首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The segment 32-47 of the N-terminal extracellular domain of the type A cholecystokinn receptor, CCK(A)-R(32-47), was synthesized and structurally characterized in a membrane mimicking environment by CD, NMR and molecular dynamics calculations. The region of CCK(A)-R(32-47) encompassing residues 39-46 adopted a well-defined secondary structure in the presence of DPC micelles, whereas the conformation of the N-terminal region (segment 32-37) could not be uniquely defined by the NOE derived distance constraints because of local flexibility. The conformation of the binding domain of CCK(A)-R(32-47) was different from that found for the Intact N-terminal receptor tail, CCK(A)-R(1-47). To assess whether CCK(A)-R(32-47) was still able to bind the nonsulfated cholecystokinin C-terminal octapeptide, CCK8, a series of titrations was carried out in SDS and DPC micelles, and the binding interaction was followed by fluorescence spectroscopy. These titrations gave no evidence for complex formation, whereas a high binding affinity was found between CCK(A)-R(1-47) and CCK8. The different affinities for the ligand shown by CCK(A)-R(32-47) and CCK(A)-R(1-47) were paralleled by different interaction modes between the receptor segments and the micelles.The interaction of CCK(A)-R(32-47) with DPC micelles was much weaker than that of CCK(A)-R(1-47), because the former receptor segment lacks proper stabilizing contacts with the micelle surface. In the case of SDS micelles CCK(A)-R(32-47] was found to form non-micellar adducts with the detergent that prevented the onset of a functionally significant Interaction between the receptor segment and the micelle. It is concluded that tertiary structure interactions brought about by the 1-31 segment play a key role in the stabilization of the membrane bound, biologically active conformation of the N-terminal extracellular tail of the CCKA receptor.  相似文献   

2.
A novel CCK8 derivative bearing a chelating agent at its N- end and its oxo-rhenium(V) complex have been synthesized and characterized. The chelating agent N-[N-13-(diphenylphosphino)propionyl]glycyl]cysteine (PN2S) ligand, the coordination set of which is made by the phosphorus atom of phosphine, the nitrogen atoms of the two amido groups and the sulphur atom of cysteine, has been used due to its high affinity towards the oxo-rhenium(V) moiety. Molecular modelling studies indicate that the CCK8 peptide adopts the right conformation for cholecystokinin receptor binding, and that modifications on the N-terminal side of CCK8 obtained by introducing chelating agents and its metal complexes should not affect the interaction with CCK(A) receptor.  相似文献   

3.
Giragossian C  Mierke DF 《Biochemistry》2001,40(13):3804-3809
The interaction of the C-terminal octapeptide of cholecystokinin, CCK-8, with the third extracellular loop of human cholecystokinin-A receptor, CCK(A)-R(329-357), has been probed by high-resolution NMR and extensive computer simulations. The structure of CCK(A)-R(329-357) in the presence of dodecylphosphocholine micelles consists of three alpha-helices, with the first and third corresponding to the extracellular ends of transmembrane (TM) helices 6 and 7. The central helix, residues W335-R345, is found to lie on the zwitterionic surface. Titration with CCK-8 produces a stable complex with a number of intermolecular NOEs between the C-terminus of the ligand (Trp(30), Met(31), Asp(32)) and the interface of TM6 and the third extracellular loop (N333, A334, Y338) of the receptor fragment. The mode of ligand binding based on these intermolecular NOEs is in agreement with a number of published findings from receptor mutagenesis and photoaffinity cross-linking. Utilizing these ligand/receptor points of interaction, the structural features of CCK(A)-R(329-357), and also the structures of CCK-8 and CCK(A)-R(1-47) previously determined, extensive molecular dynamics simulations of the CCK-8/CCK(A)-R complex were carried out. The results provide unique insight into the molecular interactions and forces important for the binding of CCK-8 to CCK(A)-R.  相似文献   

4.
The (neuro)hormones gastrin and cholecystokinin (CCK) share a common C-terminal tetrapeptide amide sequence that has been recognized as the message portion while the N-terminal extensions are responsible for the CCK(A) and CCK(B) receptor subtype selectivity and avidity. 1,4-Benzodiazepine derivatives are potent and selective antagonists of these receptors, and according to comparative molecular field analysis, the structures of these nonpeptidic compounds could well mimic the message sequence of the peptide agonists at least in terms of spatial array of the aromatic residues. Docking of a larger series of low molecular weight nonpeptide antagonists to a homology modeling derived CCK(B) receptor structure revealed a consensus binding mode that is further validated by data from site-directed mutagenesis studies of the receptors. Whether this putative binding pocket of the nonpeptide antagonists is identical to that of the message portion of the peptide agonists, or whether it is distinct and spatially separated, or overlapping, but with distinct interaction sites, is still object of debate. Using a 1,4-benzodiazepine core amino-functionalized at the C3 position, related tryptophanyl derivatives were synthesized as mimics of the tetrapeptide and subsequently extended N-terminally with gastrin and CCK address sequences. All hybrid constructs were recognized as antagonists by the CCK(A) and CCK(B) receptors, but their address portions were incapable of enhancing in significant manner selectivity and avidity. Consequently, the binding of the peptide/benzodiazepine hybrids has to be dictated mainly by the benzodiazepine moiety, which apparently prevents optimal interactions of the address peptides with extracellular receptor subdomains. These findings would strongly support the view of distinct binding sites for the message portion of the peptide agonists and the benzodiazepine-based nonpeptide antagonists.  相似文献   

5.
Fluorescence titrations in a membrane mimetic solvent system allowed us to estimate that the dissociation constant of the bimolecular complex between CCK8 peptide and cholecystokinin type B receptor fragment CCK(B)-R (352-379) is in the micromolar range. When considered in the context of the full receptor/ligand model, these experiments demonstrate that the receptor fragment chosen on the basis of previous structural studies represents a reliable model system to monitor the ability of CCK8 or CCK8 analogs to bind the cholecystokinin receptor. Together with previous studies, this confirms that the receptor fragment approach adopted to define the binding mode of the CCK8 fragment of cholecystokinin with its two receptors, CCK(A) and CCK(B,) can be used to characterize the binding from the equilibrium standpoint. In this context, fluorescence spectroscopy proves to be the favored technique to measure dissociation constants in the nanomolar to micromolar range.  相似文献   

6.
M Pellegrini  D F Mierke 《Biochemistry》1999,38(45):14775-14783
The bimolecular complex of the C-terminal octapeptide of cholecystokinin, CCK-8, with the N-terminus of the CCK(A)-receptor, CCK(A)-R(1-47), has been structurally characterized by high-resolution NMR and computational refinement. The conformation of CCK(A)-R(1-47), within the lipid environment used for the spectroscopic studies, consists of a well-defined alpha-helix (residues 3-9) followed by a beta-sheet stabilized by a disulfide linkage between C18 and C29, leading to the first transmembrane alpha-helix (TM1). Titration of CCK(A)-R(1-47) with CCK-8 specifically affects the NMR signals of W39 of the receptor, in a saturable fashion. This association is specific for CCK-8; no association was observed upon titration of CCK(A)-R(1-47) with other peptide hormones. The ligand/receptor complex was characterized by intermolecular NOEs between Tyr(27) and Met(28) of CCK-8 and W39 of CCK(A)-R(1-47). These findings suggest that CCK-8 binds to CCK(A) with the C-terminus within the seven-helical bundle and the N-terminus of the ligand, projecting out between TM1 and TM7, forming specific interactions with the N-terminus of the CCK(A) receptor. This mode of ligand binding, consistent with published mutagenesis studies, requires variation of the interpretation of recent findings from photoaffinity cross-linking studies.  相似文献   

7.
Conformational features of the C-terminal carboxyamidated pentadecapeptide of CCK (S(19)HRISDRD[SO(4)]-YMGWMDF(33)-NH(2)) were determined by NMR spectroscopy in a zwitterionic membrane-mimetic solvent system, composed of DPC micelles. The C-terminal octapeptide consisted of a well-defined pseudohelix that was nearly identical to the structure previously reported for nonsulfated CCK-8 in the same solvent system. N-terminal amino acids of CCK-15 were highly disordered, with no clear conformational preference. Extensive NOE-restrained molecular dynamics simulations of the CCK-15/CCK(1)-R complex suggested that almost all the experimentally determined intermolecular contact points provided by NMR, site-directed mutagenesis, and photoaffinity labeling could be simultaneously satisfied, when the N-terminus of the ligand is placed in close spatial proximity to the N-terminus of the receptor.  相似文献   

8.
We investigated the importance of sulfation of gastrin or cholecystokinin (CCK) on influencing their affinity for gastrin or CCK receptors by comparing the abilities of sulfated gastrin-17 (gastrin-17-II), desulfated gastrin-17 (gastrin-17-I), CCK-8 and desulfated CCK-8 [des(SO3)CCK-8] to interact with CCK or gastrin receptors on guinea pig pancreatic acini. For inhibiting binding of 125I-gastrin to gastrin receptors, gastrin-17-II (Kd 0.08 nM) greater than CCK-8 (Kd 0.4 nM) greater than gastrin-17-I (Kd 1.5 nM) greater than des(SO3)CCK-8 (Kd 28 nM). For inhibiting binding of 125I-Bolton Hunter-labeled CCK-8 to CCK receptors the relative potencies were: CCK-8 much greater than des(SO3)CCK-8 = gastrin-17-II greater than gastrin-17-I. Each peptide interacted with both high and low affinity CCK binding sites. The relative abilities of each peptide to interact with high affinity CCK receptors showed a close correlation with their abilities to cause half-maximal stimulation of enzyme secretion. These results demonstrate that, in contrast to older studies, sulfation of both CCK and gastrin increase their affinities for both gastrin and CCK receptors. Moreover, the gastrin receptor is relatively insensitive to the position of the sulfate moiety, whereas the CCK receptor is extremely sensitive to both the presence and exact position of the sulfate moiety.  相似文献   

9.
The functions of the serpin PAI-1 (plasminogen activator inhibitor-1) are based on molecular interactions with its target proteases uPA and tPA (urokinase-type and tissue-type plasminogen activator respectively), with vitronectin and with endocytosis receptors of the low-density-lipoprotein family. Understanding the significance of these interactions would be facilitated by the ability to block them individually. Using phage display, we have identified the disulfide-constrained peptide motif CFGWC with affinity for natural human PAI-1. The three-dimensional structure of a peptide containing this motif (DVPCFGWCQDA) was determined by liquid-state NMR spectroscopy. A binding site in the so-called flexible joint region of PAI-1 was suggested by molecular modelling and validated through binding studies with various competitors and site-directed mutagenesis of PAI-1. The peptide with an N-terminal biotin inhibited the binding of the uPA-PAI-1 complex to the endocytosis receptors low-density-lipoprotein-receptor-related protein 1A (LRP-1A) and very-low-density-lipoprotein receptor (VLDLR) in vitro and inhibited endocytosis of the uPA-PAI-1 complex in U937 cells. We conclude that the isolated peptide represents a novel approach to pharmacological interference with the functions of PAI-1 based on inhibition of one specific molecular interaction.  相似文献   

10.
Chemokine CXCL-8 plays a central role in human immune response by binding to and activate its cognate receptor CXCR1, a member of the G-protein coupled receptor (GPCR) family. The full-length structure of CXCR1 is modeled by combining the structures of previous NMR experiments with those from homology modeling. Molecular docking is performed to search favorable binding sites of monomeric and dimeric CXCL-8 with CXCR1 and a mutated form of it. The receptor-ligand complex is embedded into a lipid bilayer and used in multi ns molecular dynamics (MD) simulations. A multi-steps binding mode is proposed: (i) the N-loop of CXCL-8 initially binds to the N-terminal domain of receptor CXCR1 driven predominantly by electrostatic interactions; (ii) hydrophobic interactions allow the N-terminal Glu-Leu-Arg (ELR) motif of CXCL-8 to move closer to the extracellular loops of CXCR1; (iii) electrostatic interactions finally dominate the interaction between the N-terminal ELR motif of CXCL-8 and the EC-loops of CXCR1. Mutation of CXCR1 abrogates this mode of binding. The detailed binding process may help to facilitate the discovery of agonists and antagonists for rational drug design.  相似文献   

11.
The cholecystokinin-A receptor (CCK-AR) is a G protein-coupled receptor that mediates important central and peripheral cholecystokinin actions. Residues of the CCK-AR binding site that interact with the C-terminal part of CCK that is endowed with biological activity are still unknown. Here we report on the identification of Arg-336 and Asn-333 of CCK-AR, which interact with the Asp-8 carboxylate and the C-terminal amide of CCK-9, respectively. Identification of the two amino acids was achieved by dynamics-based docking of CCK in a refined three-dimensional model of CCK-AR using, as constraints, previous results that demonstrated that Trp-39/Gln-40 and Met-195/Arg-197 interact with the N terminus and the sulfated tyrosine of CCK, respectively. Arg-336-Asp-8 and Asn-333-amide interactions were pharmacologically assessed by mutational exchange of Arg-336 and Asn-333 in the receptor or reciprocal elimination of the partner chemical functions in CCK. This study also allowed us to demonstrate that (i) the identified interactions are crucial for stabilizing the high affinity phospholipase C-coupled state of the CCK-AR.CCK complex, (ii) Arg-336 and Asn-333 are directly involved in interactions with nonpeptide antagonists SR-27,897 and L-364,718, and (iii) Arg-336 but not Asn-333 is directly involved in the binding of the peptide antagonist JMV 179 and the peptide partial agonist JMV 180. These data will be used to obtain an integrated dynamic view of the molecular processes that link agonist binding to receptor activation.  相似文献   

12.
Conformation of a peptide ligand bound to its G-protein coupled receptor   总被引:3,自引:0,他引:3  
Many peptide hormones elicit a wide array of physiological effects by binding to G-protein coupled receptors. We have determined the conformation of pituitary adenylate cyclase activating polypeptide, PACAP(1--21)NH(2), bound to a PACAP-specific receptor by NMR spectroscopy. Residues 3--7 form a unique beta-coil structure that is preceded by an N-terminal extended tail. This beta-coil creates a patch of hydrophobic residues that is important for receptor binding. In contrast, the C-terminal region (residues 8--21) forms an alpha-helix, similar to that in the micelle-bound PACAP. Thus, the conformational difference between PACAP in the receptor-bound and the micelle-bound states is limited to the N-terminal seven residues. This observation is consistent with the two-step ligand transportation model in which PACAP first binds to the membrane nonspecifically and then diffuses two-dimensionally in search of its receptor; a conformational change at the N-terminal region then allows specific interactions between the ligand and the receptor.  相似文献   

13.
Bin/Amphiphysin/Rvs-homology (BAR) domains generate and sense membrane curvature by binding the negatively charged membrane to their positively charged concave surfaces. N-BAR domains contain an N-terminal extension (helix-0) predicted to form an amphipathic helix upon membrane binding. We determined the NMR structure and nano-to-picosecond dynamics of helix-0 of the human Bin1/Amphiphysin II BAR domain in sodium dodecyl sulfate and dodecylphosphocholine micelles. Molecular dynamics simulations of this 34-amino acid peptide revealed electrostatic and hydrophobic interactions with the detergent molecules that induce helical structure formation from residues 8-10 toward the C-terminus. The orientation in the micelles was experimentally confirmed by backbone amide proton exchange. The simulation and the experiment indicated that the N-terminal region is disordered, and the peptide curves to adopted the micelle shape. Deletion of helix-0 reduced tubulation of liposomes by the BAR domain, whereas the helix-0 peptide itself was fusogenic. These findings support models for membrane curving by BAR domains in which helix-0 increases the binding affinity to the membrane and enhances curvature generation.  相似文献   

14.
Nonsulfated CCK(58) [CCK(58)(ns)] has not been considered to be of biological importance because CCK(58)(ns) binds poorly to the CCK(A) receptor and has only been identified once in intestinal extracts. In this work, a radioimmunoassay specific for the COOH-terminal region of gastrin and CCK (antibody 5135) was used to monitor the purification of CCK molecular forms from canine intestinal extracts. A minor immunoreactive peak was associated with a major absorbance peak during an ion-exchange, HPLC step. Characterization of this minor immunoreactive peak demonstrated that it was CCK(58)(ns). CCK(58)(ns) is 14% as immunoreactive as sulfated CCK(8) [CCK(8)(s)]. Amino acid analysis demonstrated that CCK(58)(ns) was present at 50% the amount of CCK(58)(s). In addition, we found that CCK(58)(ns) does not potently displace an (125)I-labeled CCK(10) analog from the CCK(A) receptor in mouse pancreatic membranes and does not stimulate amylase release from isolated pancreatic acini, or stimulate pancreatic secretion in an anesthetized rat model. By contrast, CCK(58)(ns) does bind to CCK(B) receptors and stimulates gastric acid secretion via this receptor. The presence of CCK(58)(ns) and its ability to selectively stimulate the CCK(B) receptor without stimulation of the CCK(A) receptor suggest that CCK(58)(ns) may have unique physiological properties, especially tissues where the nonsulfated peptide can act as a paracrine or neurocrine agent.  相似文献   

15.
Sulfated CCK-58 and CCK-8 have identical bioactive C-terminal primary sequences but distinct C-terminal solution structures and different bioactivities. To examine structural differences in greater detail, rat CCK-58 and -8 were synthesized with isotopic enrichment of C-terminal residues with (15)N at alpha-amino nitrogens. Proton and nitrogen chemical shift assignments of peptide solutions were obtained by homo- and heteronuclear NMR methods. These data show that the tertiary structure ensembles of C-terminal CCK-8 and CCK-58 differ significantly. Thus, distinct solution conformations may explain differences in CCK(A) and CCK(B) receptor interactions of large and small molecular forms of CCK.  相似文献   

16.
[(3)H]BBL454, a new CCK(2) selective tritiated agonist was prepared via the reductive tritiation of a 5-aminopentyn-1-yl moiety introduced on the N-terminal end of a pentapeptide derivative of cholecystokinin. The binding properties of this labelled compound were determined on CHO cells transfected with the rat CCK(2) receptor. [(3)H]BBL454 is able to discriminate two affinity states of the CCK(2) receptor a supplementary indication of its validity for further exploring the heterogeneity of this receptor.  相似文献   

17.
Conformational plasticity of the lipid transfer protein SCP2   总被引:1,自引:0,他引:1  
Filipp FV  Sattler M 《Biochemistry》2007,46(27):7980-7991
The nonspecific lipid transfer protein sterol carrier protein 2 (SCP2) is involved in organellar fatty acid metabolism. A hydrophobic cavity in the structure of SCP2 accommodates a wide variety of apolar ligands such as cholesterol derivatives or fatty acyl-coenzyme A (CoA) conjugates. The properties of this nonspecific lipid binding pocket are explored using NMR chemical shift perturbations, paramagnetic relaxation enhancement, amide hydrogen exchange, and 15N relaxation measurements. A common binding cavity shared by different physiological ligands is identified. NMR relaxation measurements reveal that residues in the three C-terminal alpha-helices within the lipid binding region exhibit mobility at fast (picosecond to nanosecond) and slow (microsecond to millisecond) time scales. Ligand binding is associated with a considerable loss of peptide backbone mobility. The observed conformational dynamics in SCP2 may play a role for the access of hydrophobic ligands to an occluded binding pocket. The C-terminal peroxisomal targeting signal of SCP2 is specifically recognized by the Pex5p receptor protein, which conducts cargo proteins toward the peroxisomal organelle. Neither the C-terminal targeting signal nor the N-terminal precursor sequence interferes with lipid binding by SCP2. The alpha-helices involved in lipid binding also mediate a secondary interaction interface with the Pex5p receptor. Silencing of conformational dynamics of the peptide backbone in these helices upon either lipid or Pex5p binding might communicate the loading state of the cargo protein to the targeting receptor.  相似文献   

18.
Cholecystokinin, like many peptide hormones, is present as multiple molecular forms. CCK-58 has been identified as the dominant form in the circulation, whereas most of the studies of CCK-receptor interactions have been performed with CCK-8. Despite both sharing the pharmacophoric region of CCK, representing its carboxy terminal heptapeptide amide, studies in vivo have demonstrated biological diversity of action of the two peptides, with CCK-58, but not CCK-8, stimulating pancreatic fluid secretion and lengthening the interval between meals. Here, we have directly studied the ability of these two CCK peptides to bind to the type 1 CCK receptor and to stimulate it to elicit an intracellular calcium response. The calcium response relative to receptor occupation was identical for CCK-58 and CCK-8, with the longer peptide binding with approximately fivefold lower affinity. We also examined the ability of the two peptides to elicit receptor internalization using morphological techniques and to disrupt the constitutive oligomerization of the CCK receptor using receptor bioluminescence resonance energy transfer. Here, both full agonist peptides had similar effects on these regulatory processes. These data suggest that both molecular forms of CCK act at the CCK1 receptor quite similarly and elicit similar regulatory processes for that receptor, suggesting that the differences in biological activity observed in vivo most likely reflect differences in the clearance and/or metabolism of these long and short forms of CCK peptides.  相似文献   

19.
The development of receptor targeting radiolabeled ligands has gained much interest in recent years for diagnostic and therapeutic applications in nuclear medicine. Cholecystokinin (CCK) receptors have been shown to be overexpressed in a subset of neuroendocrine and other tumors. We are evaluating binding and biodistribution properties of a CCK8 peptide derivative labeled with (99m)Tc(I)-tricarbonyl. The CCK8 peptide was modified at its N-terminus by adding to its N-terminus two lysine-histidine modules (KH), where histidine is coupled to the side chain of the lysine ((KH)(2)-CCK8). (99m)Tc(I)-tricarbonyl was generated with the IsoLinktrade mark kit. A431 cells stably transfected with a cDNA encoding for the human CCK2 receptor were utilized to determine binding affinity, internalization, and retention of the labeled peptide, in comparison with wild-type A431 cells. A nude mouse tumor model was obtained by generating A431-CCK2R and A431-control tumors in opposite flanks of the animals. High specific activity labeling with (99m)Tc was achieved. In A431-CCK2R cells, specific saturable binding was observed as well as evident internalization of the radiolabeled peptide after binding. Biodistribution experiments showed rapid, specific localization of (KH)(2)-CCK8 on A431-CCK2R xenografts compared with control tumors, although absolute uptake values were not markedly higher compared with background activity. Clearance of unbound radioactivity was both urinary and hepatobiliary. In imaging experiments, while targeting to CCK2R positive tumors could be appreciated, there was poor contrast between target and nontarget areas. (KH)(2)-CCK8 shows adequate in vitro and in vivo properties for CCK2R targeting although improvement of biodistribution warrant further development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号