首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ADP-ribosyl cyclase, which catalyzes the conversion from NAD+ to cyclic adenosine diphosphoribose (cADPR), is proposed to participate in cell cycle regulation in Euglena gracilis. This enzyme, which was found as a membrane-bound protein, was purified almost the homogeneity after solubilization with deoxycholate, and found to be a monomeric protein with a molecular mass of 40 kDa. Its Km value for NAD+ was estimated to be 0.4 mM, and cADPR, a product of the enzyme, inhibited the enzyme competitively with respect to NAD+ whereas another product, nicotinamide, showed noncompetitive (mixed-type) inhibition. In contrast to mammalian CD38 and BST-1, Euglena ADP-ribosyl cyclase lacked cADPR hydrolase activity.  相似文献   

2.
A simple three-step method was established for the purification of NAD(P)H dehydrogenase (quinone) ('DT-diaphorase', EC 1.6.99.2) from rat liver by affinity chromatography with a recovery of above 50%. The final enzyme preparation was purified about 750-fold and was electrophoretically homogeneous. Gel filtration showed that the enzyme had a mol.wt. of about 55 000, and one molecule of FAD was found per 55 000 mol.wt. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis gave a mol.wt. of about 27 000. Two N-terminal amino acids, asparagine/aspartic acid and glutamine/glutamic acid, were found in about equal yield, suggesting the presence of two non-identical polypeptide chains in the enzyme. NAD(P)H dehydrogenase was selectively removed by this affinity-chromatographic method from a microsomal carboxylation system. The system, which was solubilized by detergent and is dependent on vitamin K (2-methyl-3-phytyl-1,4-naphthaquinone or analogues with other side chains), lost its activity on the removal of the enzyme. The activity can be completely restored to the system by adding purified cytoplasmic NAD(P)H dehydrogenase or by using the quinol form of vitamin K1 (2-methyl-3-phytyl-1,4-naphthaquinol).  相似文献   

3.
Euglena aquacobalamin reductase (NADPH: EC 1.6.99.-) was purified, and its subcellular distribution was studied to elucidate the mechanism of the conversion of hydroxocobalamin to 5'-deoxyadenosylcobalamin. The enzyme was found in the mitochondria. It was purified about 150-fold over the Euglena mitochondrial extract in a yield of 38%. The purified enzyme was homogeneous in polyacrylamide gel electrophoresis. Spectra of the purified enzyme showed that it was a flavoprotein. The molecular weight of the enzyme was calculated to be 66,000 by Sephadex G-100 gel filtration and 65,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme was specific to NADPH with an apparent Km of 43 microM and to hydroxocobalamin with an apparent Km of 55 microM. The enzyme did not require FAD or FMN as a cofactor. The optimum pH and temperature were 7.0 and 40 degrees C, respectively.  相似文献   

4.
5.
6.
Acyl carrier protein (ACP) was purified from Euglena gracilis variety bacillaris in yields of about 1 mg/100 g (wet wt) of cells. Antibodies against the purified protein were raised in hens and isolated from eggs. Antibodies raised against Euglena ACP inhibited the Euglena chloroplast nonaggregated fatty acid synthetase using either Euglena or Escherichia coli ACP as a substrate. Comparisons with other ACPs included the following items: biologic activity, acidic pI, size, behavior in size exclusion media, and amino acid sequence of the N-terminal portion of the molecule.  相似文献   

7.
The chloroplast protein synthesis elongation factor Tu (EF-Tuchl) has been purified to near homogeneity from Euglena gracilis. Chromatography of the postribosomal supernatant of light-induced Euglena on DEAE-Sephadex reveals two forms of EF-Tuchl. Further purification has shown that one species consists of a complex between EF-Tuchl and a factor that stimulates its activity. The other species consists of free EF-TUchl. The factor has been purified from both chromatographic forms by taking advantage of the molecular weight shift that occurs upon disruption of the complex between EF-Tuchl and the stimulatory factor. EF-Tuchl consists of a single polypeptide chain with a molecular weight of about 50,000. EF-Tuchl is as active on Escherichia coli ribosomes as it is on its homologous ribosomes but displays no detectable activity on eukaryotic cytoplasmic ribosomes. It is stimulated in polymerization by E. coli EF-Ts and will form a complex with the prokaryotic factor that can be isolated by gel filtration chromatography. Like E. coli EF-Tu, it is sensitive to modification by N-ethylmaleimide and is inhibited by the antibiotic kirromycin. Thus, the chloroplast factor has many features that reflect the close relationship between prokaryotic and chloroplast translational systems.  相似文献   

8.
Two forms of a histone H1-specific S-adenosylmethionine:protein-lysine N-methyltransferase (protein methylase III) have been purified from Euglena gracilis 48- and 214-fold, respectively, with yields of 3.4 and 4.6%. The enzymes were purified on DEAE-cellulose and histone-Sepharose affinity chromatography and found to be highly specific toward histone H1 as a substrate. However, one of the enzymes also methylates other histone subfractions to a limited extent. Of the proteins other than histones, only myosin showed measurable methyl-accepting capability. Both enzymes were found to be inhibited by S-adenosylhomocysteine (D and L forms), S-adenosyl-L-ethionine, and sinefungin. While the Ki values for S-adenosyl-L-ethionine were similar for both enzymes, the values for S-adenosyl-L-homocysteine and sinefungin were 10-fold lower for the second form. The Km values for histone H1 and S-adenosyl-L-methionine were found to be 3.1 X 10(-7) and 2.7 X 10(-5) M, respectively, for the first enzyme, and 4.4 X 10(-7) and 3.45 X 10(-5) M for the second. Peptide analysis of methyl-14C-labeled H1 revealed that the two enzymes methylate different sites within the histone H1 molecule. The two enzymes were found to have molecular weights of 55,000 and 34,000, respectively. Both enzymes have an optimum pH of 9.0, which is identical to that of other protein-lysine N-methyltransferases thus far identified.  相似文献   

9.
The arom multienzyme complex that catalyzes steps two through six in the prechorismate polyaromatic amino acid biosynthetic pathway has been purified up to 2000-fold from Euglena gracilis. The native arom aggregate has a molecular weight of approx. 249 000 based on a sedimentation coefficient of 9.5 and Stokes radius of 60 angstrom. A comparison between the arom aggregates of Neurospora crassa and Euglena gracilis and the possible phylogenetic relationships between the organisms are discussed.  相似文献   

10.
Euglena gracilis chloroplast valyl-tRNA synthetase was purified 990 fold to a specific activity of about 1100 units/mg protein, by a series of steps including ammonium sulfate precipitation and chromatography on hydroxyapatite, DEAE-cellulose, Blue Dextran — Sepharose and Sephadex G200. The enzyme gives a single band upon polyacrylamide gel electrophoresis, appears to be a monomer with a molecular weight of 126,000 daltons and has Km values of 1.5 × 10?5 M for L-valine, 5 × 10?5 M for ATP, and 6 × 10?8 for tRNAVal.  相似文献   

11.
Isocitrate lyase was purified to homogeneity from ethanol-grown Euglena gracilis. The specific activity was 0.26 μmol/min/mg protein. The molecular mass of the enzyme was calculated to be 380 kDa by gel filtration on a Superose 6 column. The subunit molecular mass of the enzyme was 116 kDa as determined by SDS-polyacrylamide gel electrophoresis. These results showed that the native form of this enzyme was a trimer composed of three identical subunits. The pH optimum for cleavage and condensation reactions was 6.5 and 7.0, respectively. The Km values for isocitrate, glyoxylate and succinate were 3.8, 1.3 and 7.7 mM, respectively. Isocitrate lyase absolutely required Mg for enzymatic activity. This is the first report of the purification of isocitrate lyase to homogeneity from Euglena gracilis.  相似文献   

12.
Pyruvate:NADP+ oxidoreductase was homogeneously purified from crude extract of Euglena gracilis. The Mr of the enzyme was estimated to be 309,000 by gel filtration. The enzyme migrated as a single protein band with Mr of 166,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, suggesting that the enzyme consists of two identical polypeptides. The absorption spectrum of the native enzyme exhibited maxima at 278, 380, and 430 nm, and a broad shoulder was observed around 480 nm; the maximum at 430 nm was eliminated by reduction of the enzyme with dithionite. Reduction of the enzyme with pyruvate and CoA and reoxidation with NADP+ were proved from changes of absorption spectra. The enzyme contained 2 molecules of FAD and 8 molecules of iron. It was also indicated that the enzyme was thiamine pyrophosphate-dependent. The enzyme was oxygen-sensitive, and the reaction was affected by the presence of oxygen. Pyruvate was the most active substrate, but the enzyme was slightly active for 2-oxobutyrate, 3-hydroxypyruvate, and oxalacetate, but not for glyoxylate and 2-oxoglutarate. The native electron acceptor was NADP+, whereas NAD+ was completely inactive. Methyl viologen, benzyl viologen, FAD, and FMN were utilized as artificial electron acceptors, whereas spinach and Clostridium ferredoxins were inactive. Pyruvate synthesis by reductive carboxylation of acetyl-CoA with NADPH as the electron donor occurred by the reverse reaction of the enzyme. The enzyme also catalyzed a pyruvate-CO2 exchange reaction and electron-transfer reaction from NADPH to other electron acceptors like methyl viologen. These results indicate that pyruvate:NADP+ oxidoreductase in E. gracilis is clearly distinct from either the pyruvate dehydrogenase multienzyme complex or pyruvate:ferredoxin oxidoreductase.  相似文献   

13.
NAD+-dependent and NADP+-dependent glyceraldehyde-3-phosphate (G-3-P) dehydrogenases were isolated from Euglena gracilis and characterized as to their physical and chemical parameters. NAD+-G-3-P dehydrogenase was found to have a strong resemblance to similar enzymes from muscle tissue. It has a molecular weight of about 140,000, four subunits of identical size and charge, and a single species of NH2-terminal amino acid. Two sulfhydryl groups per subunit are present, one of which is directly involved in the catalytic activity and is rapidly titratable. The enzyme also exhibits the “half the sites reactivity” of sulfhydryl groups as defined by O. P. Malhotra and S. A. Bernhard ((1968) J. Biol. Chem. 243, 1243). The pH and temperature optima are also similar to those of the enzymes from muscle tissue, as are the reaction kinetics and the strict specificity for NAD+.NADP+-dependent G-3-P dehydrogenase is different in many respects. Its molecular weight is slightly lower (~136,000) than that of the NAD+ enzyme, though it also consists of four subunits. It has a higher affinity for the reverse reaction substrates, in line with its probable function in vivo in CO2 fixation. There is only one sulfhydryl group per subunit, and that is not involved in activity, suggesting a difference in reaction mechanisms between the two enzymes. The NADP+-dependent enzyme exhibits activation by ATP, whereas the NAD+-dependent enzyme is competitively inhibited by this nucleotide.The greatest difference observed is in the physical characteristics of the enzymes. NADP+-G-3-P dehydrogenase was highly hydrophobic. Its solubility in a 10% aqueous solution of p-dioxane was approximately four to five times that of the NAD+-enzyme. Isolation of the enzyme was accomplished by fractionation in 1,2-dimethoxyethane, which also stabilized the enzymatic activity, as did aqueous p-dioxane. The high axial ratio of the NADP+-enzyme (~9) coupled with its very low degree of hydration as well as the high degree of amidation of the dicarboxylic amino acids (>90%) indicates that the exterior of the enzyme molecule is probably hydrophobic in nature. This is in agreement with its in vivo hydrophobic environment in the chloroplast membrane and explains the lability of the enzyme once extracted into an aqueous environment as well as its stabilization in solvents.  相似文献   

14.
Methionine adenosyltransferase from Euglena gracilis (MATX) is a recently discovered member of the MAT family of proteins that synthesize S-adenosylmethionine. Heterologous overexpression of MATX in Escherichia coli rendered the protein mostly in inclusion bodies under all conditions tested. Therefore, a refolding and purification procedure from these aggregates was developed to characterize the enzyme. Maximal recovery was obtained using inclusion bodies devoid of extraneous proteins by washing under mild urea (2M) and detergent (5%) concentrations. Refolding was achieved in two steps following solubilization in the presence of Mg(2+); chaotrope dilution to <1M and dialysis under reducing conditions. Purified MATX is a homodimer that exhibits Michaelis kinetics with a V(max) of 1.46 μmol/min/mg and K(m) values of approximately 85 and 260 μM for methionine and ATP, respectively. The activity is dependent on Mg(2+) and K(+) ions, but is not stimulated by dimethylsulfoxide. MATX exhibits tripolyphosphatase activity that is stimulated in the presence of S-adenosylmethionine. Far-UV circular dichroism revealed β-sheet and random coil as the main secondary structure elements of the protein. The high level of sequence conservation allowed construction of a structural model that preserved the main features of the MAT family, the major changes involving the N-terminal domain.  相似文献   

15.
Euglena gracilis chloroplast leucyl-tRNA synthetase was purified to homogeneity by a series of steps including ammonium sulfate precipitation and chromatography on hydroxylapatite, DEAE-cellulose, Sepharose 6B, phosphocellulose, and Blue Dextran-Sepharose. The purified enzyme exhibits a specific activity of 1233 units/mg of protein, which is one of the highest specific activities obtained for an aminoacyl-tRNA synthetase prepared from plant cells. The enzyme has an apparent Km value of 8 x 10(-6) M for L-leucine, 1.3 x 10(-4) M for ATP, and 1.3 x 10(-6) M for tRNALeu. Chloroplast leucyl-tRNA synthetase appears to be a monomeric enzyme with a molecular weight of 100 000. The amino acid composition of chloroplast leucyl-tRNA synthetase has been determined. It is the first reported for a chloroplast aminoacyl-tRNA synthetase, and it reveals a relatively large proportion of apolar residues, as in the case of prokaryotic aminoacyl-tRNA synthetases.  相似文献   

16.
17.
18.
The chloroplast translational initiation factor 3 (IF-3chl) has been purified by a combination of gravity and high pressure liquid chromatographic steps. IF-3chl activity has been resolved into three forms designated alpha, beta, and gamma. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that the alpha form corresponds to a single polypeptide with a molecular mass of approximately 34 kDa. The beta and gamma forms have been purified to near homogeneity, and both forms appear to function as monomers with molecular masses of about 39-42 kDa. All three forms are heat stable. All the forms of IF-3chl detected enhance the poly (A,U,G)-dependent binding of the initiator tRNA to chloroplast 30 S ribosomal subunits in the presence of Escherichia coli IF-1 and IF-2. The chloroplast factor, unlike the corresponding bacterial factor, does not have a strong RNA binding activity.  相似文献   

19.
The nuclease described by Carell, E.F., Egan, J.M. and Pratt, E.A. [Arch. Biochem. Biophys. (1970) 138, 26-31] has been purified 1000-fold from Euglena gracilis strain Z. The enzyme catalyzes the hydrolysis of both polyribonucleotides and polydeoxyribonucleotides. The relative rates of hydrolysis of synthetic and natural polynucleotides was found to be: poly (U) 100, poly (dT) 33, denatured calf-thymus DNA 33, yeast tRNA 9, E. coli total RNA 6, poly (dA dT) 5, poly (A) less than 1, poly (C) less than .05, and poly (G) less than .05. The enzyme attacks polynucleotides in an endonucleolytic fashion, yielding products terminated with a 3'-phosphate. Poly (U) appears to be hydrolyzed completely to 3'-UMP; both RNA and DNA appear to have some phosphodiester bonds resistant to enzyme catalyzed hydrolysis. Because of its mode of action and its inducibility by light, we propose the name endonuclease L for this enzyme.  相似文献   

20.
Synthesis and turnover of Euglena gracilis mitochondrial DNA   总被引:3,自引:0,他引:3  
Replication of mitochondrial DNA was investigated by a density transfer experiment in a strain of Euglena gracilis lacking chloroplast DNA. DNA was uniformly labeled in a medium containing 32P-labeled inorganic phosphate and [3H]adenine in the presence of the heavy-density label and transferred to a medium containing 32P-labeled inorganic phosphate but no [3H]adenine following removal of the heavy-density label. Replication of nuclear DNA within these cells was used as an internal control. The densities and ratios of the peaks of nuclear DNA were those expected for a strict semiconservative replication. In contrast, replication of mitochondrial DNA was dispersive, as illustrated by the following results: (1) both native and denatured mitochondrial DNA exhibited a single density peak at 1.1 and 2.2 cell doublings after the density transfer. (2) The specific activity of 3H-labeled DNA varied across the peak of native or denatured DNA, indicating a heterogeneous population of molecules exhibiting different degrees of density and radioisotope labeling. This dispersive replication could involve either multiple recombination events or extensive turnover of the DNA or a mixture of both. Extensive dispersion of the sample obtained at 1.1 cell doublings after the density transfer is shown by the persistence of the same peak density for duplex DNA reduced to a molecular weight of 6 × 105 by shearing.Two measures of the rate of replication of mitochondrial DNA were obtained from the densities of native duplex DNA and the rate of decrease in 3H-specific activities of duplex DNA during the experiment. The average of these rates indicates that mitochondrial DNA replicates at least 1.5 times as fast as nuclear DNA. Since there is a constant ratio of mitochondrial DNA:nuclear DNA in a logarithmic culture, mitochondrial DNA was calculated to have a half-life of 1.8 cell doublings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号