首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of cAMP to inhibit isoleucyl-tRNA synthetase (IRS) formation has been demonstrated in wild type K-12 Escherichia coli and two adenyl-cyclase (cya) mutants. cAMP appeared not to have any effect on either the valyl- or arginyl-tRNA synthetase (VRS and ARS respectively). Addition of cAMP led to a reduction in rate of IRS synthesis but not VRS or ARS. Furthermore, derepression of IRS and VRS by isoleucine limitation was completely prevented by cAMP.Abbreviations IRS isoleucyl-tRNA synthetase - VRS valyl-tRNA synthetase - ARS arginyl-tRNA synthetase - cAMP cyclic adenosine-3,5-monophosphate - Cya adenyl cyclase Gene - CRP cAMP receptor protein - O.D. optical density  相似文献   

2.
Brevibacillus choshinensis (formerly Bacillus brevis) is a protein-hyperproducing bacterium and has been used for commercial protein production. Here, we cloned thioredoxin (trxA) and thioredoxin reductase (trxB) genes from B. choshinensis, and expressed the gene products in Escherichia coli with an amino-terminal hexa-His-tag for purification and characterization. His-TrxA and His-TrxB were purified to homogeneity with one-step Ni-NTA affinity column chromatography, and the two recombinant proteins showed identical specific activity with or without removal of the amino-terminal His-tag, indicating that the extrasequence containing the hexa-His-tag did not affect their enzymatic activities. The E. coli expression system used here resulted in a 40-fold increase in production of His-TrxB protein compared to the level of native TrxB produced in non-recombinant B. choshinensis cells. TrxA and TrxB proteins with carboxy-terminal His-tag (TrxA-His and TrxB-His) were successfully expressed in B. choshinensis and were purified by Ni-NTA column chromatography. Co-expression of TrxA-His with recombinant human epidermal growth factor (hEGF) in B. choshinensis promoted the extracellular production of hEGF by up to about 200%.  相似文献   

3.
A novel microbial transglutaminase (TGase) from the cultural filtrate of Streptomyces netropsis BCRC 12429 (Sn) was purified. The specific activity of the purified TGase was 18.2 U/mg protein with an estimated molecular mass of 38 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis. The TGase gene of S. netropsis was cloned and an open reading frame of 1,242 bp encoding a protein of 413 amino acids was identified. The Sn TGase was synthesized as a precursor protein with a preproregion of 82 amino acid residues. The deduced amino acid sequence of the mature S. netropsis TGase shares 78.9–89.6% identities with TGases from Streptomyces spp. A high level of soluble Sn TGase with its N-terminal propeptide fused with thioredoxin was expressed in E. coli. A simple and efficient process was applied to convert the purified recombinant protein into an active enzyme and showed activity equivalent to the authentic mature TGase. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
The creation of a double His-tag fusion that forms a RNA stem loop in the mRNA encoding the N-terminus of the target protein is a novel approach for the enhancement of expression, purification, and detection of a recombinant protein. Compared to a single His-tag fusion, a tandem His-tag fusion RNA stem loop, located downstream of the constitutive groE and Ch promoters, enhanced heterologous gene expression in Brucella, Salmonella, and Escherichia. We demonstrated one-step detection and purification of recombinant green fluorescence protein (GFP) directly from Brucella spp. without using Escherichia coli as an expression host. The amount of purified GFP using the tandem His-tag RNA stem loop increased more than threefold; moreover, the sensitivity of detection increased more than fourfold in comparison to the single His-tag fusion form. This method has the potential to significantly improve heterologous gene expression and high-throughput protein synthesis and purification.  相似文献   

5.
The development of cyanophage N-1 in the N2-fixing cyanobacterium Nostoc muscorum is dependent on light. The redox state of thioredoxin m was altered in phage infected cells, with the proportion of reduced thioredoxin increasing during the eclipse period. In one step growth experiments, the specific activity of glucose-6-phosphate dehydrogenase increased transiently during the eclipse period, whereas that of glutamine synthetase increased towards the end of the eclipse period (2–4h after infection) then remained high until the end of the latent period (about 7 h after infection). The rate of respiratory O2 uptake was maintained until the end of the latent period. In contrast, the specific activity of phosphoribulokinase and the rate of photosynthetic O2 evolution began to decrease towards the end of the eclipse period and later than the level of extractable protein began to decrease. Nitrogenase activity remained high throughout the eclipse period then decreased rapidly after 5 h. The level of glutamine synthetase protein decreased in parallel with the decrease in total extractable protein, whereas the level of thioredoxin m protein decreased more slowly.  相似文献   

6.
Arginyl-tRNA synthetase is found in multiple molecular weight forms in extracts from a variety of mammalian tissues. The rat liver enzyme can be isolated either as a component of the synthetase complex (Mr greater than 10(6) or as a free protein (Mr = 60,000). However, based on activity measurements after sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the molecular weight of the free form differs from its counterpart in the complex (Mr = 72,000). Both forms of arginyl-tRNA synthetase cross-react with an antibody directed against the complex, and both have similar catalytic properties. Thus, the two proteins have similar apparent Km values for arginine and ATP, the same pH optimum, are inhibited equally by elevated ionic strength and PPi, and they aminoacylate the same population of tRNA molecules. On the other hand, the free and complexed forms differ with respect to their apparent Km values for tRNA (free, 4 microM; complexed, 28 microM), their temperature sensitivity (complexed greater sensitivity), and their hydrophobicity (complexed more hydrophobic). Limited proteolysis of the synthetase complex with papain releases a low molecular weight form of arginyl-tRNA synthetase whose size, temperature sensitivity, and hydrophobicity are similar to that of the endogenous free form. Nevertheless, the usual 2:1 ratio of complexed-to-free form of rat liver arginyl-tRNA synthetase is not altered by a variety of homogenization or incubation conditions in the presence or absence of multiple protease inhibitors. In contrast to extracts of rat liver, rabbit liver extracts do not contain a free form of arginyl-tRNA synthetase. These results suggest that the complexed and free forms of arginyl-tRNA synthetase are probably the same gene product and that the free form in rat liver extracts is derived from the complexed form by a limited endogenous proteolysis that removes the portion of the protein required for anchoring it in the complex. The question of whether the free form is an artifact of isolation or whether it pre-exists in the cell is discussed.  相似文献   

7.
l-canavanine, the toxic guanidinooxy analogue of l-arginine, is the product of plant secondary metabolism. The need for a detoxifying mechanism for the producer plant is self-evident but the larvae of the bruchid beetle Caryedes brasiliensis, that is itself a non-producer, have specialized in feeding on the l-canavanine-containing seeds of Dioclea megacarpa. The evolution of a seed predator that can imitate the enzymatic abilities of the host permits us to address the question of whether the same problem of amino acid recognition in two different kingdoms has been solved by the same mechanism. A discriminating arginyl-tRNA synthetase, detected in a crude C. brasiliensis larval extract, was proposed to be responsible for insect's ability to survive the diet of l-canavanine (Rosenthal, G. A., Dahlman, D. L., and Janzen, D. H. (1976) A novel means for dealing with L-canavanine, a toxic metabolite. Science 192, 256258). Since the arginyl-tRNA synthetase of at least three genetic compartments (insect cytoplasmic, insect mitochondrial and insect gut microflora) may participate in conferring l-canavanine resistance, we investigated whether the nuclear-encoded C. brasiliensis mitochondrial arginyl-tRNA synthetase plays a role in this discrimination. Steady state kinetics of the cloned, recombinant enzyme have revealed and quantified an amino acid discriminating potential of the mitochondrial enzyme that is sufficient to account for the overall l-canavanine misincorporation rate observed in vivo. As in the cytoplasmic enzyme of the l-canavanine producer plant, the mitochondrial arginyl-tRNA synthetases from a specialist seed predator relies on a kinetic discrimination that prevents l-canavanine misincorporation into proteins.  相似文献   

8.
A full-length cDNA encoding Carica papaya glutamine cyclotransferase was cloned by RT-PCR on the basis of results from amino acid sequencing of tryptic fragments of the native enzyme. The cDNA of 1036 nucleotides encodes a typical 22-residue signal peptide and a mature protein of 266 residues with a calculated molecular mass of 30,923 Da. Five plant ESTs encoding putative QCs highly homologous to PQC were identified and the numbers and locations of cysteines and N-glycosylation sites are conserved. The plant QC amino acid sequences are very different from the known mammalian QC sequences and no clear homology was observed. The PQC cDNA was expressed in Escherichia coli as either His-tagged PQC, with three different signal peptides and in fusions with thioredoxin, glutathione S-transferase, and (pre-) maltose-binding protein. In all cases, the expressed protein was either undetectable or insoluble. Expression in Pichia pastoris of PQC fused to the alpha-factor leader resulted in low levels of PQC activity. Extracellular expression of PQC in the insect cell/baculovirus system was successful and 15-50 mg/liter of active PQCs with three different secretion signals was expressed and purified. Further, PQC N-terminally fused to a combined secretion signal/His-tag peptide was correctly processed by the host signal peptidase and the His-tag could subsequently be removed with dipeptidyl peptidase I. The expressed products were characterized by activity assays, SDS-PAGE, N-terminal amino acid sequencing, MALDI-TOF mass spectroscopy, and peptide mass fingerprint analysis.  相似文献   

9.
The recently cloned gene for spinach chloroplast thioredoxin f was subcloned in a modified pKK233-2 expression vector and used for transformation of Escherichia coli cells containing the Iq plasmid. After induction with IPTG (isopropyl--D-thiogalactoside) the transformed cells produce the chloroplast protein in large amounts as insoluble deposit within the cell. The protein has been solubilized, purified and analysed for activity. It shows no difference in catalytic activity from native spinach chloroplast thioredoxin f. Its electrophoretic behaviour suggests that the native thioredoxin f may have a different N-terminus than was assumed on the basis of the protein sequencing results.  相似文献   

10.
The administration of antibodies against the cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) is a promising approach in the upregulation of immune responses in many cancers and infectious diseases. The single-chain variable fragment of antibody against CTLA4 is also useful in developing immunotoxins that might be used in the treatment of cancer, transplant rejection, and autoimmune diseases. Here, we report the production of a soluble and functional scFv antibody against CTLA4 by using Pichia pastoris as the expression system. The gene encoding scFv hS83 with an additional 6His-tag at the 5’-end was inserted into the expression vector pPIC9K. Then, the transformants were double-screened on plates containing 0.25 mg/mL and 1.5 mg/mL of neomycin G418 and many clones with different levels of G418-resistance were selected for further studies on expression. After induction by the addition of methanol, various levels of hS83 were detected in the supernatant of P. pastoris containing pPIC9K-hS83. Clones with low G418-resistance produced more hS83 than those with higher G418-resistance. Under the optimized conditions (initial inoculum, 40 A600nm AU/mL; pH 6.0; methanol concentration, 3.0%; induction time, 72 h), approximately 16–20 mg protein could be recovered from 1 L of the culture. The purified hS83 had a stronger binding ability towards CTLA4-positive Raji cells than CTLA4-negative ECV304 cells. This finding indicates that the antibody produced by P. pastoris is functional and may be used in immunotherapy for cancer, infection, transplant rejection, and autoimmune diseases. Huawei Cai and Lihong Chen contributed equally to this work.  相似文献   

11.
Nocardia farcinica is a Gram positive, filamentous bacterium, and is considered an opportunistic pathogen. In this study, the highly expressed genes in N. farcinica were predicted using the codon adaptation index (CAI) as a numerical estimator of gene expressivity. Using ribosomal protein (RP) genes as references, the top ∼ ∼10% of the genes were predicted to be the predicted highly expressed (PHX) genes in N. farcinica using a CAI cutoff of greater than 0.73. Consistent with earlier analysis of Streptomyces genomes, most of the PHX genes in N. farcinica were involved in various ‘house-keeping’ functions important for cell growth. However, 15 genes putatively involved in nocardial virulence were predicted as PHX genes in N. farcinica, which included genes encoding four Mce proteins, cyclopropane fatty acid synthase which is involved in the modification of cell wall which may be important for nocardia virulence, polyketide synthase PKS13 for mycolic acid synthesis and a non-ribosomal peptide synthetase involved in biosynthesis of a mycobactin-related siderophore. In addition, multiple genes involved in defense against reactive oxygen species (ROS) produced by the phagocyte were predicted with high expressivity, which included alkylhydroperoxide reductase (ahpC), catalase (katG), superoxide dismutase (sodF), thioredoxin, thioredoxin reductase, glutathione peroxidase, and peptide methionine sulfoxide reductase, suggesting that combating against ROS is essential for survival of N. farcinica in host cells. The study also showed that the distribution of PHX genes in the N. farcinica circular chromosome was uneven, with more PHX genes located in the regions close to replication initiation site. The results provided the first estimates of global gene expression patterns in N.␣farcinica, which will be useful in guiding experimental design for further investigations. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

12.
An E. coli vector system was constructed which allows the expression of fusion genes via a l-rhamnose-inducible promotor. The corresponding fusion proteins consist of the maltose-binding protein and a His-tag sequence for affinity purification, the Saccharomyces cerevisiae Smt3 protein for protein processing by proteolytic cleavage and the protein of interest. The Smt3 gene was codon-optimized for expression in E. coli. In a second rhamnose-inducible vector, the S. cerevisiae Ulp1 protease gene for processing Smt3 fusion proteins was fused in the same way to maltose-binding protein and His-tag sequence but without the Smt3 gene. The enhanced green fluorescent protein (eGFP) was used as reporter and protein of interest. Both fusion proteins (MalE-6xHis-Smt3-eGFP and MalE-6xHis-Ulp1) were efficiently produced in E. coli and separately purified by amylose resin. After proteolytic cleavage the products were applied to a Ni-NTA column to remove protease and tags. Pure eGFP protein was obtained in the flow-through of the column in a yield of around 35% of the crude cell extract.  相似文献   

13.
Kai G  Liu Y  Wang X  Yang S  Fu X  Luo X  Liao P 《Biotechnology letters》2011,33(7):1361-1365
Hyoscyamine 6β-hydroxylase (H6H; EC 1.14.11.11) converts hyoscyamine to scopolamine in the last step of scopolamine biosynthetic pathway. The gene encoding H6H in Anisodus acutangulus was cloned and expressed in Escherichia coli and the recombinant proteins fused with His-tag or GST-tag at its N-terminal were purified and then confirmed by Western bolt analysis. The biofunctional assay revealed that the His-AaH6H and GST-AaH6H converted hyoscyamine (40 mg/l) to scopolamine at 32 and 31 mg/l, respectively. This is the first report on AaH6H expression, purification and functional characterization facilitates further genetic improvement of scopolamine yield in A. acutangulus.  相似文献   

14.
15.
A novel antifreeze protein cDNA was cloned by RT-PCR from the larva of the yellow mealworm Tenebrio molitor. The coding fragment of 339 bp encodes a protein of 112 amino acid residues and was fused to the expression vectors pET32a and pTWIN1. The resulted expression plasmids were transformed into Escherischia coli strains BL21 (DE3), ER2566, and Origami B (DE3), respectively. Several strategies were used for expression of the highly disulfide-bonded β-helix-contained protein with the activity of antifreeze in different expression systems. A protocol for production of refolded and active T. molitor antifreeze protein in bacteria was obtained.  相似文献   

16.
The B subunit of Escherichia coli heat-labile toxin (LTB) may function as an efficient carrier molecule for the delivery of genetically coupled antigens across the mucosal barrier. We constructed vectors for the expression of LTB and LTBSC proteins. LTBSC is a fusion protein that comprises the amino acid sequence from the C-domain of rat synapsin fused to the C-terminal end of LTB. Both constructions have a coding sequence for a 6His-tag fused in-frame. LTBSC was expressed in E. coli as inclusion bodies. The inclusion bodies were isolated and purified by Ni2+-chelating affinity chromatography under denaturing condition. Purified LTBSC was diluted in several refolding buffers to gain a soluble and biologically active protein. Refolded LTBSC assembled as an active oligomer which binds to the GM1 receptor in an enzyme-linked immunosorbent assay (ELISA). Soluble LTB in the E. coli lysate was also purified by Ni2+-chelating affinity chromatography and the assembled pentamer was able to bind with high affinity to GM1 in vitro. LTBSC and LTB were fed to rats and the ability to induce antigen-specific tolerance was tested. LTBSC inhibited the specific delayed-type hypersensitivity (DTH) response and induced decreased antigen-specific in vivo and in vitro cell proliferation more efficiently than LTB. Thus, the novel hybrid molecule LTBSC when orally delivered was able to elicit a systemic immune response. These results suggest that LTBSC could be suitable for exploring further therapeutic treatment of autoimmune inflammatory diseases involving antigens from central nervous system.  相似文献   

17.
Abstract

L-Asparaginase (L-ASNase) is an important enzyme used to treat acute lymphoblastic leukemia, recombinantly produced in a prokaryotic expression system. Exploration of alternatives production systems like as extracellular expression in microorganisms generally recognized as safe (such as Pichia pastoris Glycoswitch®) could be advantageous, in particular, if this system is able to produce homogeneous glycosylation. Here, we evaluated extracellular expression into Glycoswitch® using two different strains constructions containing the asnB gene coding for Erwinia chrysanthemi L-ASNase (with and without His-tag), in order to find the best system for producing the extracellular and biologically active protein. When the His-tag was absent, both cell expression and protein secretion processes were considerably improved. Three-dimensional modeling of the protein suggests that additional structures (His-tag) could adversely affect native conformation and folding from L-ASNase and therefore the expression and cell secretion of this enzyme.  相似文献   

18.
Human African trypanosomiasis (HAT) is an important public health threat in sub-Saharan Africa. Current drugs are unsatisfactory, and new drugs are being sought. Few validated enzyme targets are available to support drug discovery efforts, so our goal was to obtain essentiality data on genes with proven utility as drug targets. Aminoacyl-tRNA synthetases (aaRSs) are known drug targets for bacterial and fungal pathogens and are required for protein synthesis. Here we survey the essentiality of eight Trypanosoma brucei aaRSs by RNA interference (RNAi) gene expression knockdown, covering an enzyme from each major aaRS class: valyl-tRNA synthetase (ValRS) (class Ia), tryptophanyl-tRNA synthetase (TrpRS-1) (class Ib), arginyl-tRNA synthetase (ArgRS) (class Ic), glutamyl-tRNA synthetase (GluRS) (class 1c), threonyl-tRNA synthetase (ThrRS) (class IIa), asparaginyl-tRNA synthetase (AsnRS) (class IIb), and phenylalanyl-tRNA synthetase (α and β) (PheRS) (class IIc). Knockdown of mRNA encoding these enzymes in T. brucei mammalian stage parasites showed that all were essential for parasite growth and survival in vitro. The reduced expression resulted in growth, morphological, cell cycle, and DNA content abnormalities. ThrRS was characterized in greater detail, showing that the purified recombinant enzyme displayed ThrRS activity and that the protein localized to both the cytosol and mitochondrion. Borrelidin, a known inhibitor of ThrRS, was an inhibitor of T. brucei ThrRS and showed antitrypanosomal activity. The data show that aaRSs are essential for T. brucei survival and are likely to be excellent targets for drug discovery efforts.  相似文献   

19.
Yeast arginyl-tRNA synthetase and aspartyl-tRNA synthetase like nucleotidyl transferases previously investigated interact with the Blue-Dextran-Sepharose affinity ligand through their tRNA binding domain: the enzymes are readily displaced from the affinity column by their cognate tRNAs but not by ATP or a mixture of ATP and the cognate amino acid in contrast to other aminoacyl-tRNA synthetases. In the absence of Mg++, the arginyl-tRNA synthetase can be dissociated from the column by tRNAAsp and tRNAPhe which have been shown to be able to form a complex with the synthetase, but in presence of Mg++ the elution is only obtained by the specific tRNA.The procedure described here can thus be used: (i) to detect polynucleotide binding sites in a protein; (ii) to estimate the relative affinities of different tRNAs for a purified synthetase; (iii) to purify an aminoacyl-tRNA synthetase by selective elution with the cognate tRNA.  相似文献   

20.
The recently cloned cDNA for pea chloroplast thioredoxin f was used to produce, by PCR, a fragment coding for a protein lacking the transit peptide. This cDNA fragment was subcloned into a pET expression vector and used to transform E. coli cells. After induction with IPTG the transformed cells produce the protein, mainly in the soluble fraction of the broken cells. The recombinant thioredoxin f has been purified and used to raise antibodies and analysed for activity. The antibodies appear to be specific towards thioredoxin f and do not recognize other types of thioredoxin. The recombinant protein could activate two chloroplastic enzymes, namely NADP-dependent malate dehydrogenase (NADP-MDH) and fructose 1,6-bisphosphatase (FBPase), both using dithiothreitol as a chemical reductant and in a light-reconstituted/thylakoid assay. Recombinant pea thioredoxin f turned out to be an excellent catalyst for NADP-MDH activation, being the more efficient than a recombinant m-type thioredoxin of Chlamydomonas reinhardtii and the thioredoxin of E. coli. At the concentrations of thioredoxin used in the target enzyme activation assays only the recombinant thioredoxin f activated the FBPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号