首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
We studied the mechanism of sphingosylphosphorylcholine (SPC)-induced contraction in feline ileal smooth muscle cells. Western blotting revealed that G protein subtypes of Gαi1, Gαi3 and Gαo existed in feline ileum. Gαi3 antibody penetration into permeabilized cells decreased SPC-induced contraction. In addition, incubation of [35S]guanosine 5′-O-(3-thiotriphosphate) ([35S]GTPγS) with membrane fraction increased its binding to Gαi3 subtype after SPC treatment, suggesting that the signalling pathways invoked by SPC were mediated by Gαi3 protein. MAPK kinase (MEK) inhibitor PD98059 blocked the contraction significantly, but p38 mitogen-activated protein kinase (MAPK) inhibitor SB202190 did not. Chelerythrine and neomycin also inhibited the contraction. However, cotreatment of PD98059 and chelerythrine showed no significant difference. Phosphorylation of p44/42 MAPK was increased by SPC treatment, which was reversed by pretreatment of inhibitors of signalling molecules that decreased SPC-induced contraction previously. The same result was obtained in the assay of MAPK activity.  相似文献   

2.
Activation of extracellular signal-related kinase (ERK) is involved in decreased melanogenesis by sphingosylphosphorylcholine (SPC). In the present study, we confirmed that SPC activated ERK and that a specific inhibitor of the ERK pathway (PD98059) recovered SPC-induced hypopigmentation. Moreover, we found that SPC significantly reduces protein phosphatase 2A (PP2A) activity in Mel-Ab cells, and that PP2A activator treatment abrogated SPC-induced hypopigmentation. We determined that α-melanocyte-stimulating hormone (α-MSH) increased the expression of dual-specificity phosphatase 6 (DUSP6), an ERK phosphatase, in a time-dependent manner. In contrast, SPC decreased the level of DUSP6 in Mel-Ab cells. Furthermore, inhibiting DUSP6 increased ERK activation and subsequently augmented the SPC-induced hypopigmenting effects. Taken together, our data suggest that SPC-induced phosphatase inhibition is also responsible for the hypopigmentary effects.  相似文献   

3.
Growing evidence suggests that activation of mitogen-activated protein kinase (MAPK) signal transduction mediates changes in muscle gene expression in response to exercise. Nevertheless, little is known about upstream or downstream regulation of MAPK in response to muscle contraction. Here we show that ex vivo muscle contraction stimulates extracellular signal-regulated kinase 1 and 2 (ERK1/2), and p38(MAPK) phosphorylation. Phosphorylation of ERK1/2 or p38(MAPK) was unaffected by protein kinase C inhibition (GF109203X), suggesting that protein kinase C is not involved in mediating contraction-induced MAPK signaling. Contraction-stimulated phosphorylation of ERK1/2 and p38(MAPK) was completely inhibited by pretreatment with PD98059 (MAPK kinase inhibitor) and SB203580 (p38(MAPK) inhibitor), respectively. Muscle contraction also activated MAPK downstream targets p90 ribosomal S6 kinase (p90(Rsk)), MAPK-activated protein kinase 2 (MAPKAP-K2), and mitogen- and stress-activated protein kinase 1 (MSK1). Use of PD98059 or SB203580 revealed that stimulation of p90(Rsk) and MAPKAP-K2 most closely reflects ERK and p38(MAPK) stimulation, respectively. Stimulation of MSK1 in contracting skeletal muscle required the activation of both ERK and p38(MAPK). These data demonstrate that muscle contraction, separate from systemic influence, activates MAPK signaling. Furthermore, we are the first to show that contractile activity stimulates MAPKAP-K2 and MSK1.  相似文献   

4.
We investigated the mechanism of contraction induced by S1P in esophageal smooth muscle cells. Western blot analysis demonstrated that S1P(1), S1P(2), S1P(3), and S1P(5) receptors existed in the cat esophagus. Only penetration of EDG-5 (S1P(2)) antibody into permeabilized cells inhibited S1P-induced contraction. Pertussis toxin (PTX) also inhibited contraction, suggesting that it was mediated by S1P(2) receptors coupled to a PTX-sensitive G(i) protein. Specific antibodies to G(i2), G(q) and G(beta) inhibited contraction, implying that the S1P-induced contraction depends on PTX-insensitive G(q) and G(beta) dimers as well as the PTX-sensitive G(i2). Contraction was not affected by the phospholipase A2 inhibitor DEDA, or the PLD inhibitor rho-chloromer-curibenzoate, but it was abolished by the PLC inhibitor U73122. Incubation of permeabilized cells with PLCb3 antibody also inhibited contraction. Contraction involved the activation of a PKC pathway since it was affected by GF109203X and chelerythrine. Since PKCepsilon antibody inhibited contraction, PKCe may be required. Preincubation of the muscle cells with the MEK inhibitor PD98059 blocked S1P-induced contraction, but the p38 MAP kinase inhibitor SB202190 did not. In addition, co-treatment of cells with GF 109203X and PD98059 did not have a synergistic effect, suggesting that these two kinases are involved in the same signaling pathway. Our data suggest that S1P-induced contraction in esophageal smooth muscle cells is mediated by S1P(2) receptors coupled to PTX-sensitive G(i2) proteins, and PTX-insensitive G(q) and G(beta) proteins, and that the resulting activation of the PLCb3 and PKCepsilon pathway leads to activation of a p44/p42 MAPK pathway.  相似文献   

5.
We investigated the mechanism of C(2)-ceramide (C(2))-induced circular smooth muscle cell contraction in cat oesophagus. C(2) produced contraction of smooth muscle cells isolated by enzymatic digestion, peaked at 30 s and was sustained at a plateau at 5 min. The response to C(2) was concentration-dependent. H-7 or chelerythrine inhibited C(2)-induced contraction, while the diacylglycerol (DAG) kinase inhibitor, R59949, had no effect, suggesting that the contraction is protein kinase C (PKC) pathway-dependent. To test if PKC-mediated contraction may be isozyme-specific, we examined the effects of PKC isozymes antibodies on contraction. PKC-epsilon antibody inhibited the contraction by C(2) but not by PKC-betaII or -gamma, suggesting that PKC-epsilon mediates the contraction by C(2). To characterize the specific PKC isozymes that mediate contraction of the smooth muscle cells, we used, as an inhibitor, N-myristoylated peptides (myr-PKC) derived from the pseudosubstrate sequences of PKC-(alpha)(beta)(gamma), -alpha, -delta, or -epsilon. myr-PKC-epsilon only inhibited the contraction, which was concentration-dependent, suggesting that PKC-epsilon isozyme is involved in the contraction. To examine which mitogen-activated protein kinases (MAPKs) are involved in C(2)-induced contraction, specific MAPK inhibitors (MEK inhibitor, PD98059, and p38 MAPK inhibitor, SB202190) are used. Preincubation of PD98059 blocked the contraction induced by C(2) in a concentration-dependent manner. However, SB202190 had no effects on contraction. C(2) increased the intensity of the bands identified by phosphospecific p44/p42 MAPK antibody and preincubation of PD98059 decreased the intensity of bands as compared with C(2)-stimulated cells. In conclusion, C(2) produced the contraction of smooth muscle cells of cat oesophagus. The contraction is mediated by PKC-epsilon, resulting in the activation of p44/p42 MAPK.  相似文献   

6.
Fong JC  Kao YS  Tsai H  Ho LT 《Cellular signalling》2001,13(7):491-497
The mechanism of enhancing glucose transport by prolonged endothelin-1 (ET-1) treatment of 3T3-L1 adipocytes was examined. Western and Northern blot analyses indicated that ET-1 increased the amount of both GLUT1 protein and mRNA. The degradation rate of GLUT1 mRNA as measured in the presence of actinomycin D, nevertheless, was not significantly altered by ET-1. Whereas various inhibitors for distinct signalling pathways were tested, only the mitogen-activated protein kinase (MAPK) kinase inhibitor, PD98059, was found to decrease significantly the enhancing effect of ET-1. Similar extent of inhibition was observed in cells pretreated with pertussis toxin (PT). Immunoblot analysis revealed that ET-1 may stimulate a transient phosphorylation of p42/p44 MAPK and both PT and PD98059 inhibited this stimulation. In addition, the effect of ET-1 on GLUT1 mRNA accumulation was inhibited by PD98059 and cycloheximide, implying that a trans-activation was involved. Taken together, these results suggest that ET-1 may induce GLUT1 gene expression by a MAPK-dependent mechanism.  相似文献   

7.
The G protein specificity of multiple signaling pathways of the dopamine-D2S (short form) receptor was investigated in GH4ZR7 lactotroph cells. Activation of the dopamine-D2S receptor inhibited forskolin-induced cAMP production, reduced BayK8644- activated calcium influx, and blocked TRH-mediated p42/p44 MAPK phosphorylation. These actions were blocked by pretreatment with pertussis toxin (PTX), indicating mediation by G(i/o) proteins. D2S stimulation also decreased TRH-induced MAPK/ERK kinase phosphorylation. TRH induced c-Raf but not B-Raf activation, and the D2S receptor inhibited both TRH-induced c-Raf and basal B-Raf kinase activity. After PTX treatment, D2S receptor signaling was rescued in cells stably transfected with individual PTX-insensitive Galpha mutants. Inhibition of adenylyl cyclase was partly rescued by Galpha(i)2 or Galpha(i)3, but Galpha(o) alone completely reconstituted D2S-mediated inhibition of BayK8644-induced L-type calcium channel activation. Galpha(o) and Galpha(i)3 were the main components involved in D2S-mediated p42/44 MAPK inhibition. In cells transfected with the carboxyl-terminal domain of G protein receptor kinase to inhibit Gbetagamma signaling, only D2S-mediated inhibition of calcium influx was blocked, but not inhibition of adenylyl cyclase or MAPK. These results indicate that the dopamine-D2S receptor couples to distinct G(i/o) proteins, depending on the pathway addressed, and suggest a novel Galpha(i)3/Galpha(o)-dependent inhibition of MAPK mediated by c-Raf and B-Raf-dependent inhibition of MAPK/ERK kinase.  相似文献   

8.
Stimulation of rat peritoneal neutrophils with staurosporine (64 nM) induced production of macrophage inflammatory protein-2 (MIP-2) and phosphorylation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase/MAP kinase (ERK/MAPK). The staurosporine-induced MIP-2 production at 4 h was inhibited by the highly specific p38 MAPK inhibitor SB 203580 and the MAPK/ERK kinase (MEK-1) inhibitor PD 98059 in a concentration-dependent manner. By treatment with SB 203580 (1 microM) or PD 98059 (50 microM), the staurosporine-induced increase in the levels of mRNA for MIP-2 was only partially lowered, although the staurosporine-induced MIP-2 production was completely inhibited. Consistent with the inhibition by the protein synthesis inhibitor cycloheximide, SB 203580 and PD 98059 inhibited MIP-2 production at 4 h either when added simultaneously with staurosporine or 2 h after stimulation with staurosporine. In contrast, the DNA-dependent RNA polymerase inhibitor actinomycin D did not inhibit MIP-2 production at 4 h when it was added 2 h after staurosporine stimulation. Dot blot analysis demonstrated that treatment with SB 203580 or PD 98059 down-regulates the stability of MIP-2 mRNA. These results suggested that p38 MAPK and ERK/MAPK pathways are involved in translation of MIP-2 mRNA to protein and stabilization of MIP-2 mRNA.  相似文献   

9.
We examined the roles of the PI3K-AKT signalling pathway in fetal lung development. By Western blotting, phosphorylated AKT (pAKT) was highly expressed in fetal days 12 and 14 with decreased expression thereafter. By immunohistochemistry, pAKT was expressed mainly in the respiratory epithelium of early fetal days. We examined the effects of fibroblast growth factor 1 (FGF1), PI3K inhibitors (LY294002 and wortmannin), MAPK inhibitor (PD98059) and both of FGF1 and each inhibitor on lung morphogenesis, BrdU incorporation and apoptosis. In the FGF1-treated explants, the number of terminal buds and BrdU-labelled cells increased significantly, while the LY294002-, wortmannin-, PD98059-treated explants demonstrated obvious decreases. The effects by FGF1 were inhibited by LY294002, wortmannin and PD98059. Regardless of the presence of FGF1, the LY294002-, wortmannin- and PD98059-treated explants increased apoptosis revealed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling assay in the mesenchyme of the explants. At the same time, the effect of LY294002, wortmannin, PD98059 on expression of surfactant apoprotein C (SPC) were also studied. The LY294002 and wortmannin treatments showed decreased expression of SPC. These findings suggest that the PI3K-AKT signalling pathway plays a pivotal role in mouse lung development through various biological processes.  相似文献   

10.
Abstract

In rat HTC hepatoma cells overexpressing human insulin receptors, insulin stimulated glycogen synthesis by 55–70%. To study postreceptor signaling events leading to insulin-stimulated glycogen synthesis in these cells, we have employed pathway-specific chemical inhibitors such as LY294002, rapamycin and PD98059 to inhibit phosphatidylinositol-3-kinase (PI3K), p70 ribosomal S6 kinase and mitogen-activated protein kinase (MAPK) kinase/MAPK, respectively. LY294002 (50 μM) completely abolished insulin-stimulated glycogen synthesis whereas rapamycin (2–20 nM) partially inhibited it. Neither LY294002 nor rapamycin significantly affected the basal glycogen synthesis. However, PD98059 (100 μM) significantly inhibited the basal glycogen synthesis without affecting insulin-stimulated glycogen synthesis. In these cells, insulin at 100 nM decreased glycogen synthase kinase 3α (GSK3α) activity by 30–35%. LY294002, but neither rapamycin nor PD98059, abolished insulin-induced inactivation of GSK3α. These data suggest that insulin-stimulated glycogen synthesis in rat HTC hepatoma cells is mediated mainly by PI3K-dependent mechanism. In these cells, inactivation of GSK3α, downstream of PI3K, may play a role in insulin-stimulated glycogen synthesis.  相似文献   

11.
Lee SH  Lee MY  Han HJ 《Cell proliferation》2008,41(2):230-247
Hypoxia plays important roles in some early stages of mammalian embryonic development and in various physiological functions. This study examined the effect of arachidonic acid on short-period hypoxia-induced regulation of G(1) phase cell-cycle progression and inter-relationships among possible signalling molecules in mouse embryonic stem cells. Hypoxia increased the level of hypoxia-inducible factor-1alpha (HIF-1alpha) expression and H2O2 generation in a time-dependent manner. In addition, hypoxia increased the levels of cell-cycle regulatory proteins (cyclin D(1), cyclin E, cyclin-dependent kinase 2 (CDK2) and CDK4). Maximum increases in the level of these proteins and retinoblastoma phosphorylation were observed after 12-24 h of exposure to hypoxic conditions, and then decreased. Alternatively, the level of the CDK inhibitors, p21(Cip1) and p27(Kip1) were decreased. These results were consistent with the results of [3H]-thymidine incorporation and cell counting. Hypoxia also increased the level of [3H]-arachidonic acid release and inhibition of cPLA(2) reduced hypoxia-induced increase in levels of the cell-cycle regulatory proteins and [3H]-thymidine incorporation. The level of cyclooxygenase-2 (COX-2) was also increased by hypoxia and inhibition of COX-2 decreased the levels of cell-cycle regulatory proteins and [3H]-thymidine incorporation. Indeed, the percentage of cells in S phase, levels of cell cycle regulatory proteins, and [3H]-thymidine incorporation were further increased in hypoxic conditions with arachidonic acid treatment compared to normoxic conditions. Hypoxia-induced Akt and mitogen-activated protein kinase (MAPK) phosphorylation was inhibited by vitamin C (antioxidant, 10(-3) M). In addition, hypoxia-induced increase of cell-cycle regulatory protein expression and [(3)H]-thymidine incorporation were attenuated by LY294002 (PI3K inhibitor, 10(-6) M), Akt inhibitor (10(-6) M), rapamycin (mTOR inhibitor, 10(-9) M), PD98059 (p44/42 inhibitor, 10(-5) M), and SB203580 (p38 MAPK inhibitor, 10(-6) M). Furthermore, hypoxia-induced increase of [(3)H]-arachidonic acid release was blocked by PD98059 or SB203580, but not by LY294002 or Akt inhibitor. In conclusion, arachidonic acid up-regulates short time-period hypoxia-induced G(1) phase cyclins D(1) and E, and CDK 2 and 4, in mouse embryonic stem cells through the cooperation of PI3K/Akt/mTOR, MAPK and cPLA(2)-mediated signal pathways.  相似文献   

12.
Grepafloxacin is an asymmetric fluoroquinolone derivative which possesses high tissue penetrability as well as strong, broad-spectrum antimicrobial activities. We recently found that grepafloxacin induced a priming effect on neutrophil respiratory burst induced by N-formylmethionylleucylphenylalanine. In this report, we elucidate the precise mechanism of the priming by grepafloxacin. The R(+) enantiomer of grepafloxacin induced a more potent priming effect than did S(-)-grepafloxacin. R(+)-Grepafloxacin also produced a more potent translocation of both p47- and p67-phox proteins to membrane fractions of neutrophils. Grepafloxacin-induced primed superoxide generation was significantly inhibited by pretreatment with PD169316 and SB203580, p38 mitogen-activated protein kinase (MAPK) inhibitors, but not with PD98059, a specific inhibitor of the upstream kinase that activates p44/42 MAPK, or SP600125, an inhibitor of stress-activated protein kinase/c-Jun N-terminal kinase (JNK). Grepafloxacin strongly phosphorylated p38 MAP kinase but not p44/42 MAPK or JNK. R(+)-Grepafloxacin showed more potent phosphorylation of p38 MAPK than did S(-)-grepafloxacin, in a time- and concentration-dependent manner. PD169316 significantly inhibited R(+)-grepafloxacin-induced translocation of p47-phox protein to the membrane fraction. Interestingly, grepafloxacin stereospecifically bound to the membrane fractions of neutrophils. These results strongly suggest that grepafloxacin stereospecifically primes neutrophil respiratory burst, and p38 MAPK activation is closely related to the grepafloxacin priming.  相似文献   

13.
Molecular mechanisms underlying migration of vascular smooth muscle cells (VSMCs) toward sphingosylphosphorylcholine (SPC) were analyzed in light of the hypothesis that remodeling of the actin cytoskeleton should be involved. After SPC stimulation, mitogen-activated protein kinases (MAPKs), including p38 MAPK (p38) and p42/44 MAPK (p42/44), were found to be phosphorylated. Migration of cells toward SPC was reduced in the presence of SB-203580, an inhibitor of p38, but not PD-98059, an inhibitor of p42/44. Pertussis toxin (PTX), a Gi protein inhibitor, induced an inhibitory effect on p38 phosphorylation and VSMC migration. Myosin light chain (MLC) phosphorylation occurred after SPC stimulation with or without pretreatment with SB-203580 or PTX. The MLC kinase inhibitor ML-7 and the Rho kinase inhibitor Y-27632 inhibited MLC phosphorylation but only partially inhibited SPC-directed migration. Complete inhibition was achieved with the addition of SB-203580. After SPC stimulation, the actin cytoskeleton formed thick bundles of actin filaments around the periphery of cells, and the cells were surrounded by elongated filopodia, i.e., magunapodia. The peripheral actin bundles consisted of alpha- and beta-actin, but magunapodia consisted exclusively of beta-actin. Such a remodeling of actin was reversed by addition of SB-203580 and PTX, but not ML-7 or Y-27632. Taken together, our biochemical and morphological data confirmed the regulation of actin remodeling and suggest that VSMCs migrate toward SPC, not only by an MLC phosphorylation-dependent pathway, but also by an MLC phosphorylation-independent pathway.  相似文献   

14.
Sphingosylphosphorylcholine (SPC) is a component of high-density lipoprotein particles. We investigated the functional role of SPC in HUVECs. SPC stimulation induced production of the CCL2 chemokine in a PTX-sensitive G-protein-dependent manner. SPC treatment caused the activation of NF-κB and AP-1, which are essential for SPC-induced CCL2 production, and induced the activation of three MAPKs, ERK, p38 MAPK, and JNK. Inhibition of p38 MAPK or JNK by specific inhibitors caused a dramatic decrease in SPC-induced CCL2 production. The Jak/STAT3 pathway was also activated upon SPC stimulation of HUVECs. Pretreatment with a Jak inhibitor blocked not only SPC-induced p38 MAPK and JNK activation, but also NF-κB and AP-1 activation. Our results suggest that SPC stimulates HUVECs, resulting in Jak/STAT3-, NF-κB-, and AP-1-mediated CCL2 production. We also observed that SPC stimulated expression of the adhesion molecule ICAM-1 in HUVECs. Our results suggest that SPC may contribute to atherosclerosis; therefore, SPC and its unidentified target receptor offer a starting point for the development of a treatment for atherosclerosis.  相似文献   

15.
Numerous studies have shown that long-chain polyunsaturated fatty acids can kill cancer cells in vitro as well as in vivo, while normal cells remain unaffected. Unfortunately, the cellular and molecular mechanisms responsible for this phenomenon are still poorly understood. The aim of this study was to investigate the potential chemopreventative/antiproliferative potential of docosahexaenoic acid (DHA) in an adenocarcinoma cell line (CaCo2 cells) and to evaluate the signalling pathways modulated by it. DHA (5-50 microM) significantly inhibited cell viability in a dose-dependent manner in CaCo2 cells, while the viability of normal colon cells (NCM460 cells) was not compromised. DHA also induced apoptosis in CaCo2 cells, as indicated by increases in caspase-3 activation and poly-ADP-ribose polymerase cleavage. Signalling proteins, which include extracellular signal-regulated kinase, p38 mitogen-activated protein kinase (MAPK), Akt and p53 were analysed by Western blotting using phosphospecific and total antibodies. The protein inhibitors wortmannin (phosphoinositide 3 kinase inhibitor), PD 98059 (MEK inhibitor) and SB 203580 (p38 inhibitor) as well as silencing RNA [small interfering RNA (siRNA)] of the p38 MAPK protein, were used to investigate cross-talk between signalling pathways. DHA supplementation significantly suppressed Akt phosphorylation, which also correlated with decreased cell viability and increased apoptosis in CaCo2 cells. Furthermore, siRNA experiments suggested a possible role for p38 MAPK in the phosphorylation of p53 at Ser15, a site which is associated with DNA damage. DHA might thus exert its beneficial effects by means of increased apoptosis and suppression of the important survival-related kinase, Akt.  相似文献   

16.
Sphingosylphosphorylcholine (SPC) is a bioactive lipid molecule involved in a variety of cellular responses. In the present study, we demonstrated that treatment of human adipose tissue-derived mesenchymal stem cells (hATSCs) with D-erythro-SPC resulted in apoptosis-like cell death, as demonstrated by decreased cell viability, DNA strand breaks, the increase of sub-G1 fraction, cytochrome c release into cytosol, and activation of caspase-3. In contrast, the exposure of hATSCs to L-threo-SPC did not induce the cell death, suggesting that the SPC-induced cell death was selective for the D-erythro-stereoisomer of SPC. The D-erythro-SPC-induced cell death was prevented by DEVD-CHO, a caspase-3 specific inhibitor, and Z-VAD-FMK, a general caspase inhibitor, suggesting that the SPC-induced cell death of hATSCs occurs through the cytochrome c- and caspase-3-dependent pathways. In addition, D-erythro-SPC treatment stimulated the activation of mitogen-activated protein kinases, such as ERK and c-Jun NH2-terminal protein kinase (JNK), and the D-erythro-SPC-induced cell death was completely prevented by pretreatment with the MEK inhibitor, U0126, but not by pretreatment with the JNK inhibitor, SP600125, and the p38 MAPK inhibitor, SB202190, suggesting a specific involvement of ERK in the D-erythro-SPC-induced cell death. Pretreatment with U0126 attenuated the D-erythro-SPC-induced release of cytochrome c. From these results, we suggest that ERK is involved in the SPC-induced cell death of hATSC through stimulation of the cytochrome c/caspase-3-dependent pathway.  相似文献   

17.
Control of cell proliferation depends on intracellular mediators that determine the cellular response to external cues. In neuroendocrine cells, the dopamine D2 receptor short form (D2S receptor) inhibits cell proliferation, whereas in mesenchymal cells the same receptor enhances cell proliferation. Nontransformed BALB/c 3T3 fibroblast cells were stably transfected with the D2S receptor cDNA to study the G proteins that direct D2S signaling to stimulate cell proliferation. Pertussis toxin inactivates G(i) and G(o) proteins and blocks signaling of the D2S receptor in these cells. D2S receptor signaling was reconstituted by individually transfecting pertussis toxin-resistant Galpha(i/o) subunit mutants and measuring D2-induced responses in pertussis toxin-treated cells. This approach identified Galpha(i)2 and Galpha(i)3 as mediators of the D2S receptor-mediated inhibition of forskolin-stimulated adenylyl cyclase activity; Galpha(i)2-mediated D2S-induced stimulation of p42 and p44 mitogen-activated kinase (MAPK) and DNA synthesis, whereas Galpha(i)3 was required for formation of transformed foci. Transfection of toxin-resistant Galpha(i)1 cDNA induced abnormal cell growth independent of D2S receptor activation, while Galpha(o) inhibited dopamine-induced transformation. The role of Gbetagamma subunits was assessed by ectopic expression of the carboxyl-terminal domain of G protein receptor kinase to selectively antagonize Gbetagamma activity. Mobilization of Gbetagamma subunits was required for D2S-induced calcium mobilization, MAPK activation, and DNA synthesis. These findings reveal a remarkable and distinct G protein specificity for D2S receptor-mediated signaling to initiate DNA synthesis (Galpha(i)2 and Gbetagamma) and oncogenic transformation (Galpha(i)3), and they indicate that acute activation of MAPK correlates with enhanced DNA synthesis but not with transformation.  相似文献   

18.
19.
In order to study the role of phosphatidylinositol-3-kinase (PI3K), PKB, FRAP, S6 kinase, and MAP kinase in insulin-stimulated glycogen synthesis, we used a specific inhibitor of PI3K, LY294002, the immunosuppressant inhibitor of FRAP, rapamycin, and the inhibitor of MAPK kinase (MEK)/MAPK, PD98059, in rat HTC hepatoma cells overexpressing human insulin receptors. The PI3K inhibitor LY294002 completely blocks insulin-stimulated glycogen synthesis by inhibiting glycogen synthase, PKB (Akt-1), and FRAP (RAFT) autophosphorylation, as well as p70 S6 kinase activation, whereas insulin receptor substrates tyrosine phosphorylation and MEK activity were not affected. However, rapamycin only partially blocks insulin-stimulated glycogen synthesis by partial inhibition of glycogen synthase, whereas it completely blocks S6 kinase activation and FRAP autophosphorylation, but does not affect either PKB autophosphorylation, MEK activity, or insulin receptor tyrosine phosphorylation. Insulin-stimulated glycogen synthesis and glycogen synthase were not affected by the MEK/MAPK inhibitor PD98059. These data suggest that the PI3K, and not the MAPK pathway plays an important role in the insulin-stimulated glycogen synthesis in the hepatocyte, partly mediated by FRAP and S6 kinase activation. However, the inhibition of FRAP and S6 kinase activation is not sufficient to block insulin-stimulated glycogen synthesis, suggesting an important role of a branching pathway upstream of S6 kinase and downstream of PI3K, which is probably mediated by PKB in the signaling of the insulin receptor in hepatoma HTC cells.  相似文献   

20.
The role of 3',5'-cyclic guanosine monophosphate (cGMP) in the activation of mitogen-activated protein kinases (MAPKs) was investigated in rat pinealocytes. Treatment with dibutyryl cGMP (DBcGMP) dose-dependently increased the phosphorylation of both p44 and p42 isoforms of MAPK. This effect of DBcGMP was abolished by PD98059 (a MAPK kinase inhibitor), H7 (a nonspecific protein kinase inhibitor), and KT5823 [a selective cGMP-dependent protein kinase (PKG) inhibitor]. Elevation of cellular cGMP content by treatment with norepinephrine, zaprinast (a cGMP phosphodiesterase inhibitor), or nitroprusside was effective in activating MAPK. Natriuretic peptides that were effective in elevating cGMP levels in this tissue were also effective in activating MAPK. Our results indicate that, in this neuroendocrine tissue, the cGMP/PKG signaling pathway is an important mechanism used by hormones and neurotransmitters in activating MAPK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号