitro resulted in increased mitochondrial ROS production, responsible for reduced cell proliferation, S phase transient arrest, and increase in cell senescence, size and granularity. Collectively, western blot data supported the occurrence of a DNA damage response leading to cellular senescence with increase in γH2AX, GADD45β and p21. Moreover, LiCl boosted 8-oxo-dG staining, expression of IKKα and MMP-10.

Conclusions

In articular chondrocytes, GSK3β activity is required for the maintenance of proliferative potential and phenotype. Conversely, GSK3β inactivation, although preserving chondrocyte survival, results in functional impairment via induction of hypertrophy and senescence. Indeed, GSK3β inactivation is responsible for ROS production, triggering oxidative stress and DNA damage response.  相似文献   

11.
Cartilage-specific extracellular matrix synthesis is the prerequisite for chondrocyte survival and cartilage function, but is affected by the pro-inflammatory cytokine TNF-α in arthritis. The aim of the present study was to characterize whether the immunoregulatory cytokine IL-10 might modulate cartilage matrix and cytokine expression in response to TNF-α. Primary human articular chondrocytes were treated with either recombinant IL-10, TNF-α or a combination of both (at 10 ng/mL each) or transduced with an adenoviral vector overexpressing human IL-10 and subsequently stimulated with 10 ng/ml TNF-α for 6 or 24 h. The effects of IL-10 on the cartilage-specific matrix proteins collagen type II, aggrecan, matrix-metalloproteinases (MMP)-3, -13 and pro-inflammatory cytokines were evaluated by real-time RT-PCR and immunohistochemistry. Transduced chondrocytes overexpressed high levels of IL-10 which significantly up-regulated collagen type II expression. TNF-α suppressed collagen type II and aggrecan, but increased MMP and cytokine expression in chondrocytes compared to the non-stimulated controls. The TNF-α mediated down-regulation of aggrecan expression was significantly antagonized by IL-10 overexpression, whereas the suppression of collagen type II was barely affected. The MMP-13 and IL-1β expression by TNF-α was slightly reduced by IL-10. These results suggest that IL-10 overexpression modulates some catabolic features of TNF-α in chondrocytes.  相似文献   

12.
13.
The effect of estradiol and tamoxifen on prostaglandin (PG) synthesis by rabbit articular chondrocytes in secondary monolayer cultures was investigated. Radioimmunoassay for PGE2, PGF, 6-oxo-PGF and thromboxane B2 was performed on media from cultures containing estradiol and tamoxifen (10−12M-10−7-M). Radiometric thin-layer chromatography was also carried out. The time course of estradiol/tamoxifen effect on chondrocyte PG synthesis was evaluated and its relationship to cell density in culture examined. Estradiol stimulated the synthesis of PGs by chondrocytes. Stimulation was noted at picomolar concentrations of estradiol without further stimulation at markedly higher concentrations. In time studies, after a lag, the effect of estradiol was present fully by 5 hrs, remained steady for 24 hrs and then declined by 48 hrs. Estradiol stimulation of PG synthesis was dependent upon chondrocyte culture plating density. Tamoxifen stimulated chondrocyte PG synthesis to relatively lower levels than estradiol. The characteristics of estradiol/tamoxifen stimulation of chondrocyte PG synthesis suggest a mechanism involving estradiol cytoplasmic receptors.  相似文献   

14.
15.
Osteoarthritis (OA) is a progressive joint disorder, which remains the leading cause of chronic disability in aged people. This study is the first report which demonstrates the cartilage protective effect of 5,7,3′,4′-tetramethoxyflavone (TMF) by decreasing the concentration of IL-1β, TNF-α and PGE2 in the knee synovial fluid in OA rat models in vivo. In vitro, after induced by PGE2, the apoptosis rate of chondrocytes was significantly increased. In addition, PGE2 increased the expression of cAMP/PKA signaling pathway in chondrocytes, stabilized and accumulated β-catenin, and activated the expression of β-catenin signaling pathway. These activities were counteracted by TMF dose-dependently. Collectively, TMF is a potential compound with chondroprotective activity by inhibiting both EP/cAMP/PKA signaling pathway and β-catenin signaling pathway.  相似文献   

16.
17.
18.
The effects of agents that elevate intracellular cyclic adenosine 3',5'-monophosphate (cAMP) have been studied with respect to phagocytosis by guinea pig polymorphonuclear leukocytes. The investigation depends upon the use of a precise method for following ingestion. Theophylline, dibutyryl cAMP, and prostaglandins inhibited the phagocytosis of starch particles. The inhibitions caused by prostaglandins E1, E2, and F (PGE1, PGE2, and PGF) were synergistic with that due to theophylline. Inhibition by PGA1 and PGA2 was not. At equal concentrations the order of increasing inhibition of phagocytosis (assayed at 10 min) by the prostaglandins was PGE1 < PGF < PGE2 < PGA1 = PGA2. Our results are consistent with the hypothesis that increased intracellular levels of cAMP impair the phagocyte's ability to ingest particles. The mechanism of the inhibition has not been defined. The increment in oxidation of [1-14C]glucose to 14CO2 that normally accompanies phagocytosis was found to be depressed in the presence of PGE1 or theophylline, together or individually as expected from the inhibition of phagocytosis. Paradoxically, oxygen consumption although depressed by theophylline or PGE1 plus theophylline, was stimulated by PGE1 alone.  相似文献   

19.
Type II collagen is a major protein that maintains biological and mechanical characteristics in articular cartilage. Focal adhesion kinase (FAK) is known to play a central role in integrin signaling of cell–extracellular matrix (ECM) interactions, and chondrocyte–type II collagen interactions are very important for cartilage homeostasis. In this study, we focused on phosphorylation of FAK and MAP kinase in chondrocyte–type II collagen interaction and dedifferentiation, and the effects of FAK knockdown on chondrocyte‐specific gene expression and cell proliferation were determined. The addition of exogenous type II collagen to chondrocytes increased levels of tyrosine phosphorylation, p‐FAKY397, and p‐ERK1/2. In contrast, expression levels of p‐FAKY397 and p‐ERK1/2, but not p‐Smad2/3, were decreased in dedifferentiated chondrocytes with loss of type II collagen expression. Type II collagen expression was significantly increased when dedifferentiated chondrocytes were transferred to alginate beads with TGF‐β1 or type II collagen, but transfected cells with small interfering RNA for FAK (FAK‐siRNA) inhibited mRNA expression of type II collagen and SOX‐6 compared to the control. These FAK‐siRNA‐transfected cells could not recover type II collagen even in the presence of TGF‐β1 or type II collagen in alginate beads culture. We also found that FAK‐siRNA‐transfected cells decreased cell proliferation rate, but there was no effect on glycosaminoglycans (GAGs) secretion. We suggest that FAK is essentially required in chondrocyte communication with type II collagen by regulating type II collagen expression and cell proliferation. J. Cell. Physiol. 218: 623–630, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

20.
Osteoarthritis (OA), characterized by pain and stiffness, swelling, deformity and dysfunction of joints, affects large numbers of population. The purpose of this study was to discover the effects of taurine in human OA chondrocytes and explore the underlying mechanisms. 46 patients with different grades of OA were recruited. Of these patients, 24 underwent total knee replacement and cartilages were harvested. The mRNA expressions of type II collagen (Collagen II) and endoplasmic reticulum (ER) stress markers (GRP78, GADD153 and Caspase-12) in cartilages were quantified by qRT-PCR. Cell viability and apoptosis of patient-derived chondrocytes were assessed by the CCK-8 assay and flow cytometry assay, respectively. Meanwhile, protein levels of Collagen II and ER stress markers both in cartilages and chondrocytes were evaluated by Western blot. The mRNA and protein levels of Collagen II decreased as OA progressed, while the expressions of ER stress markers increased dramatically. H2O2 induced ER stress in chondrocytes, as shown by the significant increase in the expression of ER stress markers, inhibited chondrocyte viability and Collagen II synthesis, promoted apoptosis. However, taurine treatment inhibited these above phenomena. These results indicated that taurine exhibited anti-OA effect by alleviating H2O2 induced ER stress and subsequently inhibiting chondrocyte apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号