首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Palladium toning is much less expensive than gold toning. Ten minutes in 0.05% potassium hexachloropalladate in 4 N hydrochloric add tones silver-impregnated reticular fibers as well as 3 min in 0.2% aqueous gold chloride does. Differences in toning of the background depend on the silver stain.  相似文献   

2.
A simple method is described whereby pure chloroauric acid (HAuCl4; "brown gold chloride") is recovered from old solutions used for toning silver-stained sections. The procedure can be carried out in any laboratory and 60 to 80% of the gold initially present in a solution is recovered. The recycled product may be used for toning or for the staining of astrocytes by Cajal's method.  相似文献   

3.
Gold toning     
Evidence is presented which establishes a quantitative relationship between the conditions of silver impregnation as they are influenced by pH and time, and the amount of gold toning necessary to secure differentiated axonal staining. No variations in the toning process will secure successful staining if the preceding impregnation and development are at fault.  相似文献   

4.
Gold toning     
Evidence is presented which establishes a quantitative relationship between the conditions of silver impregnation as they are influenced by pH and time, and the amount of gold toning necessary to secure differentiated axonal staining. No variations in the toning process will secure successful staining if the preceding impregnation and development are at fault.  相似文献   

5.
A modification of the silver colloid technique for staining nucleolar organizer regions in paraffin embedded tissues is described. This modification involves the application of a gold toning step with subsequent gold reduction, if necessary, following incubation of sections in the standard silver colloid solution. Silver stained nucleolar organizer regions (AgNORs) in toned sections are more sharply delineated when compared to untoned controls. in high grade tumors the addition of the toning step results in significantly higher AgNOR counts due to the ability to discriminate more easily individual AgNORs in argyrophilic aggregates within the nucleus. It is recommended, because of enhanced visualization, that this modification of the silver colloid technique be used in studies involving quantification of AgNORs in tissue sections.  相似文献   

6.
A modification of the silver colloid technique for staining nucleolar organizer regions in paraffin embedded tissues is described. This modification involves the application of a gold toning step with subsequent gold reduction, if necessary, following incubation of sections in the standard silver colloid solution. Silver stained nucleolar organizer regions (AgNORs) in toned sections are more sharply delineated when compared to untoned controls. in high grade tumors the addition of the toning step results in significantly higher AgNOR counts due to the ability to discriminate more easily individual AgNORs in argyrophilic aggregates within the nucleus. It is recommended, because of enhanced visualization, that this modification of the silver colloid technique be used in studies involving quantification of AgNORs in tissue sections.  相似文献   

7.
An improved gold-substituted silver intensification procedure for the peroxidase-diaminobenzidine (DAB) reaction product was developed. The method was applied in the rat medial preoptic area to label tyrosine hydroxylase (TH)-immunoreactive profiles. Following the gold toning, the same sections were immunostained for glutamic acid decarboxylase (GAD) immunoreactivity with non-intensified peroxidase-DAB. Single DAB-labeled GAD axons were found in symmetric synaptic connection with unlabeled dendrites as well as with gold-toned immunoperoxidase-containing TH neurons.  相似文献   

8.
A simple, reliable silver impregnation method for nervous tissue is described for tissues fixed in various fixatives including formalin, Bouin, and Susa. Sections are impregnated in a solution containing 1 g Protargol, 2 ml of a 1% Cu(NO3)2 solution, 2 ml of a 1% AgNO3 solution, and 2-4 drops 30% H2O2 in 100 ml distilled water. Sections are impregnated 2-5 days at 37 C and thereafter reduced in a hydroquinone-formalin solution. This is followed by gold toning and subsequent reduction, dehydration and mounting. This method has been found to be very reliable and selective.  相似文献   

9.
A simple, reliable silver impregnation method for nervous tissue is described for tissues fixed in various fixatives including formalin, Bouin, and Sum. Sections are impregnated in a solution containing 1 g Protargol, 2 ml of a 1% Cu(NO3)2 solution, 2 ml of a 1% AgNO3 solution, and 2-4 drops 30% H2O2 in 100 ml distilled water. Sections are impregnated 4-5 days at 37 C and thereafter reduced in a hydroquinone-formalin solution. This is followed by gold toning and subsequent reduction, dehydration and mounting. This method has been found to be very reliable and selective.  相似文献   

10.
Present day techniques for processing temporal bones involve celloidin embedding. With a few modifications in Bodian's silver staining procedure the celloidin of the endolymphatic spaces stains darker than that of the perilymphatic spaces providing there is no break in the anatomical barrier between them. Essentially the routine procedure of Bodian is used except that metallic copper is omitted from the staining solution, impregnation time is reduced to 3 hr, reduction time is extended to 10 min and no oxalic acid is used for gold toning.  相似文献   

11.
If, in the procedure of staining nerve fibers in mounted paraffin sections with Protargol according to Bodian, the reduction after toning with gold chloride is executed in a solution of 3-6 drops of aniline oil in 100 ml of 50% alcohol instead of in the prescribed oxalic acid solution, the selectivity of the staining of peripheral nerves is increased. This is effected by a reduction in the intensity of the staining of nonnervous tissue elements. However, at the same time the staining of nonnervous tissue is richer in details and consequently more satisfactory from a histological point of view than it is according to the original method of Bodian or the modification of this method by Ziesmer (1951).  相似文献   

12.
The goal of this study was to develop an alternative to silver intensification for visualizing small colloidal gold particles by light and electron microscopy. The isolated goldfish retina was labeled with rabbit antiserum to tyrosine hydroxylase and 1-nm colloidal gold-conjugated goat anti-rabbit IgG. The gold particles were enlarged by toning with gold chloride, followed by reduction in oxalic acid. Dopaminergic interplexiform cells were clearly visible by light microscopy and, in lightly-fixed material treated with detergent, they were labeled in their entirety. Labeling was qualitatively similar, although less extensive, in material fixed and processed for electron microscopy. The labeled processes were apparent in ultra-thin sections viewed at low magnification, but the gold-toned particles were not so large that they obscured subcellular structures. The procedure apparently had no deleterious effects on the tissue, since the ultrastructural preservation was comparable to that seen with other pre-embedding immunolabeling methods. The technique was simple, reliable and, since the gold solutions were so dilute, relatively inexpensive.  相似文献   

13.
Whole brains of cat were fixed in two changes of cold acetone (24 hours each) and embedded directly in paraffin. The degeneration time recommended is 5 days. Mounted sections 15-20 μ thick were deparaffined, washed in absolute alcohol and given successive treatments of 6 hours each with 1% ammoniated absolute alcohol and pure pyridine, washing well with distilled water between them and after the pyridine. Impregnation in 2% silver nitrate 12 hours at 30°C., rinsing in absolute alcohol and reducing in a 95% alcoholic solution of pyrogallol and formalin (3% and 5%) was followed by 50% alcohol, thorough washing in distilled water, toning in 1% gold chloride and intensification in 1% oxalic acid. Treatment in 10% sodium thiosulfate solution, washing, dehydrating and covering completed the procedure. Normal fibers, degenerating fibers and terminals were stained specifically.  相似文献   

14.
Nanogold is a tiny gold probe, freely diffusible in cells and tissues, and is suitable for pre-embedding immunohistochemistry. However, it is necessary to develop Nanogold to a larger size so that it can be observed by conventional transmission electron microscopy. Silver enhancement is usually used for visualizing Nanogold, but the silver shell produced is unstable in OsO(4) and often becomes invisible after OsO(4) postfixation, which is necessary for good visualization of ultrastructure. We used silver enhancement with silver acetate, followed by gold toning with chloroauric acid, to replace the silver shell with a more stable gold in order to observe Nanogold after osmium fixation and Epon embedding. This technique is applicable to various intra- and extracellular antigens. For correlative observation of immunolabled specimens by light and electron microscopy, specimens adhered to slideglasses were embedded in Epon under non-adhesive plastic film. By heating the Epon sheets after polymerization, these supports were removed without difficulty and provided easy correlative observation.  相似文献   

15.
A rapid, reliable silver impregnation method is described for nervous tissue fixed in formol-saline, Bouin or Sum. Sections are impregnated for 10-15 minutes at room temperature or 37 C in a solution containing 0.5 g Protargol-S, 0.005-0.01 g allantoin, 1 ml of 1% Cu[NO2]2, 1 ml of 1% AgNO3. and 1-2 drops of 30% H2O2 in 100 ml distilled water. Thereafter the dons arc reduced in a hydroquinone-formalin solution. This is followed by gold toning and subsequent reduction and mounting. Alternatively. following the first reduction, the silver image can be intensified by placing sections in a silver-allantoin bath which is followed by reduction and mounting. This method is very reliable and selective, making it suitable for general routine and research use.  相似文献   

16.
Staining of Nervous Tissue by Protein-Silver Mixtures   总被引:1,自引:0,他引:1  
A staining method for nerves in paraffin sections is described in which an egg albumen-silver nitrate mixture is the impregnating solution. Blocks of tissue are fixed in Bouin's fixative, formol, Huber's fixative or formol-acetic-alcohol, and decalcified if necessary in Bensley's decalcifier. Sections are impregnated overnight, in the dark, at 37-56°C in a solution containing 50 ml of filtered, aqueous 0.5% dried egg albumen with 1.8-2.5 ml of 2% silver nitrate and adjusted to pH 8.2-8.3 by the addition of ammonia. The sections are then rinsed in distilled water and the silver reduced in a mixture of hydroquinone, 1 gm; anhydrous sodium sulfite, 10 gm and distilled water, 100 ml. The remainder of the process consists of washing, gold toning, fixing in 5% sodium thiosulfate, washing, dehydrating, clearing and mounting. Casein may be used as an alternative to egg albumen in the impregnating solution (0.5% casein, 50 ml; 2% silver nitrate, 1 ml). The pH value of the solution may be adjusted by a boric acid-borax buffer or ammonium hydrogen tetraborate in the place of ammonia.  相似文献   

17.
本文给出了鸣鸣蝉调音肌(TMc)的结构及其与发声膜(SM)的连接关系,揭示了TMc的调音功能。 TMc的前、后支分别与SM前缘底面的外、内侧连接,有助于牵拉SM,其纵轴与SM的膜面约成120°角。理论上估计,TMc对SM的向下垂直拉力和沿膜面的向前水平拉力可能分别约为总拉力的87%和50%。 TMc具有重要的调音功能。不仅影响每侧SM产生的2个脉冲列(PT)的脉冲幅值,每个PT中第1和2脉冲幅值平均约下降3—10dB;而且影响SM发声过程的均一性。同时,对鸣声谱中第二陪音的峰值频率的幅值有明显的影响,其13600—13900Hz、15015—15100Hz和16756—17090Hz的幅值分别平均下降约5.9、8.4和16.3dB。  相似文献   

18.
Specimens of both vertebrate and invertebrate nerve-containing tissues were fixed 2-3 days in Bouin's fluid, soaked 2 days in alcohol containing 2% strong ammonia water, dehydrated and embedded in paraffin. The sections were mounted with gelatin adhesive according to Masson's procedure, dewaxed, passed through graded alcohols to water, then back to 2% ammoniated 80% alcohol for 12-24 hours. The slides were rinsed 3-5 seconds in distilled water, impregnated about one and a half hours in 40% AgNO3 at increasing temperature up to 45°C. The slides were flooded with 62.5% formalin and this solution allowed to remain 3-5 minutes; they were then blotted with filter paper. A second impregnation in ammoniated silver carbonate, controlled under the microscope, was followed by a 10-minute treatment with 10% aqueous acetic acid, toning with gold chloride, then thiosulfate and finally washing. Counterstaining with ponceau red or acid fuchsin, eventually followed by aniline blue or fast green, dehydration and covering, completed the process.  相似文献   

19.
Specimens of both vertebrate and invertebrate nerve-containing tissues were fixed 2-3 days in Bouin's fluid, soaked 2 days in alcohol containing 2% strong ammonia water, dehydrated and embedded in paraffin. The sections were mounted with gelatin adhesive according to Masson's procedure, dewaxed, passed through graded alcohols to water, then back to 2% ammoniated 80% alcohol for 12-24 hours. The slides were rinsed 3-5 seconds in distilled water, impregnated about one and a half hours in 40% AgNO3 at increasing temperature up to 45°C. The slides were flooded with 62.5% formalin and this solution allowed to remain 3-5 minutes; they were then blotted with filter paper. A second impregnation in ammoniated silver carbonate, controlled under the microscope, was followed by a 10-minute treatment with 10% aqueous acetic acid, toning with gold chloride, then thiosulfate and finally washing. Counterstaining with ponceau red or acid fuchsin, eventually followed by aniline blue or fast green, dehydration and covering, completed the process.  相似文献   

20.
Paraffin sections of nervous tissue, which had been fixed in Hofker's fluid, stained readily with protargol solution without the addition of metallic copper or other activator. Amidolsulfite mixtures reduced the protargol more rapidly and completely than hydroquinone-sulfite. Intensification of the stain could be secured by reducing with 0.5% amidol (or pyrogallol) solution after gold toning. The completeness of staining of unmyelinated fibers of the dorsal roots of cat spinal nerves was checked by estimating the number of fibers in a root and the cells of its associated ganglion. A fiber cell ratio of 1:1 was found hi 4 specimens, indicating within limits of error that all fibers were stained. An improvement of die original Hofker's mixture as a fixative was obtained by using a mixture of formic acid, 5 cc.; trichloracetic acid, 10 g.; n-propyl alcohol, 20 cc.; and n-butyl alcohol, 60 cc. (instead of the acetic, trichloracetic, ethyl alcohol mixture used hi the original formula). The following arbitrary method is suggested. Fix 12 to 24 hours, pass to water thru graded ethyl alcohol, wash several hours, dehydrate and embed in paraffin. Cut, mount, and remove the paraffin, pass to water and impregnate 2 or 3 days at 27 to 30$$C. in a 0.5% aqueous solution of protargol (Winthrop Chemical Co.). Rinse 2 or 3 seconds and reduce with 0.5% amidol (Agfa brand used) in 5% sodium sulfite solution. Wash, tone with 0.1% gold chloride, wash and reduce with 0.5% amidol (no sulfite), wash, dehydrate and cover. The method works well on spinal nerve roots, cerebrum, cerebellum, and spinal cord, and moderately well on nerve trunks including sympathetic nerves. Tissues from cat and guinea pig were used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号