首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Juvenile female and male (young) and 16-mo-old male (old) rats inhaled manganese in the form of manganese sulfate (MnSO4) at 0, 0.01, 0.1, and 0.5 mg Mn/m3 or manganese phosphate at 0.1 mg Mn/m3 in exposures of 6h/d, 5d/wk for 13 wk. We assessed biochemical end points indicative of oxidative stress in five brain regions: cerebellum, hippocampus, hypothalamus, olfactory bulb, and striatum. Glutamine synthetase (GS) protein levels, metallothionein (MT) and GS mRNA levels, and total glutathione (GSH) levels were determined for all five regions. Although most brain regions in the three groups of animals were unaffected by manganese exposure in terms of GS protein levels, there was significantly increased protein (p<0.05) in the hippocampus and decreased protein in the hypothalamus of young male rats exposed to manganese phosphate as well as in the aged rats exposed to 0.1 mg/m3 MnSO4. Conversely, GS protein was elevated in the olfactory bulb of females exposed to the high dose of MnSO4. Statistically significant decreases (p<0.05) in MT and GS mRNA as a result, of manganese exposure were observed in the cerebellum, olfactory bulb, and hippocampus in the young male rats, in the hypothalamus in the young female rats, and in the hippocampus in the senescent males. Total GSH levels significantly (p<0.05) decreased in the olfactory bulb of manganese exposed young male rats and increased in the olfactory bulb of female rats exposed to manganese. Both the aged and young female rats had significantly decreased (p<0.05) GSH in the striatum resulting from manganese inhalation. The old male rats also had depleted GSH levels in the cerebellum and hypothalamus as a result, of the 0.1-mg/m3 manganese phosphate exposure. These results demonstrate that age and sex are variables that must be considered whenassessing the neurotoxicity of manganese.  相似文献   

2.
Neonatal female and male rats were exposed to airborne manganese sulfate (MnSO4) during gestation and postnatal d 1–18. Three weeks post-exposure, rats were killed and we assessed biochemical end points indicative of oxidative stress in five brain regions: cerebellum, hippocampus, hypothalamus, olfactory bulb, and striatum. Glutamine synthetase (GS) protein levels, metallothionein (MT) and GS mRNA levels, and total glutathione (GSH) levels were determined for all five regions. Overall, there was a statistically significant effect of manganese exposure on decreasing brain GS protein levels (p=0.0061), although only the highest dose of manganese (1 mg Mn/m3) caused a significant increase in GS messenger RNA (mRNA) in both the hypothalamus and olfactory bulb of male rats and a significant decrease in GS mRNA in the striatum of female rats. This highest dose of manganese had no effect on MT mRNA in either males or females; however, the lowest dose (0.05 mg Mn/m3) decreased MT mRNA in the hippocampus, hypothalamus, and striatum in males. The median dose (0.5 mg Mn/m3) led to decreased MT mRNA in the hippocampus and hypothalamus of the males and olfactory bulb of the females. Overall, manganese exposure did not affect total GSH levels, a finding that is contrary to those in our previous studies. Only the cerebellum of manganese-exposed young male rats showed a significant reduction (p<0.05) in total GSH levels compared to control levels. These data reveal that alterations in biomarkers of oxidative stress resulting from in utero and neonatal exposures of airborne managanese remain despite 3 wk of recovery; however, it is important to note that the doses of manganese utilized represent levels that are 100-fold to a 1000-fold higher than the inhalation reference concentration set by the US Environmental Protection Agency.  相似文献   

3.
Neonatal rats were exposed to airborne manganese sulfate (MnSO4) (0, 0.05, 0.5, or 1.0 mg Mn/m3) during gestation (d 0–19) and postnatal days (PNDs) 1–18. On PND19, rats were killed, and we assessed biochemical end points indicative of oxidative stress in five brain regions: cerebellum, hippocampus, hypothalamus, olfactory bulb, and striatum. Glutamine synthetase (GS) and tyrosine hydroxylase (TH) protein levels, metallothionein (MT), TH and GS mRNA levels, and reduced and oxidized glutathione (GSH and GSSG, respectively) levels were determined for all five regions. Mn exposure (all three doses) significantly (p=0.0021) decreased GS protein levels in the cerebellum, and GS mRNA levels were significantly (p=0.0008) decreased in the striatum. Both the median and high dose of Mn significantly (p=0.0114) decreased MT mRNA in the striatum. Mn exposure had no effect on TH protein levels, but it significantly lowered TH mRNA levels in the olfactory bulb (p=0.0402) and in the striatum (p=0.0493). Mn eposure significantly lowered GSH levels at the median dose in the olfactory bulb (p=0.032) and at the median and high dose in the striatum (p=0.0346). Significantly elevated (p=0.0247) GSSG, which can be indicative of oxidative stress, was observed in the cerebellum of pups exposed to the high dose of Mn. These data reveal that alterations of oxidative stress biomarkers resulting from in utero and neonatal exposures of airborne Mn exist. Coupled with our previous study in which similarly exposed rats were allowed to recover from Mn exposure for 3 wk, it appears that many of these changes are reversible. It is important to note that the doses of Mn utilized represent levels that are a hundred- to a thousand-fold higher than the inhalation reference concentration set by the United States Environmental Protection Agency.  相似文献   

4.
The regional brain distribution of metallothionein (MT), zinc, and copper in the brain was determined in nine anatomical regions (olfactory bulb, cortex, corpus striatum, hippocampus, thalamus plus hypothalamus, pons plus medulla oblongata, cerebellum, midbrain, and white matter) and was compared between two different strains of rat (Sprague-Dawley [SD] and Lewis). No significant difference was observed in the whole-brain MT level between the two strains (17.8 ± 3.4 μg/g in SD rats and 20.3 ± 2.3 μg/g in Lewis rats). In SD rats, however, MT was more highly expressed in the white matter than in the other regions studied. In contrast, MT concentration was highest in the cortex and lowest in the olfactory bulb in Lewis rats. The MT levels in the cortex, corpus striatum, hippocampus, and thalamus plus hypothalamus were significantly lower in SD rats than in Lewis rats. In both strains, the olfactory bulb contained markedly higher levels of both zinc and copper than the other regions (27.9 ±6.8 μg/g zinc in SD rats and 27.6 ± 6.9 μg/g zinc in Lewis rats, and 5.2 ± 1.5 μg/g copper in SD rats and 11.1 ± 4.8 μg/g copper in Lewis rats). The next high-est zinc levels were seen in the hippocampus, whereas the next highest copper levels were in the corpus striatum in both SD and Lewis rats. The high levels of zinc and copper in the olfactory bulb were not accompanied by concomitant high MT concentrations. These results indicate that the strain of rat as well as the anatomical brain region should be taken into account in MT and metal distribution studies. However, the highest concentrations of zinc and copper in olfactory bulb were common to both SD and Lewis rats. The discrepancy between MT and the metal levels in olfactory bulb suggests a role for other proteins in addition to MT in the homeostatic control of zinc and copper.  相似文献   

5.
It has been demonstrated that inhaled fine (d < 2.5 μm) and ultrafine (d < 100 nm) particles produce more severe toxicity than coarse particles. Some recent data support the concept that the central nervous system (CNS) may be a target for the inhaled fine particulates. This work describes initial observation of the transport of intranasally instilled fine ferric oxide (Fe2O3) particles in animal brain. The iron micro-distribution and chemical state in the mice olfactory bulb and brain stem on day 14 after intranasal instillation of fine Fe2O3 particle (280 ± 80 nm) suspension at a single dose of 40 mg/kg body weight were analyzed by synchrotron radiation x-ray fluorescence and x-ray absorption near-edge structure (XANES). The micro-distribution map of iron in the olfactory bulb and brain stem shows an obvious increase of Fe contents in the olfactory nerve and the trigeminus of brain stem, suggesting that Fe2O3 particles were possibly transported via uptake by sensory nerve endings of the olfactory nerve and trigeminus. The XANES results indicate that the ratios of Fe (III)/Fe (II) were increased in the olfactory bulb and brain stem. The further histopathological observation showed that the neuron fatty degeneration occurred in the CA3 area of hippocampus. Such results imply an adverse impact of inhalation of fine Fe2O3 particles on CNS.  相似文献   

6.
Sublethal exposures of the marine amphipod Gammarus locusta to a concentration range of copper (Cu) in water (4 days' exposure; 3, 5 and 10 μg Cu l-1) or spiked sediments (28 days' exposure; 1, 3 and 6 mg Cu kg-1 dry weight) were performed, and the resulting bioaccumulation of Cu and effects on putative metallothionein (MT) and lipid peroxidation (LP) were investigated. A time-course exposure study (over 10 days) to a single water-borne concentration of Cu (4 μg l-1) was also carried out. MT and LP were quantified, respectively, by differential pulse polarography and as thiobarbituric acid-reactive malondialdehyde equivalents. The increasing levels of Cu in water and sediment exposures resulted in enhanced uptake of the metal by G. locusta. Synthesis of putative MT occurred in response to exposure to water-borne Cu, the levels being higher (p < 0.05) over the dose range of Cu compared with controls. A positive correlation was observed between putative MT levels and the Cu body-burden concentration (p < 0.001). However, no increase in LP was observed in these animals. In contrast, in the time-course experiment, LP levels increased within 1 day of exposure, subsequently peaking at 4 days (68% greater than control, p < 0.001), before returning to control values by day 6. Higher levels of MT were also observed in this exposure, but at days 6 and 10 (55% and 38%, respectively), paralleling the decrease in LP. No increase in MT levels was recorded with exposure to Cu-contaminated sediments, whereas higher levels of LP were seen in comparison with controls (p < 0.001). Overall, the inverse relationship between putative MT induction and the occurrence of LP indicates that MT may protect against the prooxidant effects of Cu. It is concluded that MT and LP offer potential for application as biomarkers in G. locusta.  相似文献   

7.
Nowadays, it is assumed that therapeutic efficacy of antidepressants depends, at least partly, on their anti-inflammatory properties. The present study investigated for the first time the effect of 21-day oral administration of desipramine on the lipopolysaccharide (LPS)-stimulated IL-1β concentration in the olfactory bulb, hypothalamus, frontal cortex, hippocampus and plasma of rats, and on the LPS-induced IL-1β mRNA level in the olfactory bulb. Desipramine (15 mg/kg/day) reduced significantly the LPS (250 μg/kg i.p.)-induced IL-1β concentration in the olfactory bulb, hypothalamus and in plasma, and diminished the LPS effect on IL-1β mRNA in the olfactory bulb. Plasma concentration of desipramine was comparable to its therapeutic range. By using the α1/α2-adrenoceptor antagonist prazosin and the unspecific β-adrenoceptor antagonist propranolol given prior to LPS, we found that the effect of desipramine on LPS-induced IL-1β production was partially mediated by both adrenoceptors in the olfactory bulb and plasma, and that β-adrenoceptors contributed also to its effect on the stimulated IL-1β concentration in the hypothalamus. The effect of LPS on the cerebral IL-1β levels was, in part, mediated by β-adrenoceptors and, in a region-specific manner, by α1/α2-adrenoceptors. The findings provide evidence for central and peripheral anti-inflammatory activity of desipramine and confirm the impact of the noradrenergic system on IL-1β production induced by an immunostimulatory challenge.  相似文献   

8.
Increasing litter sizes in modern swine production have raised an urgent need for artificial rearing strategies and formula feeding. The current experiment was conducted to study the influence of formula trace element concentration according to recommendations for weaned piglets on the mRNA concentration of zinc (Zn)-related genes in the jejunum, liver and pancreas of neonatal piglets. Eight artificially reared piglets were fed a cow-milk-based formula (Group FO) containing 100 mg Zn/kg dry matter. Eight of their sow-reared littermates (Group SM) were used as control. After 14 d, all 16 piglets were killed and the jejunum, liver and pancreas were evaluated for Zn, copper, manganese (Mn) and iron (Fe) concentration and mRNA concentration of metal and Zn-specific transporters, metallothioneins (MT) and interleukin 6 (IL-6). In Group FO the Zn concentration in liver tissue was increased (< 0.05). Furthermore, Fe and Mn concentrations in liver and jejunal tissue were higher (< 0.05) in Group FO, whereas neither Zn transporters nor MT in jejunal and pancreatic tissue showed differences between both groups. In the liver of Group FO, MT mRNA concentration was higher (< 0.05), whereas Zn transporter protein 1 and divalent metal-ion transporter 1 (DMT1) mRNA concentration was lower (< 0.05). Besides Zn-induced expression of transporters and MT, the significantly increased IL-6 expression in Group FO suggests the involvement of cytokine-mediated Mn and Fe sequestration in the liver and jejunum. The results revealed that dietary trace element concentration used in the study likely exceeded the requirements of neonatal pigs as reflected by homeostatic counter-regulation in different organs.  相似文献   

9.
Summary Central connections of the olfactory bulb of Polypterus palmas were studied with the use of horseradish peroxidase and cobalt-tracing techniques. The olfactory bulb projects to subpallial and palliai areas in the ipsilateral telencephalon; a projection to the contralateral subpallium is noted via the habenular commissure. A further target of secondary olfactory fibers is a caudal olfactory projection area in the ipsilateral hypothalamus. No labeling was seen in the anterior commissure and in the contralateral olfactory bulb. The medial and the lateral pallium receive secondary olfactory fibers in distinct areas. Neurons projecting to the bulb are found in the ipsilateral subpallium, mainly in one dorsal longitudinal nucleus. The main connection with the tel- and diencephalon is mediated via the medial olfactory tract. This tract also contains fibers to the contralateral telencephalon, and to the hypothalamus. The smaller lateral olfactory tract mediates fibers to the lateral pallium. The organization of pathways of secondary olfactory fibers in the telencephalon is described. The present findings are compared to those obtained in species possessing an inverted forebrain.This investigation was supported by grants from the Deutsche Forschungsgemeinschaft to DLM  相似文献   

10.
The present investigation reports the effect of rosmarinic acid (RA), an antioxidant on gentamicin sulphate (GS)-induced renal oxidative damage in rats. Rosmarinic acid (RA) has been demonstrated to have antioxidant, free radical scavenger and anti-inflamatory effects. Twenty-eight Sprague-Dawley rats were divided in to four equal groups as follows: group 1 (control), group 2 (GS 100 mg/kg/d ip), group 3 (GS 100 mg/kg/d ip + RA 50 mg/kg/d) and group 4 (GS 100 mg/kg/d ip + RA 100 mg/kg/d). Treatments were administrated once daily for 12 days. After 12 days 24 h urine was collected, blood was sampled and kidneys were removed. Serum and kidney tissue MDA assessed by thiobarbituric acid. Kidney paraffin sections (5 μm thickness) from the left kidney stained with periodic acid Schiff. Tubular necrosis was studied semiquantitatively and glomerular volume and volume density of proximal convoluted tubule (PCT) estimated stereologically. Kidney homogenize were prepared from right kidney. Serum creatinine, urea and kidney antioxidant enzymes activity were assessed by special kits. Data were compared by SPSS 13 software and Mann–Whitney test at p < 0.05. Co treatment of GS and RA (High dose) significantly decreased serum creatinine, MDA, urea, tubular necrosis (p < 0.05) and increase renal GSH, GPX, CAT, SOD, volume density of PCT and creatinine clearance significantly in comparison with GS group (p < 0.05). Treatment with RA (high dose) maintained serum creatinine, volume density of PCT, renal GSH, GPX, SOD and MDA as the same level as control group significantly (p < 0.05). In conclusion, RA alleviates GS nephrotoxicity via antioxidant activity, increase of renal GSH content and increase of renal antioxidant enzymes activity.  相似文献   

11.
Drug-induced liver toxicity is a common cause of liver injury. This study was designed to elucidate whether high dose vancomycin (VCM) induces oxidative stress in liver and to investigate the protective effects of erdosteine, an expectorant agent. Twenty-two young Wistar rats were divided into three groups as follows: control group, VCM, and VCM plus erdosteine. VCM was administered intraperitoneally in the dosage of 200 mg/kg twice daily for 7 days. Erdosteine was administered orally administered once a day at a dose of 10 mg/kg body weight. The activities of antioxidant enzymes such as superoxide dismutase and catalase as well as the concentration of malondialdehyde, as an indicator of lipid peroxidation, were measured to evaluate oxidative stress in homogenates of the liver. VCM administration increased malondialdehyde levels (p < 0.001), superoxide dismutase (p < 0.01) and catalase (p < 0.001) activities. Erdosteine co-administration with VCM injections caused significantly decreased malondialdehyde levels (p < 0.001), superoxide dismutase (p < 0.01) and catalase (p < 0.001) activities in liver tissue when compared with VCM alone. It can be concluded that erdosteine may prevent VCM-induced oxidative changes in liver by reducing reactive oxygen species.  相似文献   

12.
Aging is associated with oxidative damage and an imbalance in redox signaling in a variety of tissues, yet little is known about the extent of age-induced oxidative stress in the sympathoadrenal system. Lifelong caloric restriction has been shown to lower levels of oxidative stress and slow the aging process. Therefore, the aims of this study were twofold: (1) to investigate the effect of aging on oxidative stress in the adrenal medulla and hypothalamus and (2) determine if lifelong 40% caloric restriction (CR) reverses the adverse effects of age-induced oxidative stress in the sympathetic adrenomedullary system. Adult (18 months) and very old (38 months) male Fischer 344 x Brown Norway rats were divided into ad libitum or 40% CR groups and parameters of oxidative stress were analyzed in the adrenal medulla and the hypothalamus. A significant age-dependent increase in lipid peroxidation (+20%, P < 0.05) and tyrosine nitration (+111%, P < 0.001) were observed in the adrenal medulla while age resulted in a reduction in the protein expression of key antioxidant enzymes, CuZnSOD (−27%, P < 0.01) and catalase (−27%, P < 0.05) in the hypothalamus. Lifelong CR completely prevented the age-induced increase in lipid peroxidation in the adrenal medulla and restored the age-related decline in antioxidant enzymes in the hypothalamus. These data indicate that aging results in a significant increase in oxidative stress in the sympathoadrenal system. Importantly, lifelong CR restored the age-related changes in oxidative stress in the adrenal medulla and hypothalamus. Caloric restriction could be a potential non-pharmacological intervention to prevent increased oxidative stress in the sympathetic adrenomedullary system with age.  相似文献   

13.
Background: The analgesic acetaminophen (AAP) causes a potentially fatal, hepatic centrilobular necrosis when taken in overdose. It was reported that these toxic effects of AAP are due to oxidative reactions that take place during its metabolism. Objective: In this study, we aimed to investigate the possible beneficial effect of Ginkgo biloba (EGb), an antioxidant agent, against AAP toxicity in mice. Methods: Balb/c mice were injected i.p. with: (1) vehicle, control (C) group; (2) a single dose of 50 mg/kg Ginkgo biloba extract, EGb group; (3) a single dose of 900 mg/kg i.p. acetaminophen, AAP group, and (4) EGb, in a dose of 50 mg/kg after AAP injection, AAP + EGb group. Serum ALT, AST, and tumor necrosis factor-alpha (TNF-α) levels in blood and glutathione (GSH), malondialdehyde (MDA) levels, myeloperoxidase (MPO) activity, and collagen contents in liver tissues were measured. Formation of reactive oxygen species in hepatic tissue samples was monitored by using chemiluminescence (CL) technique with luminol and lusigenin probe. Tissues were also examined microscopically. Results: ALT, AST levels, and TNF-α were increased significantly (p < 0.001) after AAP treatment, and reduced with EGb. Acetaminophen caused a significant (p < 0.05–0.001) decrease in GSH levels while MDA levels and MPO activity were increased (p < 0.001) in liver tissues. These changes were reversed by EGb treatment. Furthermore, luminol and lusigenin CL levels in the AAP group increased dramatically compared to control and reduced by EGb treatment (p < 0.01). Conclusion: Our results implicate that AAP causes oxidative damage in hepatic tissues and Ginkgo biloba extract, by its antioxidant effects protects the tissues. Therefore, its therapeutic role as a “tissue injury-limiting agent” must be further elucidated in drug-induced oxidative damage.  相似文献   

14.
We have previously described a daily rhythm in thyrotropin releasing hormone (TRH) and TRH mRNA in the rat hypothalamus. To determine whether TRH release fluctuates in a diurnal manner, we have measured basal and potassium stimulated release from hypothalamic slices, and compared it to release from olfactory bulb slices, during the diurnal cycle. Basal TRH release was higher at 7:00 h than at any other time (1:00, 13:00 or 19:00 h) in either hypothalamus or olfactory bulb. The ratio of stimulated over basal release was higher in the hypothalamus at 19:00 h, when TRH content was highest. Potassium stimulated TRH release from olfactory bulb was not different from basal release at any time. TRH release fluctuations were not due to a rhythm of extracellular inactivation: the activity of pyroglutamyl aminopeptidase II, an ectoenzyme responsible for TRH inactivation, was constant throughout the cycle. Our data demonstrate that diurnal variations of TRH release occur in vitro and that the enhanced responsiveness to potassium stimulation in hypothalamus is correlated with increased levels of peptide.  相似文献   

15.
The aim of the present study is to evaluate the status of plasma essential trace element selenium (Se), manganese (Mn), copper (Cu), zinc (Zn), and iron (Fe) concentrations and the effect of these elements on oxidative status in patients with childhood asthma. Plasma Se, Mn, Cu, and Zn concentrations were determined by atomic absorption spectrophotometry (AAS) and Fe concentrations, malondialdehyde (MDA), and total antioxidant capacity (TAC) were determined by the colorimetric method. The plasma MDA/TAC ratio was calculated as an index of oxidative status. Plasma albumin levels were measured to determine nutritional status. Plasma Fe concentrations, MDA levels and the MDA/TAC ratio were significantly higher (p<0.001, p<0.001, and p<0.01, respectively) and Se and Mn concentrations and TAC were lower (p<0.01, p<0.05, and p<0.01, respectively) in patients when compared to the healthy subjects. Plasma Zn, Cu, and albumin levels were not found to be significantly different in patients and controls (p>0.05). There were positive relationships between plasma MDA and Fe (r=0.545, p<0.001) and TAC and Se (r=0.485, p<0.021), and a negative correlation between TAC and MDA values (r= −0.337, p<0.031) in patients with childhood asthma. However, there was no correlation between these trace elements and albumin content in patient groups. These observations suggest that increased Fe and decreased Se concentrations in patients with childhood asthma may be responsible for the oxidant/antioxidant imbalance.  相似文献   

16.
The present study was carried out to evaluate the effect of exogenously administered metallothionein (MT) to rats exposed to high cadmium levels. A total of 72 rats were used in the study. The animals were divided into three groups: controls, Cd administered, and Cd+MT. Cadmium was administered by subcutaneous injection of cadmium(II) chloride at a dose of 3.5 mg/kg for 7 d. In addition to CdCl2, 30 μmol/kg MT was administered to the second group of rats (group II). Control rats received 0.5 mL physiologic serum via subcutaneous injection. Eight rats from each group were sacrificed on the 1st, 3rd, 5th, and 7th day after administration of the compounds. Liver, kidney, and blood samples were harvested. Levels of malondialdehyde (MDA), glutathione peroxidase (GSH-Px), serum ALT, AST, BUN, ALP, creatinine, and urea were measured. MDA levels in group I were observed to increase starting from d 1 compared to group II (p<0.05). Although MDA levels in group II were higher than controls (p<0.05), they were lower, especially in liver and blood, compared to group II. Erythrocyte GSH-Px activity levels were determined to decrease starting from d 1 in both groups (p<0.05). Decreases in GSH-Px activity levels in group II were less than group I. Serum creatinine levels in both groups were increased significantly compared to controls (p<0.05); the increase in group I was higher than group II. Serum ALT, AST, and ALP levels in group I increased to very high levels compared to controls, whereas increases in group II were at moderate levels (p<0.05). Although serum BUN levels were determined to be reduced, there was no significant change among the groups. Serum urea levels in both groups were higher than controls. Based on our results, it is possible to postulate that exogenous MT can act as antioxidant against Cd toxicity and lipid peroxidation.  相似文献   

17.
In the present study the effects of chronic manganese (Mn) treatment on adenosine A2a receptor binding in mouse brain have been assessed. Male albino mice were divided in two groups: In the Mn-treated group, the animals were injected intraperitoneally (i.p.) with MnCl2 (5 mg/kg/day) five days per week during 9 weeks; in the control group, they were injected likewise with a saline solution. A significant decrease of the Kd without alteration of Bmax in the cerebellum and, an increase of the Kd and Bmax in hippocampus of mice treated with Mn were found. Also, an increase of Kd in frontal cortex was observed. The binding parameters in caudate nucleus, olfactory bulb and hypothalamus were not altered by Mn. A significant decrease in the adenosine concentration in caudate nucleus, olfactory bulb and hypothalamus, without significant changes in hippocampus, frontal cortex and cerebellum was also detected. These findings suggest that chronic administration of Mn could affect adenosine receptor function and turnover, depending on the brain region analyzed.  相似文献   

18.
19.
ORTMEYER HK. Relationship of glycogen synthase and glycogen phosphorylase to protein phosphatase 2C and cAMP-dependent protein kinase in liver of obese rhesus monkeys. The regulation of glycogen synthase (GS) and glycogen phosphorylase (GP) activity by phosphorylation/ dephosphorylation has been proposed to be via changes in activities of several different protein (serine/ threonine) phosphatases and kinases, including protein phosphatase (PP) 1/2A, PP2C, and cAMP-dependent protein kinase (PKA). In order to determine whether PP1/2A, PP2C, and/or PKA activities are related to GS and/or GP activities, these enzymes were measured in freeze-clamped liver biopsies obtained under basal fasting conditions from 16 obese monkeys. Four monkeys were normoglycemic and normoinsulinemic, five were hyperinsulinemic, and seven had type 2 diabetes (NIDDM). Liver glycogen and glucose 6-phosphate (G6P) contents were also determined. Basal enzyme activities and basal substrate concentrations were not significantly different between the three groups of obese monkeys; however, there were several significant linear relationships observed when the monkeys were treated as one group. Therefore, multiple regression was used to determine the correlation between key variables. GS fractional activity was correlated to GP fractional activity (p<0. 05) and to PP2C activity (p=0. 005) (adjusted R2,53%). GP independent activity was correlated to GS independent activity (p<0. 07) and to PKA fractional activity (p=0. 005) (adjusted R2,64%). PP2C activity was correlated to GS fractional activity (p<0. 0005) and to PP1/2A activity G7<0. 0001) (adjusted R2,83%). PKA fractional activity was correlated to GP total activity (p<0. 0005) and to age (p=0. 001) (adjusted R282%). G6P content was correlated to glycogen content (p<0. 05) and to PP2C activity (p=0. 0005) (adjusted R2,73%). In conclusion, PP2C and PKA are involved in the regulation of GS and GP activity in the basal state in liver of obese monkeys with a wide range of glucose tolerance.  相似文献   

20.
The in vitro oxidative metabolism of hypothalamus, olfactory and limbic systems from female rats in the estrous cycle have been measured. The accessory olfactory bulb becomes most active during diestrous when the hypothalamus reaches its lowest values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号