首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MJ Michel  JH Knouft 《PloS one》2012,7(9):e44932
When species distribution models (SDMs) are used to predict how a species will respond to environmental change, an important assumption is that the environmental niche of the species is conserved over evolutionary time-scales. Empirical studies conducted at ecological time-scales, however, demonstrate that the niche of some species can vary in response to environmental change. We use habitat and locality data of five species of stream fishes collected across seasons to examine the effects of niche variability on the accuracy of projections from Maxent, a popular SDM. We then compare these predictions to those from an alternate method of creating SDM projections in which a transformation of the environmental data to similar scales is applied. The niche of each species varied to some degree in response to seasonal variation in environmental variables, with most species shifting habitat use in response to changes in canopy cover or flow rate. SDMs constructed from the original environmental data accurately predicted the occurrences of one species across all seasons and a subset of seasons for two other species. A similar result was found for SDMs constructed from the transformed environmental data. However, the transformed SDMs produced better models in ten of the 14 total SDMs, as judged by ratios of mean probability values at known presences to mean probability values at all other locations. Niche variability should be an important consideration when using SDMs to predict future distributions of species because of its prevalence among natural populations. The framework we present here may potentially improve these predictions by accounting for such variability.  相似文献   

2.
Environmental change during the Quaternary period has caused changes in the composition and structure of vegetation on the Sunda shelf of Southeast Asia. Climatic conditions drier than the present, particularly during the peak of the last ice age, led to a reduction in the extent of rain forests. Most recently, there has been a close association between drought and the occurrence of major, rain forest fires. Although many rain forest trees show adaptations to periodic drought, this is not the case for frequent or intense fires. Over evolutionary time-scales, major fires may thus have been largely confined to driver vegetation types, such as monsoon and deciduous forests, and only infrequently penetrated rain forest areas. Continental-scale distribution patterns for rain forest species reveal a number of biodiversity hotspots that are consistent for a broad range of taxonomically unrelated taxa. These biodiversity hotspots account for a relatively small part of the total extent of rain forest; they may also represent ecologically relatively stable areas. This paper discusses the location and extent of biodiversity hotspots on the Sunda shelf within the context of past and present environmental change. It finds that whatever the history of biodiversity hotspots, they are increasingly threatened by contemporary environmental change, notably a trend towards increasingly frequent and intense fires. The paper concludes that the trend is likely to continue, without major changes in those activities that degrade and precondition to fire remaining areas of rain forest.  相似文献   

3.
Projected impacts of climate change on vector-borne disease dynamics must consider many variables relevant to hosts, vectors and pathogens, including how altered environmental characteristics might affect the spatial distributions of vector species. However, many predictive models for vector distributions consider their habitat requirements to be fixed over relevant time-scales, when they may actually be capable of rapid evolutionary change and even adaptation. We examine the genetic signature of a spatial expansion by an invasive vector into locations with novel temperature conditions compared to its native range as a proxy for how existing vector populations may respond to temporally changing habitat. Specifically, we compare invasions into different climate ranges and characterize the importance of selection from the invaded habitat. We demonstrate that vector species can exhibit evolutionary responses (altered allelic frequencies) to a temperature gradient in as little as 7–10 years even in the presence of high gene flow, and further, that this response varies depending on the strength of selection. We interpret these findings in the context of climate change predictions for vector populations and emphasize the importance of incorporating vector evolution into models of future vector-borne disease dynamics.  相似文献   

4.
Neo-Darwinian evolution has presented a paradigm for population dynamics built on random mutations and selection with a clear separation of time-scales between single-cell mutation rates and the rate of reproduction. Laboratory experiments on evolving populations until now have concentrated on the fixation of beneficial mutations. Following the Darwinian paradigm, these experiments probed populations at low temporal resolution dictated by the rate of rare mutations, ignoring the intermediate evolving phenotypes. Selection however, works on phenotypes rather than genotypes. Research in recent years has uncovered the complexity of genotype-to-phenotype transformation and a wealth of intracellular processes including epigenetic inheritance, which operate on a wide range of time-scales. Here, by studying the adaptation dynamics of genetically rewired yeast cells, we show a novel type of population dynamics in which the intracellular processes intervene in shaping the population structure. Under constant environmental conditions, we measure a wide distribution of growth rates that coexist in the population for very long durations (>100 generations). Remarkably, the fastest growing cells do not take over the population on the time-scale dictated by the width of the growth-rate distributions and simple selection. Additionally, we measure significant fluctuations in the population distribution of various phenotypes: the fraction of exponentially-growing cells, the distributions of single-cell growth-rates and protein content. The observed fluctuations relax on time-scales of many generations and thus do not reflect noisy processes. Rather, our data show that the phenotypic state of the cells, including the growth-rate, for large populations in a constant environment is metastable and varies on time-scales that reflect the importance of long-term intracellular processes in shaping the population structure. This lack of time-scale separation between the intracellular and population processes calls for a new framework for population dynamics which is likely to be significant in a wide range of biological contexts, from evolution to cancer.  相似文献   

5.
Knowing the geographic extents of species is crucial for understanding the causes of diversity distributions and modes of speciation and extinction. Species geographic ranges are often viewed as approximately constant in size in geological time, even though climate change studies have shown that historical and modern species geographic distributions are not static. Here, we use an extensive global microfossil database to explore the temporal trajectories of geographic extents over the entire lifespan of marine nannoplankton, diatom, planktic foraminifer and radiolarian species. We show that geographic extents are not static over geological time-scales. Temporal trajectories of species geographic ranges are asymmetric: the rise is quicker than the fall. We propose that once a species has overcome its initial difficulties in geographic establishment, it rises to its peak geographic extent. However, once this peak value is reached, it will also have a maximal number of species to interact with. The negative of these biotic interactions could then cause a gradual geographic decline. We discuss the multiple implications of our findings with reference to macroecological and macroevolutionary studies.  相似文献   

6.
The human leukocyte antigen (HLA) distributions in 16 Pacific populations have been collated from published and unpublished reports. Gene frequency and linkage disequilibrium relationships among groups show that Australians and Papuans share a common ancestry, that coastal Melanesia has about 16% Austronesian admixture, and that Fiji is truly intermediate between Melanesia and Polynesia. In Polynesia, Cook Islanders show closer affinity with populations of Western Polynesia than with Maoris and Easter Islanders, in contrast to their linguistic affiliations, but otherwise HLA distributions show a clear division between the populations of Eastern and Western Polynesia. This study emphasizes the contribution the HLA system can make to anthropological studies and has provided a version of colonization of the Pacific compatible with theories based on prodigious efforts in many disciplines.  相似文献   

7.
Molecular analysis of two Australo-Papuan rainforest birds exhibiting correlated 'leapfrog' patterns were used to elucidate the evolutionary origin of this unusual pattern of geographical differentiation. In both sooty owls (Tyto) and logrunners (Orthonyx), phenotypically similar populations occupy widely disjunct areas (central-eastern Australia and upland New Guinea) with a third, highly distinctive population, occurring between them in northeastern Queensland. Two mechanisms have been proposed to explain the origin of leapfrog patterns in avian distributions: recent shared ancestry of terminal populations and unequal rates or phenotypic change among populations. As the former should generate correlated patterns of phenotypic and genetic differentiation, we tested for a sister relationship between populations from New Guinea and central-eastern Australia using nuclear and mitochondrial DNA sequences. The resulting phylogenies not only refute recent ancestry as an explanation for the leapfrog pattern, but provide evidence of vastly different spatio-temporal histories for sooty owls and logrunners within the Australo-Papuan rainforests. This incongruence indicates that the evolutionary processes responsible for generating leapfrog patterns in these co-distributed taxa are complex, possibly involving a combination of selection and drift in sooty owls and convergence or retention of ancestral characteristics in logrunners.  相似文献   

8.
Defining ecologically relevant upper temperature limits of species is important in the context of environmental change. The approach used in the present paper estimates the relationship between rates of temperature change and upper temperature limits for survival in order to evaluate the maximum long-term survival temperature (Ts). This new approach integrates both the exposure time and the exposure temperature in the evaluation of temperature limits. Using data previously published for different temperate and Antarctic marine environments, we calculated Ts in each environment, which allowed us to calculate a new index: the Warming Allowance (WA). This index is defined as the maximum environmental temperature increase which an ectotherm in a given environment can tolerate, possibly with a decrease in performance but without endangering survival over seasonal or lifetime time-scales. It is calculated as the difference between maximum long-term survival temperature (Ts) and mean maximum habitat temperature. It provides a measure of how close a species, assemblage or fauna are living to their temperature limits for long-term survival and hence their vulnerability to environmental warming. In contrast to data for terrestrial environments showing that warming tolerance increases with latitude, results here for marine environments show a less clear pattern as the smallest WA value was for the Peru upwelling system. The method applied here, relating upper temperature limits to rate of experimental warming, has potential for wide application in the identification of faunas with little capacity to survive environmental warming.  相似文献   

9.
Three different lattice-based models for antagonistic ecological interactions, both nonlinear and stochastic, exhibit similar power-law scalings in the geometry of clusters. Specifically, cluster size distributions and perimeter-area curves follow power-law scalings. In the coexistence regime, these patterns are robust: their exponents, and therefore the associated Korcak exponent characterizing patchiness, depend only weakly on the parameters of the systems. These distributions, in particular the values of their exponents, are close to those reported in the literature for systems associated with self-organized criticality (SOC) such as forest-fire models; however, the typical assumptions of SOC need not apply. Our results demonstrate that power-law scalings in cluster size distributions are not restricted to systems for antagonistic interactions in which a clear separation of time-scales holds. The patterns are characteristic of processes of growth and inhibition in space, such as those in predator-prey and disturbance-recovery dynamics. Inversions of these patterns, that is, scalings with a positive slope as described for plankton distributions, would therefore require spatial forcing by environmental variability.  相似文献   

10.
Organisms employ a multitude of strategies to cope with the dynamical environments in which they live. Homeostasis and physiological plasticity buffer changes within the lifetime of an organism, while stochastic developmental programs and hypermutability track changes on longer time-scales. An alternative long-term mechanism is "genetic potential"--a heightened sensitivity to the effects of mutation that facilitates rapid evolution to novel states. Using a transparent mathematical model, we illustrate the concept of genetic potential and show that as environmental variability decreases, the evolving population reaches three distinct steady state conditions: (1) organismal flexibility, (2) genetic potential, and (3) genetic robustness. As a specific example of this concept we examine fluctuating selection for hydrophobicity in a single amino acid. We see the same three stages, suggesting that environmental fluctuations can produce allele distributions that are distinct not only from those found under constant conditions, but also from the transient allele distributions that arise under isolated selective sweeps.  相似文献   

11.
Contemporary genetic variation among Latin Americans human groups reflects population migrations shaped by complex historical, social and economic factors. Consequently, admixture patterns may vary by geographic regions ranging from countries to neighborhoods. We examined the geographic variation of admixture across the island of Puerto Rico and the degree to which it could be explained by historic and social events. We analyzed a census-based sample of 642 Puerto Rican individuals that were genotyped for 93 ancestry informative markers (AIMs) to estimate African, European and Native American ancestry. Socioeconomic status (SES) data and geographic location were obtained for each individual. There was significant geographic variation of ancestry across the island. In particular, African ancestry demonstrated a decreasing East to West gradient that was partially explained by historical factors linked to the colonial sugar plantation system. SES also demonstrated a parallel decreasing cline from East to West. However, at a local level, SES and African ancestry were negatively correlated. European ancestry was strongly negatively correlated with African ancestry and therefore showed patterns complementary to African ancestry. By contrast, Native American ancestry showed little variation across the island and across individuals and appears to have played little social role historically. The observed geographic distributions of SES and genetic variation relate to historical social events and mating patterns, and have substantial implications for the design of studies in the recently admixed Puerto Rican population. More generally, our results demonstrate the importance of incorporating social and geographic data with genetics when studying contemporary admixed populations.  相似文献   

12.
Understanding how environmental parameters interact to govern species distributions is a shared goal of ecology and biogeography. Biotic and abiotic conditions can change distributions by affecting the nature of interspecific interactions. Although documented in free-living systems, this context dependency has been neglected in parasite interactions. We investigated the influence of condition-specific competition on the specificity of two species of feather lice (Phthiraptera: Ischnocera) that share a host, the mourning dove (Zenaida macroura). We show that relative humidity restricts the range of one species, Columbicola macrourae3 (i.e., the C. macrourae lineage found on mourning doves), to the more humid eastern United States. The second species, Columbicola baculoides, an arid-adapted species, is restricted to drier regions of the western United States by C. macrourae3, which outcompetes it in experiments. Thus, arid conditions in the West provide C. baculoides with a climatic refuge from the competitively superior C. macrourae3, effectively doubling parasite diversity on one host species. These results support the hypothesis that abiotic factors can determine species distributions on the stressful end of an environmental gradient while interspecific competition governs distributions at the benign end. The balance between these factors is subject to change as environmental conditions change, even if the host distribution remains unaffected.  相似文献   

13.
Phylogenetic diversity (PD) captures the shared ancestry of species, and is increasingly being recognized as a valuable conservation currency. Regionally, PD frequently covaries closely with species richness; however, variation in speciation and extinction rates and/or the biogeographic history of lineages can result in significant deviation. Locally, these differences may be pronounced. Rapid recent speciation or high temporal turnover of lineages can result in low PD but high richness. In contrast, rare dispersal events, for example, between biomes, can elevate PD but have only small impact on richness. To date, environmental predictors of species richness have been well studied but global models explaining variation in PD are lacking. Here, we contrast the global distribution of PD versus species richness for terrestrial mammals. We show that an environmental model of lineage diversification can predict well the discrepancy in the distribution of these two variables in some places, for example, South America and Africa but not others, such as Southeast Asia. When we have information on multiple diversity indices, conservation efforts directed towards maximizing one currency or another (e.g. species richness versus PD) should also consider the underlying processes that have shaped their distributions.  相似文献   

14.
Malcom JW 《PloS one》2011,6(4):e14799
Ecologists have increasingly come to understand that evolutionary change on short time-scales can alter ecological dynamics (and vice-versa), and this idea is being incorporated into community ecology research programs. Previous research has suggested that the size and topology of the gene network underlying a quantitative trait should constrain or facilitate adaptation and thereby alter population dynamics. Here, I consider a scenario in which two species with different genetic architectures compete and evolve in fluctuating environments. An important trade-off emerges between adaptive accuracy and adaptive speed, driven by the size of the gene network underlying the ecologically-critical trait and the rate of environmental change. Smaller, scale-free networks confer a competitive advantage in rapidly-changing environments, but larger networks permit increased adaptive accuracy when environmental change is sufficiently slow to allow a species time to adapt. As the differences in network characteristics increase, the time-to-resolution of competition decreases. These results augment and refine previous conclusions about the ecological implications of the genetic architecture of quantitative traits, emphasizing a role of adaptive accuracy. Along with previous work, in particular that considering the role of gene network connectivity, these results provide a set of expectations for what we may observe as the field of ecological genomics develops.  相似文献   

15.
North Africa has a great diversity of indigenous sheep breeds whose origin is linked to its environmental characteristics and to certain historical events that took place in the region. To date, few genome‐wide studies have been conducted to investigate the population structure of North African indigenous sheep. The objective of the present study was to provide a detailed assessment of the genetic structure and admixture patterns of six Maghreb sheep populations using the Illumina 50K Ovine BeadChip and comparisons with 22 global populations of sheep and mouflon. Regardless of the method of analysis used, patterns of multiple hybridization events were observed within all North African populations, leading to a heterogeneous genetic architecture that varies according to the breed. The Barbarine population showed the lowest genetic heterogeneity and major southwest Asian ancestry, providing additional support to the Asian origin of the North African fat‐tailed sheep. All other breeds presented substantial Merino introgression ranging from 15% for D'man to 31% for Black Thibar. We highlighted several signals of ancestral introgression between North African and southern European sheep. In addition, we identified two opposite gradients of ancestry, southwest Asian and central European, occurring between North Africa and central Europe. Our results provide further evidence of the weak global population structure of sheep resulting from high levels of gene flow among breeds occurring worldwide. At the regional level, signs of recent admixture among North African populations, resulting in a change of the original genomic architecture of minority breeds, were also detected.  相似文献   

16.
Biological variation is investigated among contemporary Croatians, Bosnians, American whites, and other multitemporal Balkan populations (World War II Croatians, Macedonians, and Greeks) via multivariate statistics and distance measures of the craniofacial complex. This study demonstrates that there is considerable variation among groups of European ancestry. Bosnians and Croatians who are thought to be relatively homogenous and historically to originate from the same Slav ancestry show local variations. While environmental plasticity has been used to explain cranial changes among human groups, it does not adequately explain the variation observed between Bosnians and Croatians. It is an oversimplification to exclusively attribute the vast range of variability observed among local as well as geographic populations to environmental adaptations.  相似文献   

17.
Darwin insisted that evolutionary change occurs very slowly over long periods of time, and this gradualist view was accepted by his supporters and incorporated into the infinitesimal model of quantitative genetics developed by R. A. Fisher and others. It dominated the first century of evolutionary biology, but has been challenged in more recent years both by field surveys demonstrating strong selection in natural populations and by quantitative trait loci and genomic studies, indicating that adaptation is often attributable to mutations in a few genes. The prevalence of strong selection seems inconsistent, however, with the high heritability often observed in natural populations, and with the claim that the amount of morphological change in contemporary and fossil lineages is independent of elapsed time. I argue that these discrepancies are resolved by realistic accounts of environmental and evolutionary changes. First, the physical and biotic environment varies on all time-scales, leading to an indefinite increase in environmental variance over time. Secondly, the intensity and direction of natural selection are also likely to fluctuate over time, leading to an indefinite increase in phenotypic variance in any given evolving lineage. Finally, detailed long-term studies of selection in natural populations demonstrate that selection often changes in direction. I conclude that the traditional gradualist scheme of weak selection acting on polygenic variation should be supplemented by the view that adaptation is often based on oligogenic variation exposed to commonplace, strong, fluctuating natural selection.  相似文献   

18.
Patterns of environmental variation influence the utility, and thus evolution, of different learning strategies. I use stochastic, individual-based evolutionary models to assess the relative advantages of 15 different learning strategies (genetic determination, individual learning, vertical social learning, horizontal/oblique social learning, and contingent combinations of these) when competing in variable environments described by 1/f noise. When environmental variation has little effect on fitness, then genetic determinism persists. When environmental variation is large and equal over all time-scales ("white noise") then individual learning is adaptive. Social learning is advantageous in "red noise" environments when variation over long time-scales is large. Climatic variability increases with time-scale, so that short-lived organisms should be able to rely largely on genetic determination. Thermal climates usually are insufficiently red for social learning to be advantageous for species whose fitness is very determined by temperature. In contrast, population trajectories of many species, especially large mammals and aquatic carnivores, are sufficiently red to promote social learning in their predators. The ocean environment is generally redder than that on land. Thus, while individual learning should be adaptive for many longer-lived organisms, social learning will often be found in those dependent on the populations of other species, especially if they are marine. This provides a potential explanation for the evolution of a prevalence of social learning, and culture, in humans and cetaceans.  相似文献   

19.
Since the professionalization of US-based forensic anthropology in the 1970s, ancestry estimation has been included as a standard part of the biological profile, because practitioners have assumed it necessary to achieve identifications in medicolegal contexts. Simultaneously, forensic anthropologists have not fully considered the racist context of the criminal justice system in the United States related to the treatment of Black, Indigenous, and People of Color; nor have we considered that ancestry estimation might actually hinder identification efforts because of entrenched racial biases. Despite ongoing criticisms from mainstream biological anthropology that ancestry estimation perpetuates race science, forensic anthropologists have continued the practice. Recent years have seen the prolific development of retooled typological approaches with 21st century statistical prowess to include methods for estimating ancestry from cranial morphoscopic traits, despite no evidence that these traits reflect microevolutionary processes or are suitable genetic proxies for population structure; and such approaches have failed to critically evaluate the societal consequences for perpetuating the biological race concept. Around the country, these methods are enculturated in every aspect of the discipline ranging from university classrooms, to the board-certification examination marking the culmination of training, to standard operating procedures adopted by forensic anthropology laboratories. Here, we use critical race theory to interrogate the approaches utilized to estimate ancestry to include a critique of the continued use of morphoscopic traits, and we assert that the practice of ancestry estimation contributes to white supremacy. Based on the lack of scientific support that these traits reflect evolutionary history, and the inability to disentangle skeletal-based ancestry estimates from supporting the biological validity of race, we urge all forensic anthropologists to abolish the practice of ancestry estimation.  相似文献   

20.
BackgroundAsthma and rhinitis are common childhood health conditions. Being an understudied and rapidly growing population in the US, Hispanic children have a varying risk for these conditions that may result from sociocultural (including acculturative factors), exposure and genetic diversities. Hispanic populations have varying contributions from European, Amerindian and African ancestries. While previous literature separately reported associations between genetic ancestry and acculturation factors with asthma, whether Amerindian ancestry and acculturative factors have independent associations with development of early-life asthma and rhinitis in Hispanic children remains unknown. We hypothesized that genetic ancestry is an important determinant of early-life asthma and rhinitis occurrence in Hispanic children independent of sociodemographic, acculturation and environmental factors.MethodsSubjects were Hispanic children (5–7 years) who participated in the southern California Children’s Health Study. Data from birth certificates and questionnaire provided information on acculturation, sociodemographic and environmental factors. Genetic ancestries (Amerindian, European, African and Asian) were estimated based on 233 ancestry informative markers. Asthma was defined by parental report of doctor-diagnosed asthma. Rhinitis was defined by parental report of a history of chronic sneezing or runny or blocked nose without a cold or flu. Sample sizes were 1,719 and 1,788 for investigating the role of genetic ancestry on asthma and rhinitis, respectively.ResultsChildren had major contributions from Amerindian and European ancestries. After accounting for potential confounders, per 25% increase in Amerindian ancestry was associated with 17.6% (95% confidence interval [CI]: 0.74–0.99) and 13.6% (95% CI: 0.79–0.98) lower odds of asthma and rhinitis, respectively. Acculturation was not associated with either outcome.ConclusionsEarlier work documented that Hispanic children with significant contribution from African ancestry are at increased asthma risk; however, in Hispanic children who have little contribution from African ancestry, Amerindian ancestry was independently associated with lower odds for development of early-childhood asthma and rhinitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号