首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Semi-decussate phyllotaxis, in which leaves arise singly and the divergence angles between successive pairs of leaves alternate between approximately 90° and approximately 180°, is accounted for by a contact pressure model. It is assumed that leaf primordia are initiated at a divergence angle close to the Fibonacci angle of 137·5°, that the primordia move under contact pressure, and that when a primordium first experiences contact pressure all other primordia are fixed. Extensions of the model account for: psuedodecussate phyllotaxis, where the leaves appear to arise in pairs; semi-tricussate and pseudo-tricussate phyllotaxis, where the leaves are arranged in, respectively, dissolved or apparent trimerous whorls; and phyllotaxis of the 1,3 series, where the divergence angle is about 100°. The compatibility of the model with current theories of Fibonacci phyllotaxis is discussed.  相似文献   

2.
Gibberellic acid (GA) treatment of vegetative shoots of Xanthium leads to a change in phyllotaxis as diagnosed in transverse sections of apical buds. A method of analysis is proposed for estimating the phyllotactic parameters, the plastochron ratio, a, and the divergence angle, α, from measurements of the angular and radial positions of leaf primordia in sections. GA treatment significantly decreases the plastochron ratio, a, from 1.35 in controls, to 1.19 in GA-treated plants, as shown by an analysis of variance, but has no significant effect on the divergence angle. The estimates of a and α are compared with the parameters of theoretical phyllotaxis models, leading to the designation (2, 3) for controls, and (3, 5) for GA-treated plants, where the integers 2, 3, and 5 designate sets of contact parastichies. The change in a is interpreted as indicating a change in the relative position at which leaf primordia are initiated in the apical meristem, and this effect is discussed in relation to theories of leaf initiation.  相似文献   

3.
Jan Marc  Wesley P. Hackett 《Planta》1991,185(2):171-178
The transition from spiral to distichous leaf arrangement during gibberellic-acid (GA3)-induced rejuvenation in Hedera was studied in detail by scanning electron microscopy of the shoot apical meristem. The transition, which involves the initiation of about 14 new leaf primordia, is accomplished by progressive increments in the divergence angle between the leaf primordia from an initial average value of 138.9 ° until it approaches 180 °. This process is preceded, as well as accompanied, by an increased radial displacement of young leaf primordia away from the apical meristem. Although the width of the leaf primordia also increases, this is unlikely to be a causal factor since it occurs only late in the transition. The size of the primordium-free area of the apical meristem is also unlikely to be involved. Quantitative analysis shows that the divergence angle of consecutive leaf primordia commonly fluctuates between relatively large and small values. Thus the transitional stages form a spirodistichous arrangement in which the divergence angle within each pair of leaves is large relative to that between leaf pairs. The stimulation of the radial displacement of the leaf primordia and the associated phyllotactic transition may involve GA3-induced modification in the spatial organization of cortical microtubules in the apical meristem and related changes in directional cell expansion.Abbreviations DA divergence angle - GA3 gibberellic acid We thank Mr. Gilbert Ahlstrand for his advice regarding scanning electron microscopy. This paper is contribution of the University of Minnesota Agricultural Experimental Station No. 18,726.  相似文献   

4.
Jan Marc  Wesley P. Hackett 《Planta》1992,186(4):503-510
The changes in the pattern of cell arrangement and surface topography at the shoot apical meristem of Hedera helix L., which occur during gibberellic acid (GA3)-induced transition from spiral to distichous phyllotaxis, were examined by scanning electron microscopy of rapidly frozen tissue. The technique preserves the original shape of the cells in their turgid state. It reveals distinct sets of radially oriented cell files, about four to eight cells wide, which extend from the central region of the meristem toward leaf primordia on the meristem flanks. In apices with spiral phyllotaxis, a new emerging primordium (0) appears as an acropetal bulge between the radial files adjacent to the third (3) and the second (2) older primordia. The bulging is associated with radial or oblique cell divisions while those located at the meristem flanks and in the radial files are oriented tangentially. As the displacement of existing primordia away from the central region increases following the GA3 treatment, radial and oblique divisions as well as acropetal bulging invade the radial files adjacent to the primordium 2; consequently the angular divergence of the emerging primordium from the youngest existing primordium (1) increases. In apices with distichous phyllotaxis, the earliest bulging appears on both sides of the radial files facing primordium 2, with a slight depression at the files. The radial files therefore correspond to regions of the meristem where acropetal bulging is generally delayed, although this effect apparently diminishes with increasing distance of existing primordia from the meristem center.Abbreviations GA3 gibberellic acid We thank Mr. Gilbert Ahlstrand, University of Minnesota, for his advice and assistance with the scanning electron microscopy. Contribution of the University of Minnesota Agricultural Experimental Station No. 19032.  相似文献   

5.
Leaf adaxial–abaxial polarity refers to the two leaf faces, which have different types of cells performing distinct biological functions. In 1951, Ian Sussex reported that when an incipient leaf primordium was surgically isolated by an incision across the vegetative shoot apical meristem (SAM), a radialized structure without an adaxial domain would form. This led to the proposal that a signal, now called the Sussex signal, is transported from the SAM to emerging primordia to direct leaf adaxial–abaxial patterning. It was recently proposed that instead of the Sussex signal, polar transport of the plant hormone auxin is critical in leaf polarity formation. However, how auxin polar transport functions in the process is unknown. Through live imaging, we established a profile of auxin polar transport in and around young leaf primordia. Here we show that auxin polar transport in lateral regions of an incipient primordium forms auxin convergence points. We demonstrated that blocking auxin polar transport in the lateral regions of the incipient primordium by incisions abolished the auxin convergence points and caused abaxialized leaves to form. The lateral incisions also blocked the formation of leaf middle domain and margins and disrupted expression of the middle domain/margin‐associated marker gene WUSCHEL‐RELATED HOMEOBOX 1 (SlWOX1). Based on these results we propose that the auxin convergence points are required for the formation of leaf middle domain and margins, and the functional middle domain and margins ensure leaf adaxial–abaxial polarity. How middle domain and margins function in the process is discussed.  相似文献   

6.
Photoperiodic floral induction in Xanthium, achieved by subjecting the plants to two long nights, is accompanied by a transient change of the phyllotaxis from the (2, 3) contact parastichy pattern of vegetative plants, to a (3, 5) pattern during the transition. To specify the phyllotaxis, two parameters were estimated from transverse sections of apical buds of control and treated plants: the divergence angle, α, and the plastochron ratio, a. The plastochron ratio decreased progressively during transition from the vegetative to the reproductive state of growth, from a = 1.48 initially to a = 1.15 six days after the beginning of induction. The divergence angle was not altered during the transition. This change in phyllotaxis is interpreted as a change in the relative positioning of leaf primordia on the transitional apex. This transient change appears to be identical with the previously described long-term change of the phyllotaxis of Xanthium brought about by treatment of plants with gibberellic acid.  相似文献   

7.
BACKGROUND: Plants produce leaf and flower primordia from a specialized tissue called the shoot apical meristem (SAM). Genetic studies have identified a large number of genes that affect various aspects of primordium development including positioning, growth, and differentiation. So far, however, a detailed understanding of the spatio-temporal sequence of events leading to primordium development has not been established. RESULTS: We use confocal imaging of green fluorescent protein (GFP) reporter genes in living plants to monitor the expression patterns of multiple proteins and genes involved in flower primordial developmental processes. By monitoring the expression and polarity of PINFORMED1 (PIN1), the auxin efflux facilitator, and the expression of the auxin-responsive reporter DR5, we reveal stereotypical PIN1 polarity changes which, together with auxin induction experiments, suggest that cycles of auxin build-up and depletion accompany, and may direct, different stages of primordium development. Imaging of multiple GFP-protein fusions shows that these dynamics also correlate with the specification of primordial boundary domains, organ polarity axes, and the sites of floral meristem initiation. CONCLUSIONS: These results provide new insight into auxin transport dynamics during primordial positioning and suggest a role for auxin transport in influencing primordial cell type.  相似文献   

8.
The current article presents the investigations into the effect of the laurina mutation on the functioning and size of the shoot apical meristem (SAM) in Coffea arabica. This monolocus and Mendelian mutation is known to have pleiotropic effects on tree shape and dwarfism. A comparison between the wild type C. arabica var. Bourbon and its natural dwarf mutant C. arabica var. laurina, also called Bourbon pointu, was carried out leading to three main results: (1) the effects appeared immediately after the emergence of the buttress but did not affect the dome-shaped SAM (size and shape); (2) the effects were located at the peripheral zone and maintained subsequently within the leaf primordia; (3) the effects consisted of reduction in both the size of primordia and the height of incipient internode, consequently resulting in dwarfism of mature leaves and internodes. By contrast, the laurina mutation had no effect on the relationship between the phyllochron and the plastochron, the decussate and opposite phyllotaxis, and the relative timing of SAM functioning within the plastochron.  相似文献   

9.
A class of divergence angles φG of phyllotaxis is defined that distribute leaves about the stem of a plant in a more uniform manner than do nearby angles. A theorem of Swierczkowski concerning the intervals between adjacent points placed on a circle according to the divergence angle 137·5° is generalized to include the other angles encountered in phyllotaxis. These angles are characterized by having continued fraction expansions containing no intermediate fractions after a finite number of terms. This criterion is shown to be sufficient for uniform spacing of leaves.A morphogen concentration field established by the leaves acting as sources is determined principally by :he geometrical spacing of the leaves and hence by their divergence angle. It is shown that the mean square of such a concentration field, is a relative minimum if the leaves are positioned by means of one of the φG. Thornley's dynamic scheme for determining the phyllotaxis divergence angles by positioning a new leaf at the minimum of the concentration field of previously placed leaves is also shown to be related to the spacing properties of the φG.  相似文献   

10.
Plants exhibit life-long organogenic and histogenic activity in a specialised organ, the shoot apical meristem. Leaves and flowers are formed within the ring-shaped peripheral zone, which surrounds the central zone, the site of the stem cells. We have undertaken a series of high-precision laser ablation and microsurgical tissue removal experiments to test the functions of different parts of the tomato meristem, and to reveal their interactions. Ablation of the central zone led to ectopic expression of the WUSCHEL gene at the periphery, followed by the establishment of a new meristem centre. After the ablation of the central zone, organ formation continued without a lag. Thus, the central zone does not participate in organogenesis, except as the ultimate source of founder cells. Microsurgical removal of the external L(1) layer induced periclinal cell divisions and terminal differentiation in the subtending layers. In addition, no organs were initiated in areas devoid of L(1), demonstrating an important role of the L(1) in organogenesis. L(1) ablation had only local effects, an observation that is difficult to reconcile with phyllotaxis theories that invoke physical tension operating within the meristem as a whole. Finally, regeneration of L(1) cells was never observed after ablation. This shows that while the zones of the meristem show a remarkable capacity to regenerate after interference, elimination of the L(1) layer is irreparable and causes terminal differentiation.  相似文献   

11.
Leaves originate from the shoot apical meristem, a small mound of undifferentiated tissue at the tip of the stem. Leaf formation begins with the selection of a group of founder cells in the so-called peripheral zone at the flank of the meristem, followed by the initiation of local growth and finally morphogenesis of the resulting bulge into a differentiated leaf. Whereas the mechanisms controlling the switch between meristem propagation and leaf initiation are being identified by genetic and molecular analyses, the radial positioning of leaves, known as phyllotaxis, remains poorly understood. Hormones, especially auxin and gibberellin, are known to influence phyllotaxis, but their specific role in the determination of organ position is not clear. We show that inhibition of polar auxin transport blocks leaf formation at the vegetative tomato meristem, resulting in pinlike naked stems with an intact meristem at the tip. Microapplication of the natural auxin indole-3-acetic acid (IAA) to the apex of such pins restores leaf formation. Similarly, exogenous IAA induces flower formation on Arabidopsis pin-formed1-1 inflorescence apices, which are blocked in flower formation because of a mutation in a putative auxin transport protein. Our results show that auxin is required for and sufficient to induce organogenesis both in the vegetative tomato meristem and in the Arabidopsis inflorescence meristem. In this study, organogenesis always strictly coincided with the site of IAA application in the radial dimension, whereas in the apical-basal dimension, organ formation always occurred at a fixed distance from the summit of the meristem. We propose that auxin determines the radial position and the size of lateral organs but not the apical-basal position or the identity of the induced structures.  相似文献   

12.
LYNDON  R. F. 《Annals of botany》1979,43(5):553-558
Modified proliferous flowers arose spontaneously in a smallproportion of plants of Silene coeli-rosa growing in gardenplots. The modified flowers consisted of leaves, arranged spirallywith a mean divergence angle of 138.4° instead of the pentamerousarrangement of the normal flower, and sometimes also carpelswhich ranged from open structures with exposed ovules to follicle-likestructures, free or fused, to fully fused carpels with free-centralplacentation. In the modified flowers petals and stamens werenot formed. The primordia at initiation were intermediate insize (relative to the apical dome) between normal leaf and normalsepal primordia but were the same absolute size as the latter.The structure of these anomalous flowers is discussed in relationto the normal flowering process. Silene coeli-rosa, flowering, phyllotaxis  相似文献   

13.
叶发育的遗传调控机理研究进展   总被引:1,自引:0,他引:1  
叶是植物进行光合作用的主要器官。高等植物叶原基起始于顶端分生组织的周边区,在一系列基因精确调控下,叶原基建立近一远轴、基一顶轴和中.侧轴极性,引导原基细胞朝着特定的方向分裂和分化,最终发育戍一定形态和大小的叶片。近年来分子遗传学研究结果表明,数个转录因子家族基因、小分子RNA和细胞增殖相关因子组成一个复杂的遗传控制网络,调节叶片极性建成过程。此外,复叶的形态建成还受到另外一些转录因子的调控。本文对近年来叶发育遗传调控机理研究的新进展做简要介绍。  相似文献   

14.
LYNDON  R. F. 《Annals of botany》1978,42(6):1349-1360
The measured divergence angles between successive primordiain the developing flower were compared with angles expectedon several hypotheses concerning primordial initiation. Theresults lead to the conclusion that the position and sequenceof initiation of the younger sepals is determined by the olderones but that the influence of an older primordium lasts foronly two plastochrons. The petals and carpels are apparentlypositioned by the sepals. The positions of the stamens are consistentwith their king determined by the sepals (antesepalous stamens)or petals (antepctalous stamens), but their sequence of initiationis consistent with its being determined, like the sepals, bythe two youngest primordia. The data indicate that there aretwo sets of factors governing the initiation of the primordiasubsequent to the sepals: one governing the positioning of theprimordia and resembling the factors governing the positionsof axillary buds, and the other governing the sequence of primordiaand resembling the factors which determine the initiation ofleaves. Measurements of the plastochron ratios were used tocalculate the sizes of the sepal, petal and stamen primordiaat initiation. At the moment of initiation the sepal primordiawere about one third, and the petal and stamen primordia aboutone sixth, of the size of the leaf primordia. In its early developmentthe Silene flower therefore resembles a condensed leafy shootwith precocious axillary buds but with primordia which are smallcompared to leaf primordia. Silene coeli-rosa, flower development, primordia, phyllotaxis  相似文献   

15.
An intriguing phenomenon in plant development is the timing and positioning of lateral organ initiation, which is a fundamental aspect of plant architecture. Although important progress has been made in elucidating the role of auxin transport in the vegetative shoot to explain the phyllotaxis of leaf formation in a spiral fashion, a model study of the role of auxin transport in whorled organ patterning in the expanding floral meristem is not available yet. We present an initial simulation approach to study the mechanisms that are expected to play an important role. Starting point is a confocal imaging study of Arabidopsis floral meristems at consecutive time points during flower development. These images reveal auxin accumulation patterns at the positions of the organs, which strongly suggests that the role of auxin in the floral meristem is similar to the role it plays in the shoot apical meristem. This is the basis for a simulation study of auxin transport through a growing floral meristem, which may answer the question whether auxin transport can in itself be responsible for the typical whorled floral pattern. We combined a cellular growth model for the meristem with a polar auxin transport model. The model predicts that sepals are initiated by auxin maxima arising early during meristem outgrowth. These form a pre-pattern relative to which a series of smaller auxin maxima are positioned, which partially overlap with the anlagen of petals, stamens, and carpels. We adjusted the model parameters corresponding to properties of floral mutants and found that the model predictions agree with the observed mutant patterns. The predicted timing of the primordia outgrowth and the timing and positioning of the sepal primordia show remarkable similarities with a developing flower in nature.  相似文献   

16.
Wang JW  Schwab R  Czech B  Mica E  Weigel D 《The Plant cell》2008,20(5):1231-1243
Leaves of flowering plants are produced from the shoot apical meristem at regular intervals, with the time that elapses between the formation of two successive leaf primordia defining the plastochron. We have identified two genetic axes affecting plastochron length in Arabidopsis thaliana. One involves microRNA156 (miR156), which targets a series of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes. In situ hybridization studies and misexpression experiments demonstrate that miR156 is a quantitative, rather than spatial, modulator of SPL expression in leaf primordia and that SPL activity nonautonomously inhibits initiation of new leaves at the shoot apical meristem. The second axis is exemplified by a redundantly acting pair of cytochrome P450 genes, CYP78A5/KLUH and CYP78A7, which are likely orthologs of PLASTOCHRON1 of rice (Oryza sativa). Inactivation of CYP78A5, which is expressed at the periphery of the shoot apical meristem, accelerates the leaf initiation rate, whereas cyp78a5 cyp78a7 double mutants often die as embryos with supernumerary cotyledon primordia. The effects of both miR156-targeted SPL genes and CYP78A5 on organ size are correlated with changes in plastochron length, suggesting a potential compensatory mechanism that links the rate at which leaves are produced to final leaf size.  相似文献   

17.
18.
Xu L  Xu Y  Dong A  Sun Y  Pi L  Xu Y  Huang H 《Development (Cambridge, England)》2003,130(17):4097-4107
The shoot apical meristem (SAM) of seed plants is the site at which lateral organs are formed. Once organ primordia initiate from the SAM, they establish polarity along the adaxial-abaxial, proximodistal and mediolateral axes. Among these three axes, the adaxial-abaxial polarity is of primary importance in leaf patterning. In leaf development, once the adaxial-abaxial axis is established within leaf primordia, it provides cues for proper lamina growth and asymmetric development. It was reported previously that the Arabidopsis ASYMMETRIC LEAVES1 (AS1) and ASYMMETRIC LEAVES2 (AS2) genes are two key regulators of leaf polarity. In this work, we demonstrate a new function of the AS1 and AS2 genes in the establishment of adaxial-abaxial polarity by analyzing as1 and as2 alleles in the Landsberg erecta (Ler) genetic background. We provide genetic evidence that the Arabidopsis ERECTA (ER) gene is involved in the AS1-AS2 pathway to promote leaf adaxial fate. In addition, we show that AS1 and AS2 bind to each other, suggesting that AS1 and AS2 may form a complex that regulates the establishment of leaf polarity. We also report the effects on leaf polarity of overexpression of the AS1 or AS2 genes under the control of the cauliflower mosaic virus (CAMV) 35S promoter. Although plants with as1 and as2 mutations have very similar phenotypes, 35S::AS1/Ler and 35S::AS2/Ler transgenic plants showed dramatically different morphologies. A possible model of the AS1, AS2 and ER action in leaf polarity formation is discussed.  相似文献   

19.
Observations on shoot apices of Dryopteris aristata maintainedunder conditions of progressive starvation for periods of upto a year are recorded. Changes in the size of the shoot apexand leaf primordia, in the rates of inception and developmentof leaf primordia, and in phyllotaxis, are described and discussed.  相似文献   

20.
Expansins are extracellular proteins that increase plant cell wall extensibility in vitro and are thought to be involved in cell expansion. We showed in a previous study that administration of an exogenous expansin protein can trigger the initiation of leaflike structures on the shoot apical meristem of tomato. Here, we studied the expression patterns of two tomato expansin genes, LeExp2 and LeExp18. LeExp2 is preferentially expressed in expanding tissues, whereas LeExp18 is expressed preferentially in tissues with meristematic activity. In situ hybridization experiments showed that LeExp18 expression is elevated in a group of cells, called I1, which is the site of incipient leaf primordium initiation. Thus, LeExp18 expression is a molecular marker for leaf initiation, predicting the site of primordium formation at a time before histological changes can be detected. We propose a model for the regulation of phyllotaxis that postulates a crucial role for expansin in leaf primordium initiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号