首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Channel-kinase TRPM7/ChaK1 is a member of a recently discovered family of protein kinases called alpha-kinases that display no sequence homology to conventional protein kinases. It is an unusual bifunctional protein that contains an alpha-kinase domain fused to an ion channel. The TRPM7/ChaK1 channel has been characterized using electrophysiological techniques, and recent evidence suggests that it may play a key role in the regulation of magnesium homeostasis. However, little is known about its protein kinase activity. To characterize the kinase activity of TRPM7/ChaK1, we expressed the kinase catalytic domain in bacteria. ChaK1-cat is able to undergo autophosphorylation and to phosphorylate myelin basic protein and histone H3 on serine and threonine residues. The kinase is specific for ATP and cannot use GTP as a substrate. ChaK1-cat is insensitive to staurosporine (up to 0.1 mM) but can be inhibited by rottlerin. Because the kinase domain is physically linked to an ion channel, we investigated the effect of ions on ChaK1-cat activity. The kinase requires Mg(2+) (optimum at 4-10 mM) or Mn(2+) (optimum at 3-5 mM), with activity in the presence of Mn(2+) being 2 orders of magnitude higher than in the presence of Mg(2+). Zn(2+) and Co(2+) inhibited ChaK1-cat kinase activity. Ca(2+) at concentrations up to 1 mM did not affect kinase activity. Considering intracellular ion concentrations, our results suggest that, among divalent metal ions, only Mg(2+) can directly modulate TRPM7/ChaK1 kinase activity in vivo.  相似文献   

2.
The identity of the physiological metal cofactor for human methionine aminopeptidase-2 (MetAP2) has not been established. To examine this question, we first investigated the effect of eight divalent metal ions, including Ca(2+), Co(2+), Cu(2+), Fe(2+), Mg(2+), Mn(2+), Ni(2+), and Zn(2+), on recombinant human methionine aminopeptidase apoenzymes in releasing N-terminal methionine from three peptide substrates: MAS, MGAQFSKT, and (3)H-MASK(biotin)G. The activity of MetAP2 on either MAS or MGAQFSKT was enhanced 15-25-fold by Co(2+) or Mn(2+) metal ions in a broad concentration range (1-1000 microM). In the presence of reduced glutathione to mimic the cellular environment, Co(2+) and Mn(2+) were also the best stimulators (approximately 30-fold) for MetAP2 enzyme activity. To determine which metal ion is physiologically relevant, we then tested inhibition of intracellular MetAP2 with synthetic inhibitors selective for MetAP2 with different metal cofactors. A-310840 below 10 microM did not inhibit the activity of MetAP2-Mn(2+) but was very potent against MetAP2 with other metal ions including Co(2+), Fe(2+), Ni(2+), and Zn(2+) in the in vitro enzyme assays. In contrast, A-311263 inhibited MetAP2 with Mn(2+), as well as Co(2+), Fe(2+), Ni(2+), and Zn(2+). In cell culture assays, A-310840 did not inhibit intracellular MetAP2 enzyme activity and did not inhibit cell proliferation despite its ability to permeate and accumulate in cytosol, while A-311263 inhibited both intracellular MetAP2 and proliferation in a similar concentration range, indicating cellular MetAP2 is functioning as a manganese enzyme but not as a cobalt, zinc, iron, or nickel enzyme. We conclude that MetAP2 is a manganese enzyme and that therapeutic MetAP2 inhibitors should inhibit MetAP2-Mn(2+).  相似文献   

3.
TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions   总被引:18,自引:0,他引:18  
Trace metal ions such as Zn(2+), Fe(2+), Cu(2+), Mn(2+), and Co(2+) are required cofactors for many essential cellular enzymes, yet little is known about the mechanisms through which they enter into cells. We have shown previously that the widely expressed ion channel TRPM7 (LTRPC7, ChaK1, TRP-PLIK) functions as a Ca(2+)- and Mg(2+)-permeable cation channel, whose activity is regulated by intracellular Mg(2+) and Mg(2+).ATP and have designated native TRPM7-mediated currents as magnesium-nucleotide-regulated metal ion currents (MagNuM). Here we report that heterologously overexpressed TRPM7 in HEK-293 cells conducts a range of essential and toxic divalent metal ions with strong preference for Zn(2+) and Ni(2+), which both permeate TRPM7 up to four times better than Ca(2+). Similarly, native MagNuM currents are also able to support Zn(2+) entry. Furthermore, TRPM7 allows other essential metals such as Mn(2+) and Co(2+) to permeate, and permits significant entry of nonphysiologic or toxic metals such as Cd(2+), Ba(2+), and Sr(2+). Equimolar replacement studies substituting 10 mM Ca(2+) with the respective divalent ions reveal a unique permeation profile for TRPM7 with a permeability sequence of Zn(2+) approximately Ni(2+) > Ba(2+) > Co(2+) > Mg(2+) >/= Mn(2+) >/= Sr(2+) >/= Cd(2+) >/= Ca(2+), while trivalent ions such as La(3+) and Gd(3+) are not measurably permeable. With the exception of Mg(2+), which exerts strong negative feedback from the intracellular side of the pore, this sequence is faithfully maintained when isotonic solutions of these divalent cations are used. Fura-2 quenching experiments with Mn(2+), Co(2+), or Ni(2+) suggest that these can be transported by TRPM7 in the presence of physiological levels of Ca(2+) and Mg(2+), suggesting that TRPM7 represents a novel ion-channel mechanism for cellular metal ion entry into vertebrate cells.  相似文献   

4.
5.
The photoreceptor cGMP phosphodiesterase (PDE6) plays a key role in vertebrate vision, but its enzymatic mechanism and the roles of metal ion co-factors have yet to be determined. We have determined the amount of endogenous Zn(2+) in rod PDE6 and established a requirement for tightly bound Zn(2+) in catalysis. Purified PDE6 contained 3-4-g atoms of zinc/mole, consistent with an initial content of two tightly bound Zn(2+)/catalytic subunit. PDE with only tightly bound Zn(2+) and no free metal ions was inactive, but activity was fully restored by Mg(2+), Mn(2+), Co(2+), or Zn(2+). Mn(2+), Co(2+), and Zn(2+) also induced aggregation and inactivation at higher concentrations and longer times. Removal of 93% of the tightly bound Zn(2+) by treatment with dipicolinic acid and EDTA at pH 6.0 resulted in almost complete loss of activity in the presence of Mg(2+). This activity loss was blocked almost completely by Zn(2+), less potently by Co(2+) and almost not at all by Mg(2+), Mn(2+), or Cu(2+). The lost activity was restored by the addition of Zn(2+), but Co(2+) restored only 13% as much activity, and other metals even less. Thus tightly bound Zn(2+) is required for catalysis but could also play a role in stabilizing the structure of PDE6, whereas distinct sites where Zn(2+) is rapidly exchanged are likely occupied by Mg(2+) under physiological conditions.  相似文献   

6.
The kinetic effects of the binding of various metal ions (Ca(2+), Cd(2+), Co(2+), Mg(2+), Mn(2+), Sr(2+) and Zn(2+)) to apo bovine alpha-lactalbumin has been monitored by means of stopped-flow fluorescence spectroscopy. Our results show that the measured rate constant for the binding of metal ions to the Ca(2+)-site increases with increasing binding constant. This is, however, not the case for metal ions binding to the Zn(2+)-site. The binding experiments performed at different temperatures allowed us to calculate the activation energy for the transition from the metal-free to the metal-loaded state of the protein. These values do not depend on the nature of the metal ion but are correlated with the type of binding site. As a result, we were able to demonstrate that Mg(2+), a metal ion which was thought to bind to the Ca(2+)-site, shows the same binding characteristics as Co(2+) and Zn(2+) and therefore most likely interacts with the residues belonging to the Zn(2+)-binding site.  相似文献   

7.
MST3 is a member of the sterile-20 protein kinase family with a unique preference for manganese ion as a cofactor in vitro; however, its biological function is largely unknown. Suppression of endogenous MST3 by small interference RNA enhanced cellular migration in MCF-7 cells with reduced expression of E-cadherin at the edge of migrating cells. The alteration of cellular migration and protruding can be rescued by RNA interference-resistant MST3. The expression of surface integrin and Golgi apparatus was not altered, but phosphorylation on tyrosine 118 and tyrosine 31 of paxillin was attenuated by MST3 small interfering RNA (siRNA). Threonine 178 was determined to be one of the two main autophosphorylation sites of MST3 in vitro. Mutant T178A MST3, containing alanine instead of threonine at codon 178, lost autophosphorylation and kinase activities. Overexpression of wild type MST3, but not the T178A mutant MST3, inhibited migration and spreading in Madin-Darby canine kidney cells. MST3 could phosphorylate the protein-tyrosine phosphatase (PTP)-PEST and inhibit the tyrosine phosphatase activity of PTP-PEST. We conclude that MST3 inhibits cell migration in a fashion dependent on autophosphorylation and may regulate paxillin phosphorylation through tyrosine phosphatase PTP-PEST.  相似文献   

8.
We have shown previously that electrophoretically and immunologically homogeneous polyclonal IgGs from the sera of autoimmune-prone MRL mice possess DNase activity. Here we have analyzed for the first time activation of DNase antibodies (Abs) by different metal ions. Polyclonal DNase IgGs were not active in the presence of EDTA or after Abs dialysis against EDTA, but could be activated by several externally added metal (Me(2+)) ions, with the level of activity decreasing in the order Mn(2+)> or =Mg(2+)>Ca(2+)> or =Cu(2+)>Co(2+)> or =Ni(2+)> or =Zn(2+), whereas Fe(2+) did not stimulate hydrolysis of supercoiled plasmid DNA (scDNA) by the Abs. The dependencies of the initial rate on the concentration of different Me(2+) ions were generally bell-shaped, demonstrating one to four maxima at different concentrations of Me(2+) ions in the 0.1-12 mM range, depending on the particular metal ion. In the presence of all Me(2+) ions, IgGs pre-dialyzed against EDTA produced only the relaxed form of scDNA and then sequence-independent hydrolysis of relaxed DNA followed. Addition of Cu(2+), Zn(2+), or Ca(2+) inhibited the Mg(2+)-dependent hydrolysis of scDNA, while Ni(2+), Co(2+), and Mn(2+) activated this reaction. The Mn(2+)-dependent hydrolysis of scDNA was activated by Ca(2+), Ni(2+), Co(2+), and Mg(2+) ions but was inhibited by Cu(2+) and Zn(2+). After addition of the second metal ion, only in the case of Mg(2+) and Ca(2+) or Mn(2+) ions an accumulation of linear DNA (single strand breaks closely spaced in the opposite strands of DNA) was observed. Affinity chromatography on DNA-cellulose separated DNase IgGs into many subfractions with various affinities to DNA and very different levels of the relative activity (0-100%) in the presence of Mn(2+), Ca(2+), and Mg(2+) ions. In contrast to all human DNases having a single pH optimum, mouse DNase IgGs demonstrated several pronounced pH optima between 4.5 and 9.5 and these dependencies were different in the presence of Mn(2+), Ca(2+), and Mg(2+) ions. These findings demonstrate a diversity of the ability of IgG to function at different pH and to be activated by different optimal metal cofactors. Possible reasons for the diversity of polyclonal mouse abzymes are discussed.  相似文献   

9.
Secondary transporters of citrate in complex with metal ions belong to the bacterial CitMHS family, about which little is known. The transport of metal-citrate complexes in Streptomyces coelicolor has been investigated. The best cofactor for citrate uptake in Streptomyces coelicolor is Fe(3+), but uptake was also noted for Ca(2+), Pb(2+), Ba(2+), and Mn(2+). Uptake was not observed with the Mg(2+), Ni(2+), or Co(2+) cofactor. The transportation of iron- and calcium-citrate makes these systems unique among the CitMHS family members reported to date. No complementary uptake akin to that observed for the CitH (Ca(2+), Ba(2+), Sr(2+)) and CitM (Mg(2+), Ni(2+), Mn(2+), Co(2+), Zn(2+)) systems of Bacillus subtilis was noted. Competitive experiments using EGTA confirmed that metal-citrate complex formation promoted citrate uptake. Uptake of free citrate was not observed. The open reading frame postulated as being responsible for the metal-citrate transport observed in Streptomyces coelicolor was cloned and overexpressed in Escherichia coli strains with the primary Fe(3+)-citrate transport system (fecABCDE) removed. Functional expression was successful, with uptake of Ca(2+)-citrate, Fe(3+)-citrate, and Pb(2+)-citrate observed. No free-citrate transport was observed in IPTG (isopropyl-beta-d-thiogalactopyranoside)-induced or -uninduced E. coli. Metabolism of the Fe(3+)-citrate and Ca(2+)-citrate complexes, but not the Pb(2+)-citrate complex, was observed. Rationalization is based on the difference in metal-complex coordination upon binding of the metal by citrate.  相似文献   

10.
Citrate uptake in Bacillus subtilis is stimulated by a wide range of divalent metal ions. The metal ions were separated into two groups based on the expression pattern of the uptake system. The two groups correlated with the metal ion specificity of two homologous B. subtilis secondary citrate transporters, CitM and CitH, upon expression in Escherichia coli. CitM transported citrate in complex with Mg(2+), Ni(2+), Mn(2+), Co(2+), and Zn(2+) but not in complex with Ca(2+), Ba(2+), and Sr(2+). CitH transported citrate in complex with Ca(2+), Ba(2+), and Sr(2+) but not in complex with Mg(2+), Ni(2+), Mn(2+), Co(2+), and Zn(2+). Both transporters did not transport free citrate. Nevertheless, free citrate uptake could be demonstrated in B. subtilis, indicating the expression of at least a third citrate transporter, whose identity is not known. For both the CitM and CitH transporters it was demonstrated that the metal ion promoted citrate uptake and, vice versa, that citrate promoted uptake of the metal ion, indicating that the complex is the transported species. The results indicate that CitM and CitH are secondary transporters that transport complexes of divalent metal ions and citrate but with a complementary metal ion specificity. The potential physiological function of the two transporters is discussed.  相似文献   

11.
Secondary transporters of the bacterial CitMHS family transport citrate in complex with a metal ion. Different members of the family are specific for the metal ion in the complex and have been shown to transport Mg(2+)-citrate, Ca(2+)-citrate or Fe(3+)-citrate. The Fe(3+)-citrate transporter of Streptococcus mutans clusters on the phylogenetic tree on a separate branch with a group of transporters found in the phylum Firmicutes which are believed to be involved in anaerobic citrate degradation. We have cloned and characterized the transporter from Enterococcus faecalis EfCitH in this cluster. The gene was functionally expressed in Escherichia coli and studied using right-side-out membrane vesicles. The transporter catalyzes proton-motive-force-driven uptake of the Ca(2+)-citrate complex with an affinity constant of 3.5 microm. Homologous exchange is catalyzed with a higher efficiency than efflux down a concentration gradient. Analysis of the metal ion specificity of EfCitH activity in right-side-out membrane vesicles revealed a specificity that was highly similar to that of the Bacillus subtilis Ca(2+)-citrate transporter in the same family. In spite of the high sequence identity with the S. mutans Fe(3+)-citrate transporter, no transport activity with Fe(3+) (or Fe(2+)) could be detected. The transporter of E. faecalis catalyzes translocation of citrate in complex with Ca(2+), Sr(2+), Mn(2+), Cd(2+) and Pb(2+) and not with Mg(2+), Zn(2+), Ni(2+) and Co(2+). The specificity appears to correlate with the size of the metal ion in the complex.  相似文献   

12.
The canonical pathway of regulation of the GCK (germinal centre kinase) III subgroup member, MST3 (mammalian Sterile20-related kinase 3), involves a caspase-mediated cleavage between N-terminal catalytic and C-terminal regulatory domains with possible concurrent autophosphorylation of the activation loop MST3(Thr(178)), induction of serine/threonine protein kinase activity and nuclear localization. We identified an alternative 'non-canonical' pathway of MST3 activation (regulated primarily through dephosphorylation) which may also be applicable to other GCKIII (and GCKVI) subgroup members. In the basal state, inactive MST3 co-immunoprecipitated with the Golgi protein GOLGA2/gm130 (golgin A2/Golgi matrix protein 130). Activation of MST3 by calyculin A (a protein serine/threonine phosphatase 1/2A inhibitor) stimulated (auto)phosphorylation of MST3(Thr(178)) in the catalytic domain with essentially simultaneous cis-autophosphorylation of MST3(Thr(328)) in the regulatory domain, an event also requiring the MST3(341-376) sequence which acts as a putative docking domain. MST3(Thr(178)) phosphorylation increased MST3 kinase activity, but this activity was independent of MST3(Thr(328)) phosphorylation. Interestingly, MST3(Thr(328)) lies immediately C-terminal to a STRAD (Sterile20-related adaptor) pseudokinase-like site identified recently as being involved in binding of GCKIII/GCKVI members to MO25 scaffolding proteins. MST3(Thr(178)/Thr(328)) phosphorylation was concurrent with dissociation of MST3 from GOLGA2/gm130 and association of MST3 with MO25, and MST3(Thr(328)) phosphorylation was necessary for formation of the activated MST3-MO25 holocomplex.  相似文献   

13.
Group II introns are large ribozymes, consisting of six functionally distinct domains that assemble in the presence of Mg(2+) to the active structure catalyzing a variety of reactions. The first step of intron splicing is well characterized by a Michaelis-Menten-type cleavage reaction using a two-piece group II intron: the substrate RNA, the 5'-exon covalently linked to domains 1, 2, and 3, is cleaved upon addition of domain 5 acting as a catalyst. Here we investigate the effect of Ca(2+), Mn(2+), Ni(2+), Zn(2+), Cd(2+), Pb(2+), and [Co(NH(3))(6)](3+) on the first step of splicing of the Saccharomyces cerevisiae mitochondrial group II intron Sc.ai5gamma. We find that this group II intron is very sensitive to the presence of divalent metal ions other than Mg(2+). For example, the presence of only 5% Ca(2+) relative to Mg(2+) results in a decrease in the maximal turnover rate k (cat) by 50%. Ca(2+) thereby has a twofold effect: this metal ion interferes initially with folding, but then also competes directly with Mg(2+) in the folded state, the latter being indicative of at least one specific Ca(2+) binding pocket interfering directly with catalysis. Similar results are obtained with Mn(2+), Cd(2+), and [Co(NH(3))(6)](3+). Ni(2+) is a much more powerful inhibitor and the presence of either Zn(2+) or Pb(2+) leads to rapid degradation of the RNA. These results show a surprising sensitivity of such a large multidomain RNA on trace amounts of cations other than Mg(2+) and raises the question of biological relevance at least in the case of Ca(2+).  相似文献   

14.
Family II inorganic pyrophosphatases (PPases) constitute a new evolutionary group of PPases, with a different fold and mechanism than the common family I enzyme; they are related to the "DHH" family of phosphoesterases. Biochemical studies have shown that Mn(2+) and Co(2+) preferentially activate family II PPases; Mg(2+) partially activates; and Zn(2+) can either activate or inhibit (Zyryanov et al., Biochemistry, 43, 14395-14402, accompanying paper in this issue). The three solved family II PPase structures did not explain the differences between the PPase families nor the metal ion differences described above. We therefore solved three new family II PPase structures: Bacillus subtilis PPase (Bs-PPase) dimer core bound to Mn(2+) at 1.3 A resolution, and, at 2.05 A resolution, metal-free Bs-PPase and Streptococcus gordonii (Sg-PPase) containing sulfate and Zn(2+). Comparison of the new and old structures of various family II PPases demonstrates why the family II enzyme prefers Mn(2+) or Co(2+), as an activator rather than Mg(2+). Both M1 and M2 undergo significant changes upon substrate binding, changing from five-coordinate to octahedral geometry. Mn(2+) and Co(2+), which readily adopt different coordination states and geometries, are thus favored. Combining our structures with biochemical data, we identified M2 as the high-affinity metal site. Zn(2+) activates in the M1 site, where octahedral geometry is not essential for catalysis, but inhibits in the M2 site, because it is unable to assume octahedral geometry but remains trigonal bipyramidal. Finally, we propose that Lys205-Gln81-Gln80 form a hydrophilic channel to speed product release from the active site.  相似文献   

15.
The enzymes 3-deoxy-d-manno-octulosonic acid-8-phosphate synthase (KDO8PS) and 3-deoxy-d-arabino-heptulosonic acid-7-phosphate synthase (DAHPS) catalyze analogous condensation reactions between phosphoenolpyruvate and d-arabinose 5-phosphate or d-erythrose 4-phosphate, respectively. While several similarities exist between the two enzymatic reactions, classic studies on the Escherichia coli enzymes have established that DAHPS is a metalloenzyme, whereas KDO8PS has no metal requirement. Here, we demonstrate that KDO8PS from Aquifex aeolicus, representing only the second member of the KDO8PS family to be characterized in detail, is a metalloenzyme. The recombinant KDO8PS, as isolated, displays an absorption band at 505 nm and contains approximately 0.4 and 0.2-0.3 eq of zinc and iron, respectively, per enzyme subunit. EDTA inactivates the enzyme in a time- and concentration-dependent manner and eliminates the absorption at 505 nm. The addition of Cu(2+) to KDO8PS produces an intense absorption at 375 nm, while neither Co(2+) nor Ni(2+) produce such an effect. The EDTA-treated enzyme is reactivated by a wide range of divalent metal ions including Ca(2+), Cd(2+), Co(2+), Cu(2+), Fe(2+), Mg(2+), Mn(2+), Ni(2+), and Zn(2+) and is reversibly inhibited by higher concentrations (>1 mm) of certain metals. Analysis of several metal forms of the enzyme by plasma mass spectrometry suggests that the enzyme preferentially binds one, two, or four metal ions per tetramer. These observations strongly suggest that A. aeolicus KDO8PS is a metalloenzyme in vivo and point to a previously unrecognized relationship between the KDO8PS and DAHPS families.  相似文献   

16.
FT Senguen  Z Grabarek 《Biochemistry》2012,51(31):6182-6194
Calmodulin (CaM), a member of the EF-hand superfamily, regulates many aspects of cell function by responding specifically to micromolar concentrations of Ca(2+) in the presence of an ~1000-fold higher concentration of cellular Mg(2+). To explain the structural basis of metal ion binding specificity, we have determined the X-ray structures of the N-terminal domain of calmodulin (N-CaM) in complexes with Mg(2+), Mn(2+), and Zn(2+). In contrast to Ca(2+), which induces domain opening in CaM, octahedrally coordinated Mg(2+) and Mn(2+) stabilize the closed-domain, apo-like conformation, while tetrahedrally coordinated Zn(2+) ions bind at the protein surface and do not compete with Ca(2+). The relative positions of bound Mg(2+) and Mn(2+) within the EF-hand loops are similar to those of Ca(2+); however, the Glu side chain at position 12 of the loop, whose bidentate interaction with Ca(2+) is critical for domain opening, does not bind directly to either Mn(2+) or Mg(2+), and the vacant ligand position is occupied by a water molecule. We conclude that this critical interaction is prevented by specific stereochemical constraints imposed on the ligands by the EF-hand β-scaffold. The structures suggest that Mg(2+) contributes to the switching off of calmodulin activity and possibly other EF-hand proteins at the resting levels of Ca(2+). The Mg(2+)-bound N-CaM structure also provides a unique view of a transiently bound hydrated metal ion and suggests a role for the hydration water in the metal-induced conformational change.  相似文献   

17.
Family II pyrophosphatases (PPases), recently found in bacteria and archaebacteria, are Mn(2+)-containing metalloenzymes with two metal-binding subsites (M1 and M2) in the active site. These PPases can use a number of other divalent metal ions as the cofactor but are inactive with Zn(2+), which is known to be a good cofactor for family I PPases. We report here that the Mg(2+)-bound form of the family II PPase from Streptococcus gordonii is nearly instantly activated by incubation with equimolar Zn(2+), but the activity thereafter decays on a time scale of minutes. The activation of the Mn(2+)-form by Zn(2+) was slower but persisted for hours, whereas activation was not observed with the Ca(2+)- and apo-forms. The bound Zn(2+) could be removed from PPase by prolonged EDTA treatment, with a complete recovery of activity. On the basis of the effect of Zn(2+) on PPase dimerization, the Zn(2+) binding constant appeared to be as low as 10(-12) M for S. gordonii PPase. Similar effects of Zn(2+) and EDTA were observed with the Mg(2+)- and apo-forms of Streptococcus mutans and Bacillus subtilis PPases. The effects of Zn(2+) on the apo- and Mg(2+)-forms of HQ97 and DE15 B. subtilis PPase variants (modified M2 subsite) but not of HQ9 variant (modified M1 subsite) were similar to that for the Mn(2+)-form of wild-type PPase. These findings can be explained by assuming that (a) the PPase tightly binds Mg(2+) and Mn(2+) at the M2 subsite; (b) the activation of the corresponding holoenzymes by Zn(2+) results from its binding to the M1 subsite; and (c) the subsequent inactivation of Mg(2+)-PPase results from Zn(2+) migration to the M2 subsite. The inability of Zn(2+) to activate apo-PPase suggests that Zn(2+) binds more tightly to M2 than to M1, allowing direct binding to M2. Zn(2+) is thus an efficient cofactor at subsite M1 but not at subsite M2.  相似文献   

18.
Green crab (Scylla serrata) alkaline phosphatase (EC 3.1.3.1) is a metalloenzyme, which catalyzes the nonspecific hydrolysis of phosphate monoesters. The present paper deals with the study of the effect of some kinds of metal ions on the enzyme. The positive monovalent alkali metal ions (Li(+), Na(+) and K(+)) have no effect on the enzyme; positive bivalent alkaline-earth metal ions (Mg(2+), Ca(2+) and Ba(2+)) and transition metal ions (Mn(2+), Co(2+), Ni(2+) and Cd(2+)) activate the enzyme; heavy metal ions (Hg(2+), Ag(+), Bi(2+), Cu(2+) and Zn(2+)) inhibit the enzyme. The activation of magnesium ion on the enzyme appears to be a partial noncompetitive type. The kinetic model has been set up and a new plot to determine the activation constant of Mg(2+) was put forward. From the plot, we can easily determine the activation constant (K(a)) value and the activation ratio of Mg(2+) on the enzyme. The inhibition effects of Cu(2+) and Hg(2+) on the enzyme are of noncompetitive type. The inhibition constants have been determined. The inhibition effect of Hg(2+) is stronger than that of Cu(2+).  相似文献   

19.
We recently identified in a proteomic screen a novel synaptic vesicle membrane protein of 31 kDa (SV31) of unknown function. According to its membrane topology and its phylogenetic relation SV31 may function as a vesicular transporter. Based on its amino acid sequence similarity to a prokaryotic heavy metal ion transporter we analyzed its metal ion-binding properties and show that recombinant SV31 binds the divalent cations Zn(2+) and Ni(2+) and to a minor extent Cu(2+), but not Fe(2+), Co(2+), Mn(2+), or Ca(2+). Zn(2+)-binding of SV31 in viable cells was verified following heterologous transfection of pheochromocytoma cells 12 (PC12) with recombinant red fluorescent SV31 (SV31-RFP) and the fluorescent zinc indicator FluoZin-3. Sucrose density gradient fractionation of SV31-RFP-transfected PC12 cells revealed a partial overlap of SV31-RFP with synaptic-like vesicle markers and the early endosome marker rab5. Immunocytochemical analysis demonstrated a punctuate distribution in the cell soma and in neuritic processes and in addition in a compartment in vicinity to the plasma membrane that was immunopositive also for synaptosomal-associated protein 25 (SNAP-25) and syntaxin1A. Our data suggest that SV31 represents a novel Zn(2+) -binding protein that in PC12 cells is targeted to endosomes and subpopulations of synaptic-like microvesicles.  相似文献   

20.
Glasner ME  Bergman NH  Bartel DP 《Biochemistry》2002,41(25):8103-8112
The class I ligase, a ribozyme previously isolated from random sequence, catalyzes a reaction similar to RNA polymerization, positioning its 5'-nucleotide via a Watson-Crick base pair, forming a 3',5'-phosphodiester bond between its 5'-nucleotide and the substrate, and releasing pyrophosphate. Like most ribozymes, it requires metal ions for structure and catalysis. Here, we report the ionic requirements of this self-ligating ribozyme. The ligase requires at least five Mg(2+) for activity and has a [Mg(2+)](1/2) of 70-100 mM. It has an unusual specificity for Mg(2+); there is only marginal activity in Mn(2+) and no detectable activity in Ca(2+), Sr(2+), Ba(2+), Zn(2+), Co(2+), Cd(2+), Pb(2+), Co(NH(3))(6)(3+), or spermine. All tested cations other than Mg(2+), including Mn(2+), inhibit the ribozyme. Hill analysis in the presence of inhibitory cations suggested that Ca(2+) and Co(NH(3))(6)(3+) inhibit by binding at least two sites, but they appear to productively fill a subset of the required sites. Inhibition is not the result of a significant structural change, since the ribozyme assumes a nativelike structure when folded in the presence of Ca(2+) or Co(NH(3))(6)(3+), as observed by hydroxyl-radical mapping. As further support for a nativelike fold in Ca(2+), ribozyme that has been prefolded in Ca(2+) can carry out the self-ligation very quickly upon the addition of Mg(2+). Ligation rates of the prefolded ribozyme were directly measured and proceed at 800 min(-1) at pH 9.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号