首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many studies of electrogenic Na+ pumping in Purkinje strands have involved intracellular Na+ loading by exposure to 0 mM K+, followed by reexposure to K+. For sheep Purkinje strands the K+ concentration for half-maximal stimulation (K0.5) in such studies is higher than K0.5 of canine Purkinje strands. A model was developed to determine if gradients in the K+ concentration of extracellular fluid layers during enhanced pump activity can account for the discrepancy. Pump activity was assumed linearly dependent on [Na+]i and dependent on [K+]o, according to Michaelis-Menten kinetics. The model simulated diffusion of K+ across unstirred layers and both depletion and accumulation of K+ in extracellular clefts of Purkinje strands during changes in the K+ concentration of the tissue bath. Errors in estimates of K0.5 occurred when delay in achieving a steady state extracellular K+ concentration was simulated. The simulations suggested that a linear relationship between pump current and intracellular Na+, a monoexponential decay of pump current, independence of the rate constants for the current decay on the initial Na+ load and holding potential, and apparent Michaelis-Menten K+ kinetics is not sufficient evidence against pump-induced interstitial K+ depletion having introduced errors in determination of K0.5. It is concluded that interstitial K+ depletion may account for the difference between determinations of K0.5 in sheep and canine Purkinje strands.  相似文献   

2.
Voltage clamp hyperpolarization and depolarization result in currents consistent with depletion and accumulation of potassium in the extracellular clefts o cardiac Purkinje fibers exposed to sodium-free solutions. Upon hyperpolarization, an inward current that decreased with time (id) was observed. The time course of tail currents could not be explained by a conductance exhibiting voltage-dependent kinetics. The effect of exposure to cesium, changes in bathing media potassium concentration and osmolarity, and the behavior of membrane potential after hyperpolarizing pulses are all consistent with depletion of potassium upon hyperpolarization. A declining outward current was observed upon depolarization. Increasing the bathing media potassium concentration reduced the magnitude of this current. After voltage clamp depolarizations, membrane potential transiently became more positive. These findings suggest that accumulation of potassium occurs upon depolarization. The results indicate that changes in ionic driving force may be easily and rapidly induced. Consequently, conclusions based on the assumption that driving force remains constant during the course of a voltage step may be in error.  相似文献   

3.
Studies of time-dependent, plateau outward current (delayed rectification) in the heart are complicated by the accumulation and depletion of K+ ions in intercellular clefts. To minimize this problem, we studied delayed rectification in acutely isolated (enzymic solution, gentle agitation) canine cardiac Purkinje myocytes using the single microelectrode voltage-clamp technique. We found a sigmoidal voltage-dependence for activation of outward plateau current, with maximal activation occurring at potentials near -10 mV. The activation and deactivation of plateau outward current was adequately described as the sum of a fast and slow exponential component. A comparison of the time course of activation of plateau outward current and the "envelope" of tail currents suggests that a single voltage-gated conductance with one open and two closed states can account for delayed rectification in Purkinje myocytes. These results differ from those previously obtained with intact sheep Purkinje fibers in which two time-dependent conductances were postulated to account for delayed rectification (Noble, D., and R. W. Tsien, 1969, J. Physiol. (Lond.), 200:205-231).  相似文献   

4.
The pacemaker current in cardiac Purkinje myocytes   总被引:3,自引:0,他引:3       下载免费PDF全文
It is generally assumed that in cardiac Purkinje fibers the hyperpolarization activated inward current i(f) underlies the pacemaker potential. Because some findings are at odds with this interpretation, we used the whole cell patch clamp method to study the currents in the voltage range of diastolic depolarization in single canine Purkinje myocytes, a preparation where many confounding limitations can be avoided. In Tyrode solution ([K+]o = 5.4 mM), hyperpolarizing steps from Vh = -50 mV resulted in a time-dependent inwardly increasing current in the voltage range of diastolic depolarization. This time- dependent current (iKdd) appeared around -60 mV and reversed near EK. Small superimposed hyperpolarizing steps (5 mV) applied during the voltage clamp step showed that the slope conductance decreases during the development of this time-dependent current. Decreasing [K+]o from 5.4 to 2.7 mM shifted the reversal potential to a more negative value, near the corresponding EK. Increasing [K+]o to 10.8 mM almost abolished iKdd. Cs+ (2 mM) markedly reduced or blocked the time-dependent current at potentials positive and negative to EK. Ba2+ (4 mM) abolished the time-dependent current in its usual range of potentials and unmasked another time-dependent current (presumably i(f)) with a threshold of approximately -90 mV (> 20 mV negative to that of the time-dependent current in Tyrode solution). During more negative steps, i(f) increased in size and did not reverse. During i(f) the slope conductance measured with small (8-10 mV) superimposed clamp steps increased. High [K+]o (10.8 mM) markedly increased and Cs+ (2 mM) blocked i(f). We conclude that: (a) in the absence of Ba2+, a time-dependent current does reverse near EK and its reversal is unrelated to K+ depletion; (b) the slope conductance of that time-dependent current decreases in the absence of K+ depletion at potentials positive to EK where inactivation of iK1 is unlikely to occur. (c) Ba2+ blocks this time-dependent current and unmasks another time-dependent current (i(f)) with a more negative (> 20 mV) threshold and no reversal at more negative values; (d) Cs+ blocks both time-dependent currents recorded in the absence and presence of Ba2+. The data suggest that in the diastolic range of potentials in Purkinje myocytes there is a voltage- and time-dependent K+ current (iKdd) that can be separated from the hyperpolarization- activated inward current i(f).  相似文献   

5.
韩大英  刘北英 《生理学报》1990,42(6):562-570
采用离子选择电极测量羊浦肯野纤维细胞膜内钠离子活度(~(ai)N_a),细胞间钾离子活度(a~ok)及细胞膜电位(v_m),观察不同浓度低钠,无钙液对其影响,在无钙低钠液中,细胞内Na~+逐出,α~iNa 降低,其变化速率,幅值与[Na]_o 相关,同时也受细胞 a~iNa 初始水平(aiNa(o))的影响。aiNa 下降6min 时的稳态水平与[Na]_o 呈直线正相关,这些结果表明,[Na]_o 降低时,细胞膜钠泵活动加强,细胞内 Na~+逐出增加,其最终结果是使 Na+跨膜梯度维持相对稳定,因而可以认为是 Na~+跨膜梯度而不是单纯的细胞内 Na~+控制膜钠泵活动。在低 Na~+液引起细胞内 Na~+主动逐出增加的同时,细胞膜出现超极化,[Na]_o 愈低,膜超极化程度愈高,从低钠液引起的 a~i_(Na),V_m,α~o_k 变化之间的时程关系看,膜超极化主要由加大的外向泵电流引起,同时发生的细胞间 K~+浓度变化对其也有一定影响。  相似文献   

6.
Voltage-clamp studies on the canine Purkinje strand   总被引:1,自引:0,他引:1  
Purkinje strands were excised from the left and right ventricles of adult mongrel dogs and cut to lengths of less than 2.0 mm in order to apply the two-microelectrodes voltage-clamp technique. A sizeable fraction of these preparations fully recover following dissection, with resting potentials more negative than--80 mV and upstroke velocities faster than 290 V s-1. Analysis of the voltage response to small current pulses shows that the short Purkinje strands can be treated as simple finite one-dimensional cables with ends of infinite resistance. The average length constant is 2.5 mm. In keeping with the relatively long length constant, insertion of a third microelectrode along the strand demonstrates a high degree of longitudinal homogeneity of the voltage clamp. Analysis of the capacity transient gives an estimate of the total capacity, normalized to cylindrical surface area, of 11.5 muF cm-2. The final decay of the capacity transient is a single exponential with an average time constant of 1 ms. A second slower component to the final decay of the capacity transient is absent in solutions of normal conductivity as well as in solutions of reduced (13%) conductivity. This suggests that the extracellular series resistance may be relatively small. The magnitude of the K+ depletion current was estimated by measuring the ratio of depletion current to instantaneous current. This ratio averaged 10%. These two results are consistent with the morphometric data described in the accompanying paper, which show that the canine preparation has wider extracellular clefts than the ungulate preparation. The existence of the full complement of inward and outward currents, including the pacemaker current, is demonstrated. The presence of wide clefts does not affect the potential at which the pacemaker current reverses (about--107 mV in 4 mM [K+] Tyrode solution), since the pacemaker current reverses at approximately the same potential in the canine Purkinje preparation as it does in the ungulate.  相似文献   

7.
Background K+ current in isolated canine cardiac Purkinje myocytes.   总被引:3,自引:0,他引:3       下载免费PDF全文
The current-voltage (I-V) relation of the background current, IK1, was studied in isolated canine cardiac Purkinje myocytes using the whole-cell, patch-clamp technique. Since Ba2+ and Cs+ block IK1, these cations were used to separate the I-V relation of IK1 from that of the whole cell. The I-V relation of IK1 was measured as the difference between the I-V relations of the cell in normal Tyrode (control solution) and in the presence of either Ba2+ (1 mM) or Cs+ (10 mM). Our results indicate that IK1 is an inwardly rectifying K+ current whose conductance depends on extracellular potassium concentration. In different [K+]0's the I-V relations of IK1 exhibit crossover. In addition the I-V relation of IK1 contains a region of negative slope (even when that of the whole cell does not). We also examined the relationship between the resting potential of the myocyte, Vm, and [K+]0 and found that it exhibits the characteristic anomalous behavior first reported in Purkinje strands (Weidmann, S., 1956, Elektrophysiologie der Herzmuskelfaser, Med. Verlag H. Huber), where lowering [K+]0 below 4 mM results in a depolarization.  相似文献   

8.
Physiological implications of K accumulation in heart muscle   总被引:1,自引:0,他引:1  
K+-selective microelectrodes in conjugation with the voltage clamp technique were used to examine the voltage and time dependence of K+ efflux and accumulation in cardiac muscle. K+ efflux per action potential is about 10 to 30 pmoles/cm2 per sec. Accumulation of K+ in the paracellular space plays an important role in regulation of action potential duration, so that the [K+]o prior to generation of an action potential determines the duration of following action potential. This regulation is brought about by the shift of inward rectifying K+ current along the voltage axis, so at higher [K+]o there is more outward current at plateau potentials. Monitoring [K+]o after a period of rapid beating provides quantitative data regarding Na-pump activity. The data suggest the Na-pump is electrogenic, making it difficult to assess the extent of K+ accumulation from the measurements of resting potential alone. These studies indicate that changes in [K+]o not only reflect outward membrane currents and Na-pump activity, but also play an important physiological regulatory role in determining the duration of the action potential.  相似文献   

9.
In rat mesenteric arteries, the ability of ACh to evoke hyperpolarization of smooth muscle cells and consummate dilatation relies on an increase in endothelial cell cytosolic free [Ca2+] and activation of Ca2+-activated K+ channels (KCa). The time course of average and spatially organized rises in endothelial cell [Ca2+]i and concomitant effects on membrane potential were investigated in individual cells of pressurized arteries and isolated sheets of native cells stimulated with ACh. In both cases, ACh stimulated a sustained and oscillating rise in endothelial cell [Ca2+]i. Overall, the oscillations remained asynchronous between cells, yet occasionally localized intercellular coordination became evident. In pressurized arteries, repetitive waves of Ca2+ moved longitudinally across endothelial cells, and depended on Ca2+-store refilling. The rise in endothelial cell Ca2+ was associated with sustained hyperpolarization of endothelial cells in both preparations. This hyperpolarization was also evident when recording from smooth muscle cells in pressurized arteries, and from resting membrane potential, selective inhibition of small-conductance K Ca (SK Ca) with apamin (50 nM) was sufficient to inhibit this response. In the presence of phenylephrine-tone, both apamin and the selective inhibitor of intermediate conductance K Ca (IK Ca) TRAM-34 (1 microM) were required to inhibit the non-nitric oxide-mediated dilatation to ACh. When hyperpolarization of endothelial cells was fully prevented either with inhibitors of K Ca or in KCl (35 mM)-depolarized cells, both the time course and frequency of oscillations in endothelial cell [Ca2+]i to ACh were unaffected. Together, these data show that although a rise in endothelial cell [Ca2+]i stimulates hyperpolarization, depletion of intracellular stores with ACh stimulates Ca2+-influx which is not significantly influenced by the increase in cellular electrochemical gradient for Ca2+ caused by that hyperpolarization.  相似文献   

10.
It has been hypothesized that the light-evoked rod hyperpolarization (the receptor potential) initiates the light-evoked decrease in extracellular potassium ion concentration, [K+]o, in the distal retina. The hypothesis was tested using the isolated, superfused retina of the toad, Bufo marinus; the receptor potential was recorded intracellularly from red rods, and [K+]o was measured in the photoreceptor layer with K+-specific microelectrodes. In support of the hypothesis, variations in stimulus irradiance or duration, or in retinal temperature, produced qualitatively similar effects on both the receptor potential and the decrease in [K+]o. A mechanism for the relationship between the receptor potential and the decrease in [K+]o was suggested by Matsuura et al. (1978. Vision Res. 18:767-775). In the dark, the passive efflux of K+ out of the rod is balanced by an equal influx of K+ fromthe Na+/K+ pump. The light-evoked rod hyperpolarization is assumed to reduce the passive efflux, with little effect on the pump. Thus, the influx will exceed the efflux, and [K+]o will decrease. Consistent with this mechanism, the largest and most rapid decrease in [K+]o was measured adjacent to the rod inner segments, where the Na+/K+ pump is most likely located; in addition, inhibition of the pump with ouabain abolished the decrease in [K]o more rapidly than the rod hyperpolarization. Based upon this mechanism, Matsuura et al. (1978) developed a mathematical model: over a wide range of stimulus irradiance, this model successfully predicts the time-course of the decrease in [K+]o, given only the time-course of the rod hyperpolarization.  相似文献   

11.
The intracellular concentrations of sodium [Na+] and potassium [K+] and the water content in human erythrocytes were investigated in 21 male runners before and after a marathon. From 2 to 5 min after the race, the intra-erythrocyte [K+] was significantly decreased (p less than 0.001) by 7% whereas the plasma [K+], intra-erythrocyte [Na+] and the erythrocyte water content were unchanged. The change in the intra-erythrocyte [K+] observed immediately after the marathon, was negatively correlated with the race time (r = -0.44; p less than 0.05). Furthermore, the change in the plasma [K+] (r = -0.64; p less than 0.001) and the amount of K+ excreted in the urine during the race (r = 0.54; p less than 0.05) were also, respectively, negatively and positively correlated with the race time. It is concluded that during prolonged physical exercise the erythrocytes could serve as a kind of K+ reservoir that is drained with increasing magnitude of body K+ loss. This might explain why in the faster marathon runners, in whom the urinary K+ loss is smaller and the K+ intake is greater than in the slower runners during race, the intra-erythrocyte [K+] is unchanged after a marathon whereas in the slower runners it is decreased.  相似文献   

12.
Internal and external K+ help gate the inward rectifier.   总被引:4,自引:2,他引:2       下载免费PDF全文
Recent investigations have demonstrated substantial reductions in internal [K+] in cardiac Purkinje fibers during myocardial ischemia (Dresdner, K.P., R.P. Kline, and A.L. Wit. 1987, Circ. Res. 60: 122-132). We investigated the possible role these changes in internal K+ might play in abnormal electrical activity by studying the effects of both internal and external [K+] on the gating of the inward rectifier iK1 in isolated Purkinje myocytes with the whole-cell patch-clamp technique. Increasing external [K+] had similar effects on the inward rectifier in the Purkinje myocyte as it does in other preparations: increasing peak conductance and shifting the activation curve in parallel with the potassium reversal potential. A reduction in pipette [K+] from 145 to 25 mM, however, had several dramatic previously unreported effects. It decreased the rate of activation of iK1 at a given voltage by several-fold, reversed the voltage dependence of recovery from deactivation, so that the deactivation rate decreased with depolarization, and caused a positive shift in the midpoint of the activation curve of iK1 that was severalfold smaller than the associated shift of reversal potential. These changes suggest an important role of internal K+ in gating iK1 and may contribute to changes in the electrical properties of the myocardium that occur during ischemia.  相似文献   

13.
Gonadotropin-releasing hormone (GnRH) receptors are expressed in hypothalamic tissues from adult rats, cultured fetal hypothalamic cells, and immortalized GnRH-secreting neurons (GT1 cells). Their activation by GnRH agonists leads to an overall increase in the extracellular Ca2+-dependent pulsatile release of GnRH. Electrophysiological studies showed that GT1 cells exhibit spontaneous, extracellular Ca2+-dependent action potentials, and that their inward currents include Na+, T-type and L-type Ca2+ components. Several types of potassium channels, including apamin-sensitive Ca2+-controlled potassium (SK) channels, are also expressed in GT1 cells. Activation of GnRH receptors leads to biphasic changes in intracellular Ca2+ concentration ([Ca2+]i), with an early and extracellular Ca2+-independent peak and a sustained and extracellular Ca2+-dependent plateau phase. During the peak [Ca2+]i response, electrical activity is abolished due to transient hyperpolarization that is mediated by SK channels. This is followed by sustained depolarization and resumption of firing with increased spike frequency and duration. The agonist-induced depolarization and increased firing are independent of [Ca2+]i and are not mediated by inhibition of K+ currents, but by facilitation of a voltage-insensitive and store depletion-activated Ca2+-conducting inward current. The dual control of pacemaker activity by SK and store depletion-activated Ca2+ channels facilitates voltage-gated Ca2+ influx at elevated [Ca2+]i levels, but also protects cells from Ca2+ overload. This process accounts for the autoregulatory action of GnRH on its release from hypothalamic neurons.  相似文献   

14.
Gonadotropin-releasing hormone (GnRH) stimulates characteristic biphasic increases in cytosolic calcium concentration ([Ca2+]i) and in luteinizing hormone (LH) release in cultured gonadotrophs, with an early peak followed by a prolonged plateau in both responses. Analysis of [Ca2+]i by dual-wavelength fluorimetric assay and of LH release at 5-sec intervals in perifused pituitary cells revealed increases in both responses within a few seconds of exposure to GnRH. The maximum elevation of [Ca2+]i occurred within 20 sec, and the peak gonadotropin release in 35 sec; the total duration of the spike phase for both [Ca2+]i and LH release was 2.5 min. Under extracellular Ca2(+)-deficient conditions, the GnRH-induced peak in [Ca2+]i was reduced by about 20% and the plateau phase was abolished. Concomitantly, the magnitude of the acute phase of LH release was reduced by 40% and that of the second phase by about 90%. Recovery of the plateau phase of LH release occurred within 25 sec after addition of 1.25 mM Ca2+ to Ca2(+)-deficient medium. In a dose-dependent manner, the non-selective Ca2+ channel blockers Co2+ and Cd2+ reduced the Ca2+ current measured by whole-cell recording in pituitary gonadotrophs and abolished the extracellular Ca2(+)-dependent component of LH release. The selective calcium channel blocker, nifedipine, decreased the magnitude of the Ca2+ current and reduced the plateau phase of LH release by 50%; conversely, the dihydropyridine agonist methyl, 1,4,dihydro-2,6-dimethyl 3-nitro-4-(2-trifluorome) (Bay K 8644) consistently enhanced the amplitudes of both Ca2+ current and GnRH-induced LH release. These data reveal a close temporal correlation between changes in [Ca2+]i and LH release during GnRH action, with Ca2+ mobilization during the spike phase and Ca2+ influx through dihydropyridine-sensitive and insensitive sets of receptor-operated calcium channels during the spike and plateau phases. In addition, analysis of the magnitudes of the [Ca2+]i and LH responses to a wide range of GnRH concentrations in the presence and absence of extracellular Ca2+ is consistent with amplification of the [Ca2+]i signal in agonist-stimulated gonadotrops.  相似文献   

15.
The effects of membrane potential on resting and bradykinin-stimulated changes in [Ca2+]i were measured in fura-2 loaded cultured endothelial cells from bovine atria by spectrofluorimetry. The basal and bradykinin-stimulated release of endothelium-derived relaxing factor, monitored by bioassay methods, were dependent on extracellular Ca2+. Similarly, the plateau phase of the biphasic [Ca2+]i response to bradykinin stimulation exhibited a dependence on extracellular Ca2+, whereas the initial transient [Ca2+]i peak was refractory to the removal of extracellular Ca2+. The effect of membrane depolarization on the plateau phase of the bradykinin-induced change in [Ca2+]i was determined by varying [K+]o. The resting membrane potential measured under current clamp conditions was positively correlated with the extracellular [K+] (52 mV change/10-fold change in [K+]o). The observed decrease in resting and bradykinin-stimulated changes in [Ca2+]i upon depolarization is consistent with an ion transport mechanism where the influx is linearly related to the electrochemical gradient for Ca2+ entry (Em - ECa). The inhibition of bradykinin-stimulated Ca2+ entry by isotonic K+ was not due to the absence of extracellular Na+ since Li+ substitution did not inhibit the agonist-induced Ca2+ entry. In K(+)-free solutions and in the presence of ouabain, bradykinin evoked synchronized oscillations in [Ca2+]i in confluent endothelial cell monolayers. These [Ca2+]i oscillations between the plateau and resting [Ca2+]i levels were dependent on extracellular Ca2+ and K+ concentrations. Although the mechanism(s) underlying [Ca2+]i oscillations in vascular endothelial cells is unclear, these results suggest a role of the membrane conductance.  相似文献   

16.
Inwardly rectifying currents in enzymically dissociated olfactory receptor neurons of rat were studied by using patch-clamp techniques. Upon hyperpolarization to membrane potentials more negative than -100 mV, small inward-current relaxations were observed. Activation was described by a single exponential with a time constant that decreased e-fold for a 21 mV hyperpolarization. The current was not reduced by the external application of 5 mM Ba2+, but was abolished by the addition of 5 mM Cs+ to the bath solution. Increasing the external K+ concentration ([K+]o) to 25 mM dramatically enhanced the current without affecting the voltage range or the kinetics of activation. In 25 mM [K+]o, tail currents reversed at -26 mV, significantly more positive than the K+ equilibrium potential of -44 mV. These characteristics are consistent with those of a mixed Na+/K+ inward rectification that has been reported in several types of neuronal, cardiac and smooth muscle cells. The current may contribute to controlling cell excitability during the response to some odorants.  相似文献   

17.
We have used combined patch clamp and fura-2 fluorescence to elucidate the role of membrane potential in the regulation of the cytosolic Ca2+ concentration ([Ca2+]i) in a human umbilical vein derived endothelial cell-line, EA.hy926 (EA cells) stimulated with vasoactive agonists, such as ATP, histamine and bradykinin. This stimulation caused hyperpolarization and sustained Ca2+ plateau in nonclamped cells. Clamping agonist-stimulated cells at negative potentials enhanced the amplitude of this plateau, whereas it was smaller at more depolarized potentials, indicating that Ca2+ influx follows its driving force. Depolarization of the membrane by increasing extracellular K+ or by applying charybdotoxin, a blocker of big conductance Ca2+-dependent K+ channels during agonist stimulation diminished the plateau rise in [Ca2+]i. It is concluded that the membrane potential is an efficient regulator of Ca2+ influx during the plateau phase of agonist-mediated Ca2+ signals. In addition, the modulating effects on Ca2+ signals should be interpreted with caution if the membrane potential of the cells is not controlled.  相似文献   

18.
1. Previous work has shown that nerve activity is associated with a significant release of potassium in the vicinity of the axonal membrane. Several mechanisms are normally present which reduce K+ accumulation in the extra-axonal space. 2. In intact connectives of the crayfish, Procambarus clarkii, repetitive stimulation of the giant axons was associated with an apparent hyperpolarization measured by an interstitial microelectrode, which most probably corresponds to depolarization of the inner face of the perineurial cells by K+ ions leaving the axons. 3. In desheathed connectives of the crayfish, potassium accumulated during long depolarizing voltage-clamp pulses but cleared away very quickly at the end of the pulse. 4. In the small squid, Alloteuthis subulata, repetitive stimulation of giant axons in situ in fresh and well-perfused animals did not result in a large decrease in the positive after potential (undershoot), reflecting the absence of potassium accumulation. A similar absence of accumulation was observed in vitro for carefully and freshly dissected isolated axons from live squids. 5. In both cases, deterioration of the physiological state of the axon was accompanied by a significant potassium accumulation. Potassium accumulation could also be reversibly enhanced by decreasing the osmotic pressure of the bathing medium, whereas hyperosmotic solutions had the opposite effect. These results are compatible with the idea that Schwann cells around the axon play a key role in K+ homeostasis. 6. Experiments on giant axons of the large squid species, Loligo forbesi confirmed the observations made on Alloteuthis in that fresh preparations exhibited little potassium accumulation. Under voltage-clamp conditions, 10 ms depolarizing pulses to various potential levels did not induce any accumulation in these preparations as reflected by the outward tail current. Large accumulation was observed in older axons under similar experimental conditions. 7. A large peri-axonal space associated with healthy glial cells appears to be a prerequisite for efficient K+ homeostasis in both crayfish and squid. Other mechanisms involving specific transport mechanisms across axonal and glial membranes are also likely to be involved.  相似文献   

19.
The neuropeptide somatostatin causes membrane hyperpolarization and reduces the intracellular free calcium ion concentration ([Ca2+]i) in GH pituitary cells. In this study, we have used the fluorescent dyes bisoxonol (bis,-(1,3-diethylthiobarbiturate)-trimethineoxonol) and quin2 to elucidate the mechanisms by which these ionic effects are triggered. Addition of 100 nM somatostatin to GH4C1 cells caused a 3.4 mV hyperpolarization and a 26% decrease in [Ca2+]i within 30 s. These effects were not accompanied by changes in intracellular cAMP concentrations and occurred in cells containing either basal or maximally elevated cAMP levels. To determine which of the major permeant ions were involved in these actions of somatostatin, we examined its ability to elicit changes in the membrane potential and the [Ca2+]i when the transmembrane concentration gradients for Na+, Cl-, Ca2+, and K+ were individually altered. Substitution of impermeant organic ions for Na+ or Cl- did not block either the hyperpolarization or the decrease in [Ca2+]i induced by somatostatin. Decreasing extracellular Ca2+ from 1 mM to 250 nM abolished the reduction in [Ca2+]i but did not prevent the hyperpolarization response. These results show that hyperpolarization was not primarily due to changes in the conductances of Na+, Cl-, or Ca2+. Although the somatostatin-induced decrease in [Ca2+]i did require Ca2+ influx, it was independent of changes in Na+ or Cl- conductance. In contrast, elevating the extracellular [K+] from 4.6 to 50 mM completely blocked both the somatostatin-induced hyperpolarization and the reduction in [Ca2+]i. Furthermore, hyperpolarization of the cells with gramicidin mimicked the effect of somatostatin to decrease the [Ca2+]i and prevented any additional effect by the hormone. These results indicate that somatostatin increases a K+ conductance, which hyperpolarizes GH4C1 cells, and thereby secondarily decreases Ca2+ influx. Since the somatostatin-induced decrease in [Ca2+]i is independent of changes in intracellular cAMP levels, it may be responsible for somatostatin inhibition of hormone secretion by its cAMP-independent mechanism.  相似文献   

20.
A local increase in the extracellular potassium concentration [K+]o, up to about 8 meq/liter either by topical application or intra-arterial infusion of K+ salts, causes arteriolar dilation and decreased resistance to blood flow in systemic vascular beds. Isolated vascular smooth muscle responds to a similar increase in [K+] in the bathing fluid with relaxation if the preparation has some initial active tension. Reduction in [K+] over physiological ranges produces arteriolar constriction and increased resistance to blood flow. K+ vasodilation is accompanied by hyperpolarization of the smooth muscle cell whereas the vasoconstriction is accompanied by depolarization. All these responses can be blocked by ouabain, a potent Na+, K+-ATPase inhibitor. It is therefore thought that K+ vasodilation results from stimulation of the electrogenic Na+-K+ pump whereas the vasoconstriction results from inhibition of this pump. A number of conditions that alter resistance also alter interstitial fluid [K+]. These include exercise, myocardial ischemia, epileptic convulsions, and evoked electrical activity of the somatomotor cortex. Certain findings, including those during administration of ouabain, suggest that changes in [K+] contribute significantly to some of the changes in resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号