首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Rhodospirillum rubrum is a model for the study of membrane formation. Under conditions of oxygen limitation, this facultatively phototrophic bacterium forms an intracytoplasmic membrane that houses the photochemical apparatus. This apparatus consists of two pigment-protein complexes, the light-harvesting antenna (LH) and photochemical reaction center (RC). The proteins of the photochemical components are encoded by the puf operon (LHalpha, LHbeta, RC-L, and RC-M) and by puhA (RC-H). R. rubrum puf interposon mutants do not form intracytoplasmic membranes and are phototrophically incompetent. The puh region was cloned, and DNA sequence determination identified open reading frames bchL and bchM and part of bchH; bchHLM encode enzymes of bacteriochlorophyll biosynthesis. A puhA/G115 interposon mutant was constructed and found to be incapable of phototrophic growth and impaired in intracytoplasmic membrane formation. Comparison of properties of the wild-type and the mutated and complemented strains suggests a model for membrane protein assembly. This model proposes that RC-H is required as a foundation protein for assembly of the RC and highly developed intracytoplasmic membrane. In complemented strains, expression of puh occurred under semiaerobic conditions, thus providing the basis for the development of an expression vector. The puhA gene alone was sufficient to restore phototrophic growth provided that recombination occurred.  相似文献   

4.
5.
P Richter  M Brand    G Drews 《Journal of bacteriology》1992,174(9):3030-3041
The NH2 termini of light-harvesting complex I (LHI) polypeptides alpha and beta of Rhodobacter capsulatus are thought to be involved in the assembly of the LHI complex. For a more detailed study of the role of the NH2-terminal segment of the LHI alpha protein in insertion into the intracytoplasmic membrane (ICM) of R. capsulatus, amino acids 6 to 8, 9 to 11, 12 and 13, or 14 and 15 of the LHI alpha protein were deleted. Additionally, the hydrophobic stretch of the amino acids 7 to 11 was lengthened by insertion of hydrophobic or hydrophilic amino acids. All mutations abolished the ability of the mutant strains to form a functional LHI antenna complex. All changes introduced into the LHI alpha protein strongly reduced the stability of its LHI beta partner protein in the ICM. The effects on the mutated protein itself, however, were different. Deletion of amino acids 6 to 8, 9 to 11, or 14 and 15 drastically reduced the amount of the LHI alpha protein inserted into the membrane or prevented its insertion. Deletion of amino acids 12 and 13 and lengthening of the stretch of amino acids 7 to 11 reduced the half-life of the mutated LHI alpha protein in the ICM in comparison with the wild-type LHI alpha protein. Under the selective pressure of low light, revertants which regained a functional LHI antenna complex were identified only for the mutant strain deleted of amino acids 9 to 11 of the LHI alpha polypeptide [U43 (pTPR15)]. The restoration of the LHI+ phenotype was due to an in-frame duplication of 9 bp in the pufA gene directly upstream of the site of deletion present in strain U43(pTPR15). The duplicated nucleotides code for the amino acids Lys, Ile, and Trp. Membranes purified from the revertants were different from that of the reaction center-positive LHI+ LHII- control strain U43(pTX35) in doubling of the carotenoid content and increase of the size of the photosynthetic unit. By separating the reaction center and LHI complexes of the revertants by native preparative gel electrophoresis, we confirmed that the higher amount of carotenoids was associated with the LHI proteins.  相似文献   

6.
We have reconstituted pigment-protein complexes isolated from Rhodopseudomonas palustris photosynthetic membranes into phospholipid liposomes. The various complexes were tested for their ability to promote adhesion of the liposome membrane in the presence and absence of Mg2+ ions. Samples containing a reaction center (RC)/light-harvesting I (LHI) complex appeared to stack in a manner resembling control thylakoids in 2 and 5 mM Mg2+. We also tested for the effects of Mg2+ on detergent extractablity of pigment-protein complexes from intact membranes. Mg2+ sharply reduced the amount of LHI solubilized from membranes, while having little effect on the extractability of the light harvesting II complex (LHII) and the RC. Based on these results we suggest that LHI is the principal adhesion factor of R. palustris thylakoids.Abbreviations LHC light harvesting complex - OG octyl glucoside - RC reaction center This paper is dedicated to Professor G. Drews on the occasion of his 60th birthday  相似文献   

7.
8.
9.
10.
We have employed detergent solubilization and sucrose density gradient centrifugation to obtain pigment-protein complexes from Rhodopseudomonas palustris. Two types of detergent buffers were used, containing either octyl-beta-glucopyranoside (OG) plus sodium dodecyl sulfate (SDS) or OG alone. The fractions thus obtained were analyzed spectrophotometrically and by polyacrylamide gel electrophoresis to determine their pigment and protein composition. OG-SDS solubilization yields four fractions. The least dense of these fractions (OG-SDS a and b) are nonspecific mixtures of peptides and pigments. The next fraction, OG-SDS c, is an accessory light-harvesting complex, LHII, called B800-850. The largest particle, OG-SDS d, is a combination of reaction center (RC) and primary light-harvesting complex (LHI), B880. Solubilization using OG alone yields one fraction, a single large complex consisting of RC, LHI, and LHII. We have inserted the two large OG-SDS complexes and the OG complex into phospholipid liposomes to determine the size of such complexes in freeze-fractured membranes. On the basis of morphological, biochemical, and available biophysical data, we propose the following models for pigment-protein complexes in R. palustris membranes: 5-nm particles as free RC or LHI tetramers, 7.5-nm particles as LHI or LHII octamers (or both); 10-nm particles as RC-LHI core complexes (1 RC plus 12 LHI) or large LHII oligomers (or both), and large particles of 12.5 and 15 nm and LHII associated with the RC-LHI core complex.  相似文献   

11.
The puf operon in Rhodobacter sphaeroides contains the genes for the light-harvesting antenna complex I (LHI), the reaction centre (RC) L and M subunits and an additional small open reading frame identified as pufX. It has been demonstrated before that a photosynthetically incompetent pufLMX deletion strain was not complemented by a plasmid-borne truncated puf operon version lacking only pufX, although expression of the pufL and pufM gene products was restored. We demonstrate here that the functional reinsertion of only the pufX open reading frame into the same construct is sufficient and necessary for complementation of the non-photosynthetic phenotype. We also demonstrate that the observed lack of photoheterotrophic growth in the absence of pufX is not the result of decreased light-harvesting ability, but rather the result of an impairment in light-driven cyclic electron transfer. Western blots using polyclonal antibodies against a synthetic peptide corresponding to a portion of the DNA-derived pufX amino acid sequence showed that the pufX open reading frame is expressed and that the gene product has an M(r) of 8-10,000 on SDS gels; a value close to the predicted mass of 9 kDa. The pufX polypeptide was localized to the intracytoplasmic membrane fraction and appeared to co-purify with the RC-LHI complex. It is suggested that the pufX polypeptide is associated with the RC-LHI complex and that it may play a critical role in facilitating the interaction between this complex and other components required for light-driven cyclic electron transfer.  相似文献   

12.
Possible interactions between photosynthetic reaction center (RC) proteins that protect these membrane proteins from proteolytic digestion in RC complex assembly were evaluated by use of translationally in-frame (nonpolar) RC gene-specific deletions. The RC H, RC M and RC L proteins were produced from plasmids, either alone or in concert with one or both of the others, in a strain of Rhodobacter sphaeroides that contained chromosomal deletions of all three RC genes. The steady-state amounts of these proteins in cell membrane and soluble fractions were assessed in western blots. The data are used to propose a model of RC assembly in which the RC M protein accumulates in the cell membrane regardless of the presence of the RC H and RC L proteins, and the RC M protein is a nucleus for addition of RC L followed by RC H in assembly of the RC holocomplex.  相似文献   

13.
14.
15.
A reaction center H- strain (RCH-) of Rhodobacter sphaeroides, PUHA1, was made by in vitro deletion of an XhoI restriction endonuclease fragment from the puhA gene coupled with insertion of a kanamycin resistance gene cartridge. The resulting construct was delivered to R. sphaeroides wild-type 2.4.1, with the defective puhA gene replacing the wild-type copy by recombination, followed by selection for kanamycin resistance. When grown under conditions known to induce intracytoplasmic membrane development, PUHA1 synthesized a pigmented intracytoplasmic membrane. Spectral analysis of this membrane showed that it was deficient in B875 spectral complexes as well as functional reaction centers and that the level of B800-850 spectral complexes was greater than in the wild type. The RCH- strain was photosythetically incompetent, but photosynthetic growth was restored by complementation with a 1.45-kilobase (kb) BamHI restriction endonuclease fragment containing the puhA gene carried in trans on plasmid pRK404. B875 spectral complexes were not restored by complementation with the 1.45-kb BamHI restriction endonuclease fragment containing the puhA gene but were restored along with photosynthetic competence by complementation with DNA from a cosmid carrying the puhA gene, as well as a flanking DNA sequence. Interestingly, B875 spectral complexes, but not photosynthetic competence, were restored to PUHA1 by introduction in trans of a 13-kb BamHI restriction endonuclease fragment carrying genes encoding the puf operon region of the DNA. The effect of the puhA deletion was further investigated by an examination of the levels of specific mRNA species derived from the puf and puc operons, as well as by determinations of the relative abundances of polypeptides associated with various spectral complexes by immunological methods. The roles of puhA and other genetic components in photosynthetic gene expression and membrane assembly are discussed.  相似文献   

16.
The light-harvesting complex I (LHI) of Rhodobacter capsulatus is an oligomer of basic subunits each consisting of the two different pigment-binding polypeptides LHI alpha and LHI beta, encoded by the pufA (LHI alpha) and pufB (LHI beta) genes. Pulse-labeling experiments showed that in the presence of the LHI alpha polypeptide, the LHI beta polypeptide was inserted earlier into the intracytoplasmic membrane than was the LHI alpha polypeptide. Each of the pufA and pufB genes was deleted to test whether the LHI alpha and beta polypeptides, respectively, are inserted into the intracytoplasmic membrane independently of the LHI partner polypeptide. Neither deletion mutant strain formed the LHI antenna, but a functional reaction center complex was present. Pulse-labeling experiments indicated that the LHI beta polypeptide was inserted into the intracytoplasmic membrane with the same kinetics and in the same amounts regardless of whether the LHI alpha polypeptide was present. However, the LHI beta polypeptide did not accumulate in the membrane in the absence of the LHI alpha protein but was degraded linearly within about 12 min. In contrast to the LHI beta protein, only trace amounts of the LHI alpha polypeptide were inserted into or attached to the membrane if the LHI beta polypeptide was not synthesized.  相似文献   

17.
The core complex of Rhodobacter sphaeroides is formed by the association of the light-harvesting antenna 1 (LH1) and the reaction center (RC). The PufX protein is essential for photosynthetic growth; it is located within the core in a 1 : 1 stoichiometry with the RC. PufX is required for a fast ubiquinol exchange between the Q(B) site of the RC and the Qo site of the cytochrome bc1 complex. In vivo the LH1-PufX-RC complex is assembled in a dimeric form, where PufX is involved as a structural organizer. We have modified the PufX protein at the N and the C-terminus with progressive deletions. The nine mutants obtained have been characterized for their ability for photosynthetic growth, the insertion of PufX in the core LH1-RC complex, the stability of the dimers and the kinetics of flash-induced reduction of cytochrome b561 of the cytochrome bc1 complex. Deletion of 18 residues at the N-terminus destabilizes the dimer in vitro without preventing photosynthetic growth. The dimer (or a stable dimer) does not seem to be a necessary requisite for the photosynthetic phenotype. Partial C-terminal deletions impede the insertion of PufX, while the complete absence of the C-terminus leads to the insertion of a PufX protein composed of only its first 53 residues and does not affect the photosynthetic growth of the bacterium. Overall, the results point to a complex role of the N and C domains in the structural organization of the core complex; the N-terminus is suggested to be responsible mainly for dimerization, while the C-terminus is thought to be involved mainly in PufX assembly.  相似文献   

18.
H Stiehle  N Cortez  G Klug    G Drews 《Journal of bacteriology》1990,172(12):7131-7137
Light-harvesting complex I (LHI) of Rhodobacter capsulatus contains bacteriochlorophyll and carotenoids which are noncovalently bound to two different apoproteins (alpha and beta polypeptides) carrying oppositely charged N-terminal ends. The contribution of these charged segments to the assembly of LHI was studied with mutants having oppositely charged amino acids in the alpha or beta polypeptide. The influence of these mutations on the insertion and assembly process of the LHI complex was investigated by means of spectroscopic analysis of isolated intracytoplasmic membranes and pulse-chase experiments. Exchange of four positively charged amino acids to negatively charged amino acids on the N-terminal domain of the alpha subunit inhibited completely the assembly of the LHI complex. Although this mutant has no antenna, the reaction center is active and the cells were able to grow anaerobically in the light. Conversely, mutation of the four negatively charged amino acids of the N-terminal segment of the beta polypeptide did not prevent the assembly of the LHI complex, although the stability of the complex and the size of the photosynthetic unit were affected. The presence of the mutated beta polypeptide was confirmed by protein sequencing.  相似文献   

19.
Roseobacter denitrificans (Erythrobacter species strain OCh114) synthesizes bacteriochlorophyll a (BChl) and the photosynthetic apparatus only in the presence of oxygen and is unable to carry out primary photosynthetic reactions and to grow photosynthetically under anoxic conditions. The puf operon of R. denitrificans has the same five genes in the same order as in many photosynthetic bacteria, i.e., pufBALMC. PufC, the tetraheme subunit of the reaction center (RC), consists of 352 amino acids (Mr, 39,043); 20 and 34% of the total amino acids are identical to those of PufC of Chloroflexus aurantiacus and Rubrivivax gelatinosus, respectively. The N-terminal hydrophobic domain is probably responsible for anchoring the subunit in the membrane. Four heme-binding domains are homologous to those of PufC in several purple bacteria. Sequences similar to pufQ and pufX of Rhodobacter capsulatus were not detected on the chromosome of R. denitrificans. The puf operon of R. denitrificans was expressed in trans in Escherichia coli, and all gene products were synthesized. The Roseobacter puf operon was also expressed in R. capsulatus CK11, a puf puc double-deletion mutant. For the first time, an RC/light-harvesting complex I core complex was heterologously synthesized. The strongest expression of the R. denitrificans puf operon was observed under the control of the R. capsulatus puf promoter, in the presence of pufQ and pufX and in the absence of pufC. Charge recombination between the primary donor P+ and the primary ubiquinone Q(A)- was observed in the transconjugant, showing that the M and L subunits of the RC were correctly assembled. The transconjugants did not grow photosynthetically under anoxic conditions.  相似文献   

20.
A conserved orf of previously unknown function (herein designated as puhE) is located 3' of the reaction centre H (puhA) gene in purple photosynthetic bacteria, in the order puhABCE in Rhodobacter capsulatus. Disruptions of R. capsulatus puhE resulted in a long lag in the growth of photosynthetic cultures inoculated with cells grown under high aeration, and increased the level of the peripheral antenna, light-harvesting complex 2 (LH2). The amount of the photosynthetic reaction centre (RC) and its core antenna, light-harvesting complex 1 (LH1), was reduced; however, there was no decrease in expression of a lacZ reporter fused to the puf (RC and LH1) promoter, in RC assembly in the absence of LH1, or in LH1 assembly in the absence of the RC. In strains that lack LH2, disruption of puhE increased the in vivo absorption at 780 nm, which we attribute to excess bacteriochlorophyll a (BChl) pigment production. This effect was seen in the presence and absence of PufQ, a protein that stimulates BChl biosynthesis. Expression of puhE from a plasmid reduced A(780) production in puhE mutants. We suggest that PuhE modulates BChl biosynthesis independently of PufQ, and that the presence of excess BChl in PuhE(-)LH2(+) strains results in excess LH2 assembly and also interferes with the adaptation of cells during the transition from aerobic respiratory to anaerobic photosynthetic growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号