首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromium in carbohydrate and lipid metabolism   总被引:5,自引:0,他引:5  
 Since the discovery in the 1950s that mammals have a nutritional requirement for chromium, the biological function of chromium has been sought. Candidates for the naturally-occurring biologically active form of chromium have been proposed, but, until recently, all have been shown to be artifacts. Recent studies examining the properties of the oligopeptide low-molecular-weight chromium-binding substance (LMWCr) suggest that this material may have a role in carbohydrate and lipid metabolism as part of a novel insulin-signaling amplification mechanism and may have implications in the treatment of diabetes and related conditions. Received: 24 March 1997 / Accepted: 9 September 1997  相似文献   

2.
V V Dynnik 《Biofizika》1981,26(4):712-718
A mathematical model is proposed to describe the interaction between glycolysis, the Krebs cycle and 3-oxidation (beta OX). The model incorporates the activations of phosphofructokinase by AMP and of isocitrate dehydrogenase by ADP as well as the inhibitions of citrate synthase by citrate, of acyl CoA synthase by excess CoAsAcyl, of pyruvate dehydrogenase (PDH) and the beta OX helix by the products CoAsAc and NADH. These regulations have been shown to provide consecutive triggering of the fatty acid and glucose oxidation systems with an increase in the ATPase load, the beta OX of fatty acids being a major source of energy at small loads. The steady state rates of glycolysis and PDH-reaction begin to increase at larger loads when the rate of beta OX is close to its maximum value. At maximum ATPase loads, the glucose oxidation accounts for more than 80% of the total energy production. Under limited fatty acid supply, the transfer to glucose oxidation gives rise to a region of the ATPase loads, where in the steady state levels of NADH and CoAsAc increase with load.  相似文献   

3.
Trehalose utilisation in a working flight muscle preparation is reduced, in a competitive manner, in the presence of haemolymph lipoprotein. In the presence of trehalose, utilisation of lipid from lipoprotein preparations with high lipid: protein ratios (but not low lipid: protein ratios) is favoured when a tissue extract containing adipokinetic hormone is included in the incubation medium. Under these conditions trehalose utilisation is reduced to a minimum level. This inhibition of trehalose oxidation in the presence of high-lipid lipoprotein and adipokinetic hormone is completely removed by the addition of 2-bromostearic acid to the incubation medium. Glycerol utilisation is not inhibited when lipid oxidation is favoured by the addition of adipokinetic hormone. It is argued that glycolytic flux is reduced (when lipid oxidation is favoured) at a point before the formation of triose phosphates; perhaps at the aldolase reaction.  相似文献   

4.
昆虫糖脂代谢研究进展   总被引:1,自引:0,他引:1  
魏琪  苏建亚 《昆虫学报》2016,(8):906-916
肥胖症和糖尿病的日趋流行已经成为世界范围内的公共健康问题,其病因主要在于体内血糖/血脂含量升高引起的能量代谢紊乱。大量的证据表明,昆虫可以作为研究人类代谢疾病的理想模型,它不仅能合成与哺乳动物同源的糖脂代谢相关激素(如胰岛素样肽和脂动激素),而且还具有进化保守的代谢信号通路(如雷帕霉素靶蛋白信号通路)及相关器官与组织(如中肠和脂肪体)。本文主要介绍了昆虫糖脂代谢的过程与调控机制,重点涉及脂肪体和绛色细胞的生理功能、胰岛素样肽/脂动激素对血糖的拮抗调节、参与营养物质代谢的胰岛素-胰岛素样生长因子信号通路以及与类固醇激素合成相关的胆固醇代谢等内容,并结合最新研究成果对黑腹果蝇Drosophila melanogaster糖脂代谢相关基因及其功能进行了总结,以期为昆虫生理学和人类代谢疾病研究提供参考。  相似文献   

5.
1. Mannose-binding and N-acetylglucosamine binding lectins exhibited potent antilipolytic and lipogenic activities. 2. Fucose-binding lectins had minimal lipogenic activity but possessed antilipolytic activity. 3. Most galactose-binding and N-acetylgalactosamine-binding lectins were devoid of significant antilipolytic and lipogenic activities. Notable exceptions were lectins from Momordica charantia, Wisteria floribunda, Vicia villosa, Codium fragile and the Siberian pine tree. lipogenic activity but lacked antilipolytic activity. 5. The galactose-binding horse gram and osage orange lectins exerted antilipolytic activity in hamster but not in rat adipocytes.  相似文献   

6.
7.
Glycerol is taken up by human muscle in vivo and incorporated into lipids, but little is known about regulation of glycerol metabolism in this tissue. In this study, we have analyzed the role of glycerol kinase (GlK) in the regulation of glycerol metabolism in primary cultured human muscle cells. Isolated human muscle cells exhibited lower GlK activity than fresh muscle explants, but the activity in cultured cells was increased by exposure to insulin. [U-(14)C]Glycerol was incorporated into cellular phospholipids and triacylglycerides (TAGs), but little or no increase in TAG content or lactate release was observed in response to changes in the medium glycerol concentration. Adenovirus-mediated delivery of the Escherichia coli GlK gene (AdCMV-GlK) into muscle cells caused a 30-fold increase in GlK activity, which was associated with a marked rise in the labeling of phospholipid or TAG from [U-(14)C]glycerol compared with controls. Moreover, GlK overexpression caused [U-(14)C]glycerol to be incorporated into glycogen, which was dependent on the activation of glycogen synthase. Co-incubation of AdCMV-GlK-treated muscle cells with glycerol and oleate resulted in a large accumulation of TAG and an increase in lactate production. We conclude that GlK is the limiting step in muscle cell glycerol metabolism. Glycerol 3-phosphate is readily used for TAG synthesis but can also be diverted to form glycolytic intermediates that are in turn converted to glycogen or lactate. Given the high levels of glycerol in muscle interstitial fluid, these finding suggest that changes in GlK activity in muscle can exert important influences on fuel deposition in this tissue.  相似文献   

8.
9.
10.
11.
R Ziegler  K Eckart  J H Law 《Peptides》1990,11(5):1037-1040
The peptide hormone which controls activation of fat body glycogen phosphorylase in starving larvae of Manduca sexta was isolated from larval corpora cardiaca and sequenced by FAB tandem mass spectrometry. It was found to be identical with Manduca AKH. This, together with earlier observations, demonstrates that in M. sexta AKH controls glycogen phosphorylase activation in starving larvae while in adults it controls lipid mobilization during flight. Larval corpora cardiaca contain about 10 times less AKH than the corpora cardiaca of adults. The corpora cardiaca of M. sexta appear to contain only one AKH.  相似文献   

12.
Influence of valproic acid on hepatic carbohydrate and lipid metabolism   总被引:14,自引:0,他引:14  
Valproic acid (dipropylacetic acid), an antiepileptic agent known to be hepatotoxic in some patients, caused inhibition of lactate gluconeogenesis, fatty acid oxidation, and fatty acid synthesis by isolated hepatocytes. The latter process was the most sensitive to valproic acid, 50% inhibition occurring at ca. 125 microM with cells from meal-fed female rats. The medium-chain acyl-CoA ester fraction was increased whereas coenzyme A (CoA), acetyl-CoA, and the long chain acyl-CoA fractions were decreased by valproic acid. The increase in the medium chain acyl-CoA fraction was found by high-pressure liquid chromatography to be due to the accumulation of valproyl-CoA plus an apparent CoAester metabolite of valproyl-CoA. Salicylate inhibited valproyl-CoA formation and partially protected against valproic acid inhibition of hepatic metabolic processes. Octanoate had a similar protective effect, suggesting that activation of valproic acid in the mitosol is required for its inhibitory effects. It is proposed that either valproyl-CoA itself or the sequestration of CoA causes inhibition of metabolic processes. Valproyl-CoA formation also appears to explain valproic acid inhibition of gluconeogenesis by isolated kidney tubules. No evidence was found for the accumulation of valproyl-CoA in brain tissue, suggesting that the effects of valproic acid in the central nervous system are independent of the formation of this metabolite.  相似文献   

13.
This review examines the mechanisms that regulate muscle carbohydrate metabolism during exercise. Muscle carbohydrate utilization is regulated primarily by two factors, namely, delivery of substrate to the glycolytic pathway either from glycogenolysis or from transport of extracellular glucose into the fibers, and formation of triosephosphate by phosphofructokinase. The regulation involves the integration of the glycolytic controls with other metabolic controls and the needs of the whole muscle in meeting the physiological demand. The controls operating in the glycolytic sequence in vivo appear to couple glycolytic recruitment to signals from the rate of energy demand, the TCA cycle state, and the mitochondrial redox state so as to satisfy the major regulatory goal of maintaining the supply of ATP for tension development.  相似文献   

14.
15.
The effects of dietary soybean β-conglycinin on lipid metabolism and energy consumption were studied in Wistar adult rats. Rats were fed, a diet containing casein (control group) or β-conglycinin (β-conglycinin group), for 4 weeks. Carbohydrate consumption was higher and fat consumption was lower in the β-conglycinin group than in the control group, whereas the total energy consumption was the same between the two groups. Serum adiponectin was higher in the β-conglycinin group than in the control group. Serum triacylglycerol levels in the β-conglycinin group were significantly lower than those in the control group. The secretion rate of triacylglycerols from the liver after the administration of tyloxapol, an inhibitor of lipolysis, was significantly lower in the β-conglycinin group than in the control group. These results suggest the possibility that β-conglycinin exerts hypolipidemic effects through an acceleration in carbohydrate consumption associated with an increase in adiponectin in rats.  相似文献   

16.
17.
We have previously found that glycolysis and gluconeogenesis occur in separate "compartments" of the VSM cell. These compartments may result from spatial separation of glycolytic and gluconeogenic enzymes (Lloyd and Hardin [1999] Am J Physiol Cell Physiol. 277:C1250-C1262). We have also found that an intact plasma membrane is essential for compartmentation to exist (Lloyd and Hardin [2000] Am J Physiol Cell Physiol. 278:C803-C811), suggesting that glycolysis and gluconeogenesis may be associated with distinct plasma membrane microdomains. Caveolae are one such microdomain, in which proteins of related function colocalize. Thus, we hypothesized that membrane-associated glycolysis occurs in association with caveolae, while gluconeogenesis is localized to non-caveolae domains. To test this hypothesis, we disrupted caveolae in vascular smooth muscle (VSM) of pig cerebral microvessels (PCMV) with beta methyl-cyclodextrin (CD) and examined the metabolism of [2-(13)C]glucose (a glycolytic substrate) and [1-(13)C]fructose 1,6-bisphosphate (FBP, a gluconeogenic substrate in PCMV) using (13)C nuclear magnetic resonance spectroscopy. Caveolar disruption reduced flux of [2-(13)C]glucose to [2-(13)C]lactate, suggesting that caveolar disruption partially disrupted the glycolytic pathway. Caveolae disruption may also have resulted in a breakdown of compartmentation, since conversion of [1-(13)C]FBP to [3-(13)C]lactate was increased by CD treatment. Alternatively, the increased [3-(13)C]lactate production may reflect changes in FBP uptake, since conversion of [1-(13)C]FBP to [3-(13)C]glucose was also elevated in CD-treated cells. Thus, a link between caveolar organization and metabolic organization may exist.  相似文献   

18.
The purpose of the present study was to investigate whether intracerebroventricular (ICV) injection of neuropeptide Y (NPY) affects heat production (HP), body temperature, and plasma concentrations of metabolic fuels in chicks. ICV injection of NPY (0, 188 or 375 pmol) did not affect HP, but significantly lowered respiratory quotient as well as the rectal temperature. These data suggest that the energy sources for HP were modified by NPY in the body. This idea was confirmed by subsequent experiments in which ICV injection of NPY significantly reduced plasma glucose and triacylglycerol concentrations but increased non-esterified fatty acid concentrations. The effect of NPY on the utilization of metabolic fuels was not associated changes in plasma catecholamine and corticosterone concentrations. In summary, the present study demonstrated that central NPY modifies peripheral carbohydrate and lipid metabolism in chicks.  相似文献   

19.
Summary Adult Manduca sexta feed very irregularly in the laboratory, and many adult males never feed. Feeding adults live longer and feeding females lay many more eggs; however, in both feeding (sugar water) and starving adults a decrease of metabolic reserves is observed. Carbohydrates disappear from hemolymph and from fat body. Fat body lipid also decreases, while hemolymph lipid concentration increases strongly in starving adults. The activity of fat body glycogen phosphorylase increases strongly in starving adult M. sexta. The activity of glycogen phosphorylase is correlated inversely with hemolymph sugar concentration. Injected trehalose inactivates glycogen phosphorylase within 2 h, and lowers the hemolymph lipid level within 6 h. In starving adult M. sexta, neither the activation of glycogen phosphorylase nor the increase of hemolymph lipid concentration depends on adipokinetic hormone, since cardiacectomy does not prevent the activation of glycogen phosphorylase nor the increase of hemolymph lipid level.Abbreviations AKH adipokinetic hormone - EDTA ethylenediamine tetraacetate Present address: Department of Biochemistry and Center for Insect Science, The University of Arizona, Tucson, AZ 85721, USA  相似文献   

20.
The objectives of this study were to 1). examine skeletal muscle fatty acid oxidation in individuals with varying degrees of adiposity and 2). determine the relationship between skeletal muscle fatty acid oxidation and the accumulation of long-chain fatty acyl-CoAs. Muscle was obtained from normal-weight [n = 8; body mass index (BMI) 23.8 +/- 0.58 kg/m(2)], overweight/obese (n = 8; BMI 30.2 +/- 0.81 kg/m(2)), and extremely obese (n = 8; BMI 53.8 +/- 3.5 kg/m(2)) females undergoing abdominal surgery. Skeletal muscle fatty acid oxidation was assessed in intact muscle strips. Long-chain fatty acyl-CoA concentrations were measured in a separate portion of the same muscle tissue in which fatty acid oxidation was determined. Palmitate oxidation was 58 and 83% lower in skeletal muscle from extremely obese (44.9 +/- 5.2 nmol x g(-1) x h(-1)) patients compared with normal-weight (71.0 +/- 5.0 nmol x g(-1) x h(-1)) and overweight/obese (82.2 +/- 8.7 nmol x g(-1) x h(-1)) patients, respectively. Palmitate oxidation was negatively (R = -0.44, P = 0.003) associated with BMI. Long-chain fatty acyl-CoA content was higher in both the overweight/obese and extremely obese patients compared with normal-weight patients, despite significantly lower fatty acid oxidation only in the extremely obese. No associations were observed between long-chain fatty acyl-CoA content and palmitate oxidation. These data suggest that there is a defect in skeletal muscle fatty acid oxidation with extreme obesity but not overweight/obesity and that the accumulation of intramyocellular long-chain fatty acyl-CoAs is not solely a result of reduced fatty acid oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号