共查询到20条相似文献,搜索用时 0 毫秒
1.
Thomenius M Freel CD Horn S Krieser R Abdelwahid E Cannon R Balasundaram S White K Kornbluth S 《Cell death and differentiation》2011,18(10):1640-1650
In most multicellular organisms, the decision to undergo programmed cell death in response to cellular damage or developmental cues is typically transmitted through mitochondria. It has been suggested that an exception is the apoptotic pathway of Drosophila melanogaster, in which the role of mitochondria remains unclear. Although IAP antagonists in Drosophila such as Reaper, Hid and Grim may induce cell death without mitochondrial membrane permeabilization, it is surprising that all three localize to mitochondria. Moreover, induction of Reaper and Hid appears to result in mitochondrial fragmentation during Drosophila cell death. Most importantly, disruption of mitochondrial fission can inhibit Reaper and Hid-induced cell death, suggesting that alterations in mitochondrial dynamics can modulate cell death in fly cells. We report here that Drosophila Reaper can induce mitochondrial fragmentation by binding to and inhibiting the pro-fusion protein MFN2 and its Drosophila counterpart dMFN/Marf. Our in vitro and in vivo analyses reveal that dMFN overexpression can inhibit cell death induced by Reaper or γ-irradiation. In addition, knockdown of dMFN causes a striking loss of adult wing tissue and significant apoptosis in the developing wing discs. Our findings are consistent with a growing body of work describing a role for mitochondrial fission and fusion machinery in the decision of cells to die. 相似文献
2.
Whether or not yeast cell death is altruistic, apoptotic, or otherwise analogous to programmed cell death in mammals is controversial. However, growing attention to cell death mechanisms in yeast has produced several new papers that make a case for ancient origins of programmed death involving mitochondrial pathways conserved between yeast and mammals. 相似文献
3.
Reactive oxygen species as signals that modulate plant stress responses and programmed cell death 总被引:18,自引:0,他引:18
Gechev TS Van Breusegem F Stone JM Denev I Laloi C 《BioEssays : news and reviews in molecular, cellular and developmental biology》2006,28(11):1091-1101
Reactive oxygen species (ROS) are known as toxic metabolic products in plants and other aerobic organisms. An elaborate and highly redundant plant ROS network, composed of antioxidant enzymes, antioxidants and ROS-producing enzymes, is responsible for maintaining ROS levels under tight control. This allows ROS to serve as signaling molecules that coordinate an astonishing range of diverse plant processes. The specificity of the biological response to ROS depends on the chemical identity of ROS, intensity of the signal, sites of production, plant developmental stage, previous stresses encountered and interactions with other signaling molecules such as nitric oxide, lipid messengers and plant hormones. Although many components of the ROS signaling network have recently been identified, the challenge remains to understand how ROS-derived signals are integrated to eventually regulate such biological processes as plant growth, development, stress adaptation and programmed cell death. 相似文献
4.
Mitochondrial involvement in tracheary element programmed cell death 总被引:14,自引:0,他引:14
The mitochondria pathway is regarded as a central component of some types of programmed cell death (PCD) in animal cells where specific signals cause the release of cytochrome c from mitochondria to trigger a proteolytic cascade involving caspases. However, plant cells lack canonical caspases, therefore a role for the mitochondria in programmed cell death in plant cells is not obvious. Using plant cells which terminally differentiate, we provide evidence supporting the involvement of mitochondria in PCD, however the release of cytochrome c is insufficient to trigger the PCD. Prior to execution of cellular autolysis initiated by the rupture of the large central vacuole to release sequestered hydrolases, mitochondria adopt a definable morphology, the inner membrane depolarizes prior to death, and cytochrome c is released from mitochondria. However, PCD can be blocked despite translocation of cytochrome c. These results suggest a role for the mitochondria in this PCD but do not support the current animal model for a causative role of cytochrome c in triggering PCD. 相似文献
5.
Programmed cell death (PCD) is a genetically controlled process described both in eukaryotic and prokaryotic organisms. Even if it is clear that PCD occurs in plants, in response to various developmental and environmental stimuli, the signalling pathways involved in the triggering of this cell suicide remain to be characterized. In this review, the main similarities and differences in the players involved in plant and animal PCD are outlined. Particular attention is paid to the role of reactive oxygen species (ROS) as key inducers of PCD in plants. The involvement of different kinds of ROS, different sites of ROS production, as well as their interaction with other molecules, is crucial in activating PCD in response to specific stimuli. Moreover, the importance is stressed on the balance between ROS production and scavenging, in various cell compartments, for the activation of specific steps in the signalling pathways triggering this cell suicide process. The review focuses on the complexity of the interplay between ROS and antioxidant molecules and enzymes in determining the most suitable redox environment required for the occurrence of different forms of PCD. 相似文献
6.
Programmed cell death (PCD) is a genetically-controlled disassembly of the cell. In animal systems, the central core execution switch for apoptotic PCD is the activation of caspases (Cysteine-containing Aspartate-specific proteases). Accumulating evidence in recent years suggests the existence of caspase-like activity in plants and its functional involvement in various types of plant PCD, although no functional homologs of animal caspases were identified in plant genome. In this mini-review, we will cover the recent results on the existence of plant caspase-like proteases and introduce major technologies used in detecting the activation of caspase-like proteases during plant PCD.Key words: caspase-like proteases, fluorescence resonance energy transfer, programmed cell death 相似文献
7.
8.
9.
10.
Multicellular organisms eliminate unwanted or damaged cells by cell death, a process essential to the maintenance of tissue homeostasis. Cell death is a tightly regulated event, whose alteration by excess or defect is involved in the pathogenesis of many diseases such as cancer, autoimmune syndromes, and neurodegenerative processes. Studies in model organisms, especially in the nematode Caenorhabditis elegans, have been crucial in identifying the key molecules implicated in the regulation and execution of programmed cell death. In contrast, the study of cell death in Drosophila melanogaster, often an excellent model organism, has identified regulators and mechanisms not obviously conserved in other metazoans. Recent molecular and cellular analyses suggest, however, that the mechanisms of action of the main programmed cell death regulators in Drosophila include a canonical mitochondrial pathway. 相似文献
11.
12.
Programmed cell death (PCD) involves precise integration of cellular responses to extracellular and intracellular signals during both stress and development. In recent years much progress in our understanding of the components involved in PCD in plants has been made. Signalling to PCD results in major reorganisation of cellular components. The plant cytoskeleton is known to play a major role in cellular organisation, and reorganization and alterations in its dynamics is a well known consequence of signalling. There are considerable data that the plant cytoskeleton is reorganised in response to PCD, with remodelling of both microtubules and microfilaments taking place. In the majority of cases, the microtubule network depolymerises, whereas remodelling of microfilaments can follow two scenarios, either being depolymerised and then forming stable foci, or forming distinct bundles and then depolymerising. Evidence is accumulating that demonstrate that these cytoskeletal alterations are not just a consequence of signals mediating PCD, but that they also may have an active role in the initiation and regulation of PCD. Here we review key data from higher plant model systems on the roles of the actin filaments and microtubules during PCD and discuss proteins potentially implicated in regulating these alterations. 相似文献
13.
The morphological features of programmed cell death (PCD) and the molecular machinery involved in the death program in animal cells have been intensively studied. In plants, cell death has been widely observed in predictable patterns throughout differentiation processes and in defense responses. Several lines of evidence argue that plant PCD shares some characteristic features with animal PCD. However, the molecular components of the plant PCD machinery remain obscure. We have shown that plant cells undergo PCD by constitutively expressed molecular machinery upon induction with the fungal elicitor EIX or by staurosporine in the presence of cycloheximide. The permeable peptide caspase inhibitors, zVAD-fmk and zBocD-fmk, blocked PCD induced by EIX or staurosporine. Using labeled VAD-fmk, active caspase-like proteases were detected within intact cells and in cell extracts of the PCD-induced cells. These findings suggest that caspase-like proteases are responsible for the execution of PCD in plant cells. 相似文献
14.
Hydrogen peroxide (H2O2) has established itself as a key player in stress and programmed cell death responses, but little is known about the signaling pathways leading from H2O2 to programmed cell death in plants. Recently, identification of key regulatory mutants and near-full genome coverage microarray analysis of H2O2-induced cell death have begun to unravel the complexity of the H2O2 network. This review also describes a novel link between H2O2 and sphingolipids, two signals that can interplay and regulate plant cell death. 相似文献
15.
Discordant views regarding host cell death induction by Chlamydia are likely owing to the different methods used for evaluation of apoptosis. Apoptotic and non-apoptotic death owing to both caspase-dependent and -independent activation of the Bax protein occur late in the productive growth cycle. Evidence also suggests that Chlamydia inhibits apoptosis during productive growth as part of its intracellular survival strategy. This is in part owing to proteolytic degradation of the BH3-only family of pro-apoptotic proteins in the mitochondrial pathway. Chlamydia also inhibits apoptosis during persistent growth or in phagocytes, but induces apoptosis in T cells, which suggests that apoptosis has an immunomodulatory role in chlamydial infections. The contribution of apoptosis in disease pathogenesis remains a focus for future research. 相似文献
16.
A report on the 15th Lorne Cancer Conference, Lorne, Australia, 13-16 February 2003. 相似文献
17.
Pro-inflammatory programmed cell death 总被引:1,自引:0,他引:1
18.
Eryptosis, the suicidal death of erythrocytes, is characterised by cell shrinkage, membrane blebbing and cell membrane phospholipid scrambling with phosphatidylserine exposure at the cell surface. Phosphatidylserine-exposing erythrocytes are recognised by macrophages, which engulf and degrade the affected cells. Reported triggers of eryptosis include osmotic shock, oxidative stress, energy depletion, ceramide, prostaglandin E(2), platelet activating factor, hemolysin, listeriolysin, paclitaxel, chlorpromazine, cyclosporine, methylglyoxal, amyloid peptides, anandamide, Bay-5884, curcumin, valinomycin, aluminium, mercury, lead and copper. Diseases associated with accelerated eryptosis include sepsis, malaria, sickle-cell anemia, beta-thalassemia, glucose-6-phosphate dehydrogenase (G6PD)-deficiency, phosphate depletion, iron deficiency, hemolytic uremic syndrome and Wilsons disease. Eryptosis may be inhibited by erythropoietin, adenosine, catecholamines, nitric oxide (NO) and activation of G-kinase. Most triggers of eryptosis except oxidative stress are effective without activation of caspases. Their signalling involves formation of prostaglandin E(2) with subsequent activation of cation channels and Ca2+ entry and/or release of platelet activating factor (PAF) with subsequent activation of sphingomyelinase and formation of ceramide. Ca2+ and ceramide stimulate scrambling of the cell membrane. Ca2+ further activates Ca2+-sensitive K+ channels leading to cellular KCl loss and cell shrinkage and stimulates the protease calpain resulting in degradation of the cytoskeleton. Eryptosis allows defective erythrocytes to escape hemolysis. On the other hand, excessive eryptosis favours the development of anemia. Thus, a delicate balance between proeryptotic and antieryptotic mechanisms is required to maintain an adequate number of circulating erythrocytes and yet avoid noneryptotic death of injured erythrocytes. 相似文献
19.
Multiple mediators of plant programmed cell death: interplay of conserved cell death mechanisms and plant-specific regulators 总被引:14,自引:0,他引:14
Hoeberichts FA Woltering EJ 《BioEssays : news and reviews in molecular, cellular and developmental biology》2003,25(1):47-57
Programmed cell death (PCD) is a process aimed at the removal of redundant, misplaced, or damaged cells and it is essential to the development and maintenance of multicellular organisms. In contrast to the relatively well-described cell death pathway in animals, often referred to as apoptosis, mechanisms and regulation of plant PCD are still ill-defined. Several morphological and biochemical similarities between apoptosis and plant PCD have been described, including DNA laddering, caspase-like proteolytic activity, and cytochrome c release from mitochondria. Reactive oxygen species (ROS) have emerged as important signals in the activation of plant PCD. In addition, several plant hormones may exert their respective effects on plant PCD through the regulation of ROS accumulation. The possible plant PCD regulators discussed in this review are integrated in a model that combines plant-specific regulators with mechanisms functionally conserved between animals and plants. 相似文献
20.
The plant innate immune response includes the hypersensitive response (HR), a form of programmed cell death (PCD). PCD must be restricted to infection sites to prevent the HR from playing a pathologic rather than protective role. Here we show that plant BECLIN 1, an ortholog of the yeast and mammalian autophagy gene ATG6/VPS30/beclin 1, functions to restrict HR PCD to infection sites. Initiation of HR PCD is normal in BECLIN 1-deficient plants, but remarkably, healthy uninfected tissue adjacent to HR lesions and leaves distal to the inoculated leaf undergo unrestricted PCD. In the HR PCD response, autophagy is induced in both pathogen-infected cells and distal uninfected cells; this is reduced in BECLIN 1-deficient plants. The restriction of HR PCD also requires orthologs of other autophagy-related genes including PI3K/VPS34, ATG3, and ATG7. Thus, the evolutionarily conserved autophagy pathway plays an essential role in plant innate immunity and negatively regulates PCD. 相似文献