首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic events associated with an insertion mutation in yeast   总被引:36,自引:0,他引:36  
D T Chaleff  G R Fink 《Cell》1980,21(1):227-237
The his4-912 mutation shares similar genetic properties with mutations promoted by procaryotic insertion elements. This mutation lacks all three his4 functions. Many different classes of His+ revertants have been obtained from his4-912. The most frequent class of His+ revertants results from a site mutation which confers a cold-sensitive His- phenotype. Other classes of revertants contain translocations (one between chromosomes I and III and the other between chromosomes III and XII), a transposition of the his4 region to chromosome VIII, and an inversion of most of the left arm of chromosome III. Another class contains deletions which extend from his4-912 into the his4 region. In each of these classes of revertants, the his4 region is closely linked to the chromosomal aberration. Many of these revertants contain additional changes in chromosome structure (duplication, deletion and aneuploidy) that are unrelated to the reversion of his4-912 to His4+.  相似文献   

2.
In this paper, we describe the movement of a genetically marked Saccharomyces cerevisiae transposon. Ty912(URA3), to new sites in the S. cerevisiae genome. Ty912 is an element present at the HIS4 locus in the his4-912 mutant. To detect movement of Ty912, this element has been genetically marked with the S. cerevisiae URA3 gene. Movement of Ty912(URA3) occurs by recombination between the marked element and homologous Ty elements elsewhere in the S. cerevisiae genome. Ty912(URA3) recombines most often with elements near the HIS4 locus on chromosome III, less often with Ty elements elsewhere on chromosome III, and least often with Ty elements on other chromosomes. These recombination events result in changes in the number of Ty elements present in the cell and in duplications and deletions of unique sequence DNA.  相似文献   

3.
4.
We used the his3 recombinational substrates (his3 fragments) to direct large interchromosomal (translocations) and intrachromosomal (deletions and tandem duplications) rearrangements in the yeast Saccharomyces cerevisiae. In strains completely deleted for the wild-type HIS3 gene, his3 fragments, one containing a deletion of 5' amino acid coding sequences and the other containing a deletion of 3' amino acid coding sequences, were first placed at preselected sites by homologous recombination. His+ revertants that arose via spontaneous mitotic recombination between the two his3 fragments were selected. This strategy was used to direct rearrangements in both RAD52+ and rad52 mutant strains. Translocations occurred in the RAD52+ genetic background and were characterized by orthogonal field alternating gel electrophoresis of yeast chromosomal DNA and by standard genetic techniques. An unexpected translocation was also identified in which HIS3 sequences were amplified. Two types of tandem duplications of the GAL(7, 10, 1) locus were also directed, and one type was not observed in rad52 mutants. Recombination mechanisms are discussed to account for these differences.  相似文献   

5.
6.
7.
The region of Saccharomyces cerevisiae chromosome III centromere-distal to the PGK gene is the site of frequent chromosome polymorphisms. We have sequenced this region from fragments of chromosome III isolated from three different yeast strains, GRF88, CN31C and CF4-16B. The sequence analysis demonstrates that these polymorphisms are associated with the presence of Ty and delta elements and defines a region of the chromosome which is a hot-spot for transposition events (the RAHS). The three strains can be arranged into a logical evolutionary series in which successive transposition and recombination events insert Ty elements and fuse them with consequent deletions of chromosome and of transposon sequences. The influence of such events on yeast genome evolution is discussed.  相似文献   

8.
9.
10.
AEM. Adams  D. Botstein 《Genetics》1989,121(4):675-683
A gene whose product is likely to interact with yeast actin was identified by the isolation of pseudorevertants carrying dominant suppressors of the temperature-sensitive (Ts) act1-1 mutation. Of 30 independent revertants analyzed, 29 were found to carry extragenic suppressor mutations and of these, 24/24 tested were found to be linked to each other. This linkage group identifies a new gene SAC6, whose product, by several genetic criteria, is likely to interact intimately with actin. First, although act1-1 sac6 strains are temperature-independent (Ts+), 4/17 sac6 mutant alleles tested are Ts in an ACT1+ background. Moreover, four Ts+ pseudorevertants of these ACT1+ sac6 mutants carry suppressor mutations in ACT1; significantly, three of these are again Ts in a SAC6+ background, and are most likely new act1 mutant alleles. Thus, mutations in ACT1 and SAC6 can suppress each other's defects. Second, sac6 mutations can suppress the Ts defects of the act1-1 and act1-2, but not act1-4, mutations. This allele specificity indicates the sac6 mutations do not suppress by simply bypassing the function of actin at high temperature. Third, act1-4 sac6 strains have a growth defect greater than that due to either of the single mutations alone, again suggesting an interaction between the two proteins. The mutant sac6 gene was cloned on the basis of dominant suppression from an act1-1 sac6 mutant library, and was then mapped to chromosome IV, less than 2 cM from ARO1.  相似文献   

11.
The efficiency of Tn1 transposition has been shown to increase considerably in course of bacterial conjugation. Usually, the frequency of Tn1 transposition from plasmid pSA2001, a derivative of RP4, into the chromosome never exceeded 0.1% per cell. Percentage of His+ transconjugants, marked by transposon Tn1 during conjugation between Hfr donor, carrying plasmid pSA2001, and auxotrophic recipient, was about 30%. Transposon Tn1 transfer into the recipient cells does not depend on the recA+ gene function in donor cells or on conjugative transfer of plasmid pSA2001. The transfer requires the recA+ gene function in recipients as well as the Hfr function in donor cells. Southern's blot-hybridization revealed the insertion of transposon Tn1 into the different sites of the chromosome of His+ transconjugants. The transposon inserted during conjugation retains the ability to potential further translocation into new sites on the chromosomal DNA.  相似文献   

12.
In the yeast Saccharomyces cerevisiae, the HIS4C gene lies on the left arm of chromosome III. We analyzed two chromosomal rearrangements that have HIS4C translocated either to chromosome XII or to a new translocation chromosome. Using the cmt mutation that allows expression of the normally silent copies of mating type genes, we found that both of these translocations also carried HML alpha, more than 30 map units distal to HIS4C which normally lies on chromosome III. In the case of the translocation chromosome (designated T3), we also found an exchange event between HML alpha on the translocation chromosome and HMLa on chromosome III. In diploids containing two T3 chromosomes (one carrying HML alpha and the carrying HMLa), we found that HML was 32 centimorgans from HIS4C, which was 10 centimorgans from an unknown centromere. In homothallic strains carrying HMLa MATa HMRa on chromosome III, switching from MATa to MAT alpha could occur by using the HML alpha on the translocation as the sole donor of alpha information. Transposition from HML alpha on chromosome T3 was about 20 to 40% as efficient as transposition from intact chromosome III. In contrast, transposition from the HML alpha inserted into chromosome XII was reduced about 100-fold. This reduced efficiency did not appear to be caused by an alteration in the sequences immediately surrounding HML alpha in the translocation. The translocated HML alpha sequence was located in the same size (29-kilobase) SalI fragment as was found in chromosome III, and the same EcoRI, HindIII, and BglII restriction sites were also found. Furthermore, HML alpha was still under the control of the CMT gene, which maintains HML as a silent copy of mating type information. These results suggested that the position of the HML alpha sequence plays an important role in the efficiency of mating type switching.  相似文献   

13.
Frequency of reversions to wild type varies for thi and its derivatives from 10(-2) to 10(-5). A broad spectrum of mutations arises in thi alleles and thi+ revertants. Among them there are r, w, Bd and new mutations causing scalloped wings with thickened veins in all the autosomes. In the offspring of a Cy/thi 1 male a fly is found carrying a thi 1 allele in the Cy chromosome; this is not caused by crossing-over, but probably by a transposition. Mutations in the thi, Bd strains and their derivatives are supposed to be caused by small insertion. The nature of these insertions are under discussion.  相似文献   

14.
Yu C  Zhang J  Peterson T 《Genetics》2011,188(1):59-67
Alternative transposition can induce genome rearrangements, including deletions, inverted duplications, inversions, and translocations. To investigate the types and frequency of the rearrangements elicited by a pair of reversed Ac/Ds termini, we isolated and analyzed 100 new mutant alleles derived from two parental alleles that both contain an intact Ac and a fractured Ac (fAc) structure at the maize p1 locus. Mutants were characterized by PCR and sequencing; the results show that nearly 90% (89/100) of the mutant alleles represent structural rearrangements including deletions, inversions, translocations, or rearrangement of the intertransposon sequence (ITS). Among 37 deletions obtained, 20 extend into the external flanking sequences, while 17 delete portions of the intertransposon sequence. Interestingly, one deletion allele that contains only a single nucleotide between the retained Ac and fAc termini is not competent for further alternative transposition events. We propose a new model for the formation of intertransposon deletions through insertion of reversed transposon termini into sister-chromatid sequences. These results document the types and frequencies of genome rearrangements induced by alternative transposition of reversed Ac/Ds termini in maize.  相似文献   

15.
Chromosomal rearrangements, such as deletions, duplications, or Ty transposition, are rare events. We devised a method to select for such events as Ura(+) revertants of a particular ura2 mutant. Among 133 Ura(+) revertants, 14 were identified as the result of a deletion in URA2. Of seven classes of deletions, six had very short regions of identity at their junctions (from 7 to 13 bp long). This strongly suggests a nonhomologous recombination mechanism for the formation of these deletions. The total Ura(+) reversion rate was increased 4.2-fold in a rad52Delta strain compared to the wild type, and the deletion rate was significantly increased. All the deletions selected in the rad52Delta context had microhomologies at their junctions. We propose two mechanisms to explain the occurrence of these deletions and discuss the role of microhomology stretches in the formation of fusion proteins.  相似文献   

16.
The lys2-32 mutant allele resulted from Ty1 element insertion was identified and cloned. The expression and reversions of lys2-32 localized in an autonomous plasmid were studied. The insertion was shown to inactivate LYS2 gene incompletely. Spontaneous reversions to complete or almost complete prototrophy were also obtained. About 50% of revertants retained the insertion. Others arise as a result of imprecise excision events leading to deletions of adjacent LYS2 sequences.  相似文献   

17.
Limits to the role of palindromy in deletion formation.   总被引:6,自引:0,他引:6       下载免费PDF全文
We tested the effect of palindromy on deletion formation. This involved a study of reversion of insertion mutations in the pBR322 amp gene at a site where deletions end either in 9-bp direct repeats or in adjoining 4-bp direct repeats. Inserts of palindromic DNAs ranging from 10 to more than 26 bp and related nonpalindromic DNAs were compared. The frequency of deletions (selected as Ampr revertants) was stimulated by palindromy only at lengths greater than 26 bp. The 4-bp direct repeats, one component of which is located in the palindromic insert, were used preferentially as deletion endpoints with palindromes of at least 18 bp but not of 16 or 10 bp. We interpret these results with a model of slippage during DNA replication. Because deletion frequency and deletion endpoint location depend differently on palindrome length, we propose that different factors commit a molecule to undergo deletion and determine exactly where deletion endpoints will be.  相似文献   

18.
T R Laverty  J K Lim 《Genetics》1982,101(3-4):461-476
In this study, we show that at least one lethal mutation at the 3F-4A region of the X chromosome can generate an array of chromosome rearrangements, all with one chromosome break in the 3F-4A region. The mutation at 3F-4A (secondary mutation) was detected in an X chromosome carrying a reverse mutation of an unstable lethal mutation, which was mapped in the 6F1-2 doublet (primary mutation). The primary lethal mutation at 6F1-2 had occurred in an unstable chromosome (Uc) described previously (LIM 1979). Prior to reversion, the fF1-2 doublet was normal and stable, as was the 3F-4A region in the X chromosome carrying the primary lethal mutation. The disappearance of the instability having a set of genetic properties at one region (6F1-2) accompanied by its appearance elsewhere in the chromosome (3F-4A) implies that a transposition of the destabilizing element took place. The mutant at 3F-4A and other secondary mutants exhibited all but one (reinversion of an inversion to the normal sequence) of the eight properties of the primary lethal mutations. These observations support the view that a transposable destabilizing element is responsible for the hypermutability observed in the unstable chromosome and its derivatives.  相似文献   

19.
A new insertion element of 1,449 bp with 25-bp perfect terminal repeats, designated IS1409, was identified in the chromosome of 4-chlorobenzoate-degrading Arthrobacter sp. strain TM1 NCIB12013. Upon insertion, IS1409 causes a target duplication of 8 bp. IS1409 carries only a single open reading frame of 435 codons encoding the transposase TnpA. Both TnpA and the overall organization of IS1409 are highly similar to those of some related insertion elements of the ISL3 group (J. Mahillon and M. Chandler, Microbiol. Mol. Biol. Rev. 62:725--774, 1998). IS1409 was also found in other 4-chlorobenzoate-degrading Arthrobacter strains and Micrococcus luteus. Based on IS1409, a series of transposons carrying resistance genes for chloramphenicol and gentamicin were constructed. These transposons were used to demonstrate transposition events in vivo and to mutagenize Arthrobacter sp. strains.  相似文献   

20.
The yeast DEL assay measures the frequency of intrachromosomal recombination between two partially-deleted his3 alleles on chromosome XV. The his3Delta alleles share approximately 400bp of overlapping homology, and are separated by an intervening LEU2 sequence. Homologous recombination between the his3Delta alleles results in deletion of the intervening LEU2 sequence (DEL), and reversion to histidine prototrophy. In this study we have attempted to further extend the use of the yeast DEL assay to measure the frequency of chromosome XV gain events. Reversion to His(+)Leu(+) in the haploid yeast DEL tester strain RSY6 occurs upon non-disjunction of chromosome XV sister chromatids, coupled with a subsequent DEL event. Here we have tested the ability of the yeast DEL assay to accurately predict the aneugenic potential of the diversely-acting, known or suspected aneugens actinomycin D, benomyl, chloral hydrate, ethyl methanesulfonate (EMS), methyl methanesulfonate (MMS), and methotrexate. Actinomycin D and benomyl strongly induced aneuploidy. EMS and methotrexate modestly induced aneuploidy, while chloral hydrate and MMS failed to illicit any significant induction. In addition, by FACS-analysis of DNA content it was shown that the majority of both spontaneous- and chemically-induced His(+)Leu(+) revertants were heterodiploid. Thus, our results indicate endoreduplication of almost entire chromosome sets as a major mechanism of aneuploidy induction in haploid Saccharomyces cerevisiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号