共查询到20条相似文献,搜索用时 15 毫秒
1.
In a series of batch experiments we compared the efficiencyof nitrogen regeneration of a two- and three-member microbialfood loop consisting of a mixed bacterial assemblage, a small(35 µm) heterotrophic flagellate (Paraphysomonassp.), and a large (712 µm) heterotrophic flagellate(Paraphysomonas imperforata). In the two-member system the nitrogenregeneration efficiency for NH4+ (Rn) was 41% and the grossgrowth efficiency (GGE) was 57% during active grazing by thesmall flagellate on bacteria. Regeneration of NH4+ continuedduring the stationary phase so that Rn was 75% after 6 daysincubation. When the larger flagellate was introduced at theend of exponential growth of the smaller grazer in the three-membersystem, initially there was rapid regrowth of bacteria, tyingup 15% of the nitrogen originally in the bacteria. The largerflagellate grazed the smaller one with a GGE of 55%. Total nitrogenregeneration efficiency through exponential growth of the largerflagellate was 73%. Because microbial food loops in naturalwaters are far more complicated and with more grazing stepsthan portrayed in this study, we would expect the bulk of nutrientswithin these systems to be recycled with little transfer tohigher trophic levels. 相似文献
2.
Grazing rates of the freshwater ciliate Balanion planctonicum determined by flow cytometry 总被引:1,自引:0,他引:1
Feeding of Balanion planctonicum on the cryptomonad Rhodomonassp. was recorded in vivo at 23 min intervals by flowcytometry. Ingestion rates were 1.61.7 algal cells ciliate1h1. On average, 2030 min elapsed between ingestionand egestion. 相似文献
3.
Timothy J. Michel Jasmine E. Saros Sebastian J. Interlandi Alexander P. Wolfe 《Hydrobiologia》2006,568(1):235-243
We performed a series of in situ batch culture experiments to assess the resource requirements of common diatom taxa in alpine lakes of the central Rocky
Mountains of North America. While physiological data are available on the resource requirements of some of these taxa, it
is unclear whether intraspecific generalizations can be made across aquatic systems due to the potential development of ecotypes.
In these experiments, we used amended lake water for a culture medium and natural diatom populations. Growth kinetics were
determined for Asterionella formosa Hassall, Fragilaria crotonensis Kitton, Staurosirella pinnata (Ehr.) Williams and Round and Tetracyclus glans (Ehr.) Mills. Staurosirella pinnata, a historically abundant alpine diatom, had very low N and P requirements. Asterionella formosa and F. crotonensis, generally considered meso- or eutrophic species, exhibited low P requirements if N and Si were in moderate supply. Tetracyclus glans had the highest Si requirement. These experiments reveal that the recent changes in diatom community structure in these alpine
lakes may be driven by changes in nutrient supply. We suggest that local diatom taxa and a natural culturing medium should
be used to obtain more representative algal physiological data from a particular area. 相似文献
4.
Renal ammonia excretion is the predominant component of renal net acid excretion. The majority of ammonia excretion is produced in the kidney and then undergoes regulated transport in a number of renal epithelial segments. Recent findings have substantially altered our understanding of renal ammonia transport. In particular, the classic model of passive, diffusive NH3 movement coupled with NH4+ "trapping" is being replaced by a model in which specific proteins mediate regulated transport of NH3 and NH4+ across plasma membranes. In the proximal tubule, the apical Na+/H+ exchanger, NHE-3, is a major mechanism of preferential NH4+ secretion. In the thick ascending limb of Henle's loop, the apical Na+-K+-2Cl- cotransporter, NKCC2, is a major contributor to ammonia reabsorption and the basolateral Na+/H+ exchanger, NHE-4, appears to be important for basolateral NH4+ exit. The collecting duct is a major site for renal ammonia secretion, involving parallel H+ secretion and NH3 secretion. The Rhesus glycoproteins, Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg), are recently recognized ammonia transporters in the distal tubule and collecting duct. Rhcg is present in both the apical and basolateral plasma membrane, is expressed in parallel with renal ammonia excretion, and mediates a critical role in renal ammonia excretion and collecting duct ammonia transport. Rhbg is expressed specifically in the basolateral plasma membrane, and its role in renal acid-base homeostasis is controversial. In the inner medullary collecting duct (IMCD), basolateral Na+-K+-ATPase enables active basolateral NH4+ uptake. In addition to these proteins, several other proteins also contribute to renal NH3/NH4+ transport. The role and mechanisms of these proteins are discussed in depth in this review. 相似文献
5.
Methanotrophic and nitrifying bacteria are both able to oxidize CH4 as well as NH4+. To date it is not possible to estimate the relative contribution of methanotrophs to nitrification and that of nitrifiers to CH4 oxidation and thus to assess their roles in N and C cycling in soils and sediments. This study presents new options for discrimination between the activities of methanotrophs and nitrifiers, based on the competitive inhibitor CH3F and on recovery after inhibition with C2H2. By using rice plant soil as a model system, it was possible to selectively inactivate methanotrophs in soil slurries at a CH4/CH3F/NH4+ molar ratio of 0.1:1:18. This ratio of CH3F to NH4+ did not affect ammonia oxidation, but methane oxidation was inhibited completely. By using the same model system, it could be shown that after 24 h of exposure to C2H2 (1,000 parts per million volume), methanotrophs recovered within 24 h while nitrifiers stayed inactive for at least 3 days. This gave an "assay window" of 48 h when only methanotrophs were active. Applying both assays to model microcosms planted with rice plants demonstrated a major contribution of methanotrophs to nitrification in the rhizosphere, while the contribution of nitrifiers to CH4 oxidation was insignificant. 相似文献
6.
7.
8.
* Hydroponic studies suggest that plant nitrogen (N) demand determines the rate of mineral N uptake; however, field observations show N limitation to be widespread. Field experiments are needed to understand soil factors controlling mineral N uptake. * We planted Picea engelmannii seedlings that had initially been grown from sterilized seeds, on a recently clearcut site. We applied a hybrid isotope dilution/pulse labelling technique to compare the gross production rate, concomitantly to the plant uptake rate, of soil mineral N. We also measured mineral N concentrations, microbial N, and percent ectomycorrhizal root tips. * Gross NH4+ production rate was the most important determinant of plant uptake rate. Exploratory path analysis suggested that plant uptake was also determined by microbial N, which was, in turn, determined by soil mineral N concentrations. Percent ectomycorrhizal root tips was negatively related to gross NO3- production rate and microbial N concentrations. * We conclude that nutrient flux density is important in controlling plant uptake. Mycorrhizal colonization may alter N dynamics in the rhizosphere without affecting mineral N uptake by seedlings. 相似文献
9.
Aims
Rice is known as an ammonium (NH4 +)-tolerant species. Nevertheless, rice can suffer NH4 + toxicity, and excessive use of nitrogen (N) fertilizer has raised NH4 + in many paddy soils to levels that reduce vegetative biomass and yield. Examining whether thresholds of NH4 + toxicity in rice are related to nitrogen-use efficiency (NUE) is the aim of this study.Methods
A high-NUE (Wuyunjing 23, W23) and a low-NUE (Guidan 4, GD) rice cultivar were cultivated hydroponically, and growth, root morphology, total N and NH4 + concentration, root oxygen consumption, and transmembrane NH4 + fluxes in the root meristem and elongation zones were determined.Results
We show that W23 possesses greater capacity to resist NH4 + toxicity, while GD is more susceptible. We furthermore show that tissue NH4 + accumulation and futile NH4 + cycling across the root-cell plasma membrane, previously linked to inhibited plant development under elevated NH4 +, are more pronounced in GD. NH4 + efflux in the root elongation zone, measured by SIET, was nearly sevenfold greater in GD than in W23, and this was coupled to strongly stimulated root respiration. In both cultivars, root growth was affected more severely by high NH4 + than shoot growth. High NH4 + mainly inhibited the development of total root length and root area, while the formation of lateral roots was unaffected.Conclusions
It is concluded that the larger degree of seedling growth inhibition in low- vs. high-NUE rice genotypes is associated with significantly enhanced NH4 + cycling and tissue accumulation in the elongation zone of the root. 相似文献10.
Assimilation of 13NH4+ by Azospirillum brasilense grown under nitrogen limitation and excess.
下载免费PDF全文

C A Westby C S Enderlin N A Steinberg C M Joseph J C Meeks 《Journal of bacteriology》1987,169(9):4211-4214
The specific activities of glutamine synthetase (GS) and glutamate synthase (GOGAT) were 4.2- and 2.2-fold higher, respectively, in cells of Azospirillum brasilense grown with N2 than with 43 mM NH4+ as the source of nitrogen. Conversely, the specific activity of glutamate dehydrogenase (GDH) was 2.7-fold higher in 43 mM NH4+-grown cells than in N2-grown cells. These results indicate that NH4+ could be assimilated and that glutamate could be formed by either the GS-GOGAT or GDH pathway or both, depending on the cellular concentration of NH4+. The routes of in vivo synthesis of glutamate were identified by using 13N as a metabolic tracer. The products of assimilation of 13NH4+ were, in order of decreasing radioactivity, glutamine, glutamate, and alanine. The formation of [13N]glutamine and [13N]glutamate by NH4+-grown cells was inhibited in the additional presence of methionine sulfoximine (an inhibitor of GS) and diazooxonorleucine (an inhibitor of GOGAT). Incorporation of 13N into glutamine, glutamate, and alanine decreased in parallel in the presence of carrier NH4+. These results imply that the GS-GOGAT pathway is the primary route of NH4+ assimilation by A. brasilense grown with excess or limiting nitrogen and that GDH has, at best, a minor role in the synthesis of glutamate. 相似文献
11.
12.
1. Sodium influx was measured in isolated, previously perfused gill arches of rainbow trout, Salmo gairdneri, by measuring incorporation of 22Na into gill tissue following timed exposure to a 1 mM 22NaCl medium. Transport rates approximated those estimated for intact fish and were linear for at least one min. 2. NH4Cl-containing perfusates at pH 7 and 8 stimulated Na+ influx equally, indicating that only ionized ammonia is important in the transport process. A Na+/NH4+ exchange at basal and/or lateral membranes of the transporting cells is suggested. 3. Low-sodium Ringer perfusate augmented Na+ influx; in one group of gills the transport rate was more than double that of NaCl Ringer controls. The increase in transport induced by internal NH4+ was not additive with the low sodium augmentation. A reduction in intracellular (Na+) is postulated as the mechanism operating in both cases. 4. Ouabain had no appreciable effect on Na+ influx, either with or without NH4+ in the perfusate. Diamox partially blocked the augmented Na+ influx induced by NH4+. Amiloride completely inhibited Na+ influx, both with and without NH4+ in the perfusate. 相似文献
13.
14.
Utilization of the biogenic aliphatic organosulphonates taurine, isethionate, sulphoacetaldehyde and sulphoacetate was investigated in 100 soil and freshwater bacteria isolated on modified complete mineral salts medium. More than 90% could use all the compounds as sole sulphur sources, and some 10% used taurine and isethionate as sole carbon and energy, or sole carbon, energy and sulphur sources. None could mineralize sulphoacetaldehyde or sulphoacetate; however, two isolates capable of growth on sulphoacetate as sole carbon, energy and sulphur source were obtained by enrichment culture. The results suggest that in the majority of environmental bacteria the pathways of organosulphonate biodegradation may be independently controlled by the supply of carbon and sulphur to the cell, and that a number of routes may exist for cleavage of the organosulphonate C–S bond. 相似文献
15.
Regulation of nitrogen fixation by Rhizobia. Export of fixed N2 as NH+4. 总被引:27,自引:0,他引:27
The metabolic fate of gaseous nitrogen (15N2) fixed by free-living cultures of Rhizobia (root nodule bacteria) induced for their N2-fixation system was followed. A majority of the fixed 15N2 was found to be exported into the cell supernatant. For example, as much as 94% of the 15N2 fixed by Rhizobium japonicum (soybean symbiont) was recovered as 15NH+4 from the cell supernatant following alkaline diffusion. Several species of root nodule bacteria also exported large quantities of NH+4 from L-histidine. Evidence is presented that overproduction and export of NH+4 by free-living Rhizobia may be closely linked to the control of several key enzymes of NH+4 assimilation. For instance, NH+4 was found to repress glutamine synthetase whereas L-glutamate repressed glutamate synthase. Assimilation of NH+4 as nitrogen source for growth of Rhizobia was inhibited by glutamate. The mechanism of regulation of NH+4 production by root nodule bacteria is discussed. 相似文献
16.
Summary Significantly lower amounts of exchaneable NH4, soluble NO3 and clay-fixed NH4 forms of N were observed in the unfertilized fields with high rather than low-density cropped plots. Irrespective of planting
densitites, the fixed NH4 content in soil increased with increase in the period of crop growth. N uptake by plant and total bacterial population of
rhizosphere soil were significantly higher in the plots with the high than with the low-density planting. Availability of
native fixed NH4
+ to crops and biological utilization of a considerable amount of recently mineralized NH4
+ in fixed form is indicated. 相似文献
17.
The regulatory properties of yeast pyruvate kinase. Effects of NH4+ and K+ concentrations. 总被引:1,自引:1,他引:1
下载免费PDF全文

The kinetics of pyruvate kinase from Saccharomyces cerevisiae were studied at 25 degrees C and pH 6.2 as a function of the concentrations of ADP, phosphoenolpyruvate, Mg2+ and either NH4+ or K+. The data were analysed by the exponential model for four substrates, obtained by extension of the model described by Ainsworth, Kinderlerer & Gregory [(1983) Biochem. J. 209, 401-411]. On that basis, it was concluded that NH4+ binding is almost non-interactive but leads to the appearance of positive interaction in the velocity response to increase in its concentration because of positive interactions with phosphoenolpyruvate and Mg2+. The data obtained with K+ lead to the same conclusions and differ only in suggesting that NH4+ is bound more strongly to the enzyme than is K+. Both data sets are used as the basis for a discussion of the substrate interactions of pyruvate kinase and it appears therefrom that the heterotropic interactions accord with what is known of the events that take place at the active site during catalysis. The paper also reports a determination of the dissociation constants for the NH4+ complexes with ADP and phosphoenolpyruvate and an examination of the simultaneous activation of pyruvate kinase by K+ and NH4+ ions. 相似文献
18.
J C Meeks C P Wolk J Thomas W Lockau P W Shaffer S M Austin W S Chien A Galonsky 《The Journal of biological chemistry》1977,252(21):7894-7900
The principal initial product of metabolism of 13N-labeled ammonium by Anabaena cylindrica grown with either NH4+ or N2 as nitrogen source is amide-labeled glutamine. The specific activity of glutamine synthetase is approximately half as great in NH4+-grown as in N2-grown filaments. After 1.5 min of exposure to 13NH4+, the ratio of 13N in glutamate to 13N in glutamine reaches a value of approximately 0.1 for N2- and 0.15 for NH4+-grown filaments, whereas after the same period of exposure to [13N]N2, that ratio has reached a value close to unity and is rising rapidly. During pulse-chase experiments, 13N is transferred from the amide group to glutamine into glutamate, and then apparently into the alpha-amino group of glutamine. Methionine sulfoximine, an inhibitor of glutamine synthetase, inhibits the formation of glutamine. In the presence of the inhibitor, direct formation of glutamate takes place, but accounts for only a few per cent of the normal rate of formation of that amino acid; and alanine is formed about as rapidly as glutamate. Azaserine reduces formation of [13N]glutamate approximately 100-fold, with relatively little effect on the formation of [13N]glutamine. Aminooxyacetate, an inhibitor of transaminase reactions blocks transfer of 13N to aspartate, citrulline, and arginine. We conclude, on the basis of these results and others in the literature, that the glutamine synthetase/glutamate synthase pathway mediates most of the initial metabolism of ammonium in A. cylindrica, and that glutamic acid dehydrogenase and alanine dehydrogenase have only a very minor role. 相似文献
19.
This communication is concerned with physiological, biochemical, and genetic studies of the regulation of ammonium (NH4+) assimilation by Rhizobia (root nodule bacteria) that infect leguminous plants. The major conclutions are (i) physiological studies show that Rhizobia are able to assimilate NH4+ for growth only when supplemented with certain organic nitrogen sources (e.g., L-aspartate, L-leucine, L-serine). Addition of as little as 2 mug/ml of L-aspartate supported growth on NH4+ as nitrogen source. In contrast, addition of glutamate in combination with NH4+-blocked NH4+ utilization; (ii) biochemical analysis show that glutamate synthase activity (NADP- and NAD-linked) is always present in cells capable of assimilating NH4+; also cells without glutamate synthase activity were found to be incapable of NH4+ utilization. Glutamate synthase levels were observed to fluctuate markedly depending on the available nitrogen source and on the growth stage of the culture; (iii) mutants were selected in which assimilation of NH4+ is no longer subject to inhibition (repression?) by glutamate. The levels of glutamate synthase activity (NADP-linked) (in the presence of glutamate) show approximately a two-fold increase over the level in the parent strain. The mutants no longer require supplementation with small amounts of organic nitrogen for growth in medium containing inorganic nitrogen (e.g., NH4+ or NO3-); (iv) these findings are discussed in relation to the working model of symbiotic nitrogen fixation recently proposed (O'Gara and Shanmugam (1976), Biochim. Biophys. Acta 437, 313--321). 相似文献
20.
A single clone of Alnus incana (L.) Moench was grown in a controlled-environment chamber. The plants were either inoculated with Frankia and fixed atmospheric nitrogen or were left uninoculated but received ammonium at the same rate as the first group fixed their nitrogen. Nitrogen fixation was calculated from frequenct measurements of acetylene reduction and hydrogen evolution. The diurnal variation of acetylene reduction was also taken into account. The relative efficiency of nitrogenase could be used in the calculations of fixed nitrogen since the Frankia used did not show any detectable hydrogenase activity. Alders fixing nitrogen developed more biomass, longer shoots, larger leaf areas and contained more nitrogen than alders receiving ammonium. In one experiment, almost all ammonium given to the non-nodulated alders was taken up and 15% of the nitrogen taken up was excreted. In the other experiment, 34% of the ammonium was left in the nutrient solution and 8% of the nitrogen taken up was excreted. Alders inoculated with Frankia did not excrete any detectable amount of nitrogen. It seems that the energy demand for nitrogen fixation is not so high that biomass production in alders is retarded. The symbiotic system of A. incana and Frankia seems to be more efficient in utilizing its nitrogen than non-symbiotic A. incana receiving ammonium. 相似文献