首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The mechanistic target of rapamycin (mTOR) kinase is a conserved regulator of cell growth, proliferation, and survival. In cells, mTOR is the catalytic subunit of two complexes called mTORC1 and mTORC2, which have distinct upstream regulatory signals and downstream substrates. mTORC1 directly senses cellular nutrient availability while indirectly sensing circulating nutrients through growth factor signaling pathways. Cellular stresses that restrict growth also impinge on mTORC1 activity. mTORC2 is less well understood and appears only to sense growth factors. As an integrator of diverse growth regulatory signals, mTOR evolved to be a central signaling hub for controlling cellular metabolism and energy homoeostasis, and defects in mTOR signaling are important in the pathologies of cancer, diabetes, and aging. Here we discuss mechanisms by which each mTOR complex might regulate cell survival in response to metabolic and other stresses.The mechanistic target of rapamycin (mTOR) is a highly conserved serine/threonine protein kinase belonging to the phosphatidylinositol kinase-related kinase (PIKK) family and in mammalian cells is a central regulator of cell growth, proliferation, and survival (for review, see Sengupta et al. 2010; Zoncu et al. 2010). As its name implies, mTOR is the target of the naturally occurring compound rapamycin, which in association with the FK506-binding protein (FKBP12) is an allosteric inhibitor of mTOR. Although rapamycin is now known to only partially inhibit mTOR activity, derivatives of the drug have important clinical applications in oncology, in preventing restenosis after angioplasty, and as an immunosuppressant following organ transplants.  相似文献   

3.
4.
5.
Abnormal vascular smooth muscle cell (VSMC) growth plays a key role in the pathogenesis of hypertension and atherosclerosis. Angiotensin II (ANG II) elicits a hypertrophic growth response characterized by an increase in protein synthesis without cell proliferation. The present study investigated the role of the nonreceptor tyrosine kinase PYK2 in the regulation of ANG II-induced signaling pathways that mediate VSMC growth. Using coimmunoprecipitation analysis, the role of PYK2 as an upstream regulator of both extracellular signal-related kinase (ERK) 1/2 mitogen-activated protein kinase and phosphatidylinositol 3-kinase (PI 3-kinase) pathways was examined in cultured rat aortic VSMC. ANG II (100 nM) promoted the formation of a complex between PYK2 and the ERK1/2 regulators Shc and Grb2. ANG II caused a rapid and Ca(2+)-dependent tyrosine phosphorylation of the adapter molecule p130Cas, which coimmunoprecipitated both PYK2 and PI 3-kinase in ANG II-treated VSMC. Complex formation between PI 3-kinase and p130Cas and PYK2 was associated with a rapid phosphorylation of the ribosomal p70(S6) kinase in a Ca(2+)- and tyrosine kinase-dependent manner. These data suggest that PYK2 is an important regulator of multiple signaling pathways involved in ANG II-induced VSMC growth.  相似文献   

6.
The glycolytic key regulator pyruvate kinase M2 (M2-PK or PKM2) can switch between a highly active tetrameric and an inactive dimeric form. The transition between the two conformations regulates the glycolytic flux in tumor cells. We developed specific M2-PK-binding peptide aptamers which inhibit M2-PK, but not the 96% homologous M1-PK isoenzyme. In this study we demonstrate that, at normal blood glucose concentrations, peptide aptamer-mediated inhibition of M2-PK induces a significant decrease of the population doubling (PDL rate) and cell proliferation rate as well as an increase in cell size, whereas under glucose restriction an increase in PDL and cell proliferation rates but a decrease in cell size was observed. Moreover, M2-PK inhibition rescues cells from glucose starvation-induced apoptotic cell death by increasing the metabolic activity. These findings suggest that M2-PK is a metabolic sensor which regulates cell proliferation, cell growth and apoptotic cell death in a glucose supply-dependent manner.  相似文献   

7.
Harvey KF  Pfleger CM  Hariharan IK 《Cell》2003,114(4):457-467
Establishing and maintaining homeostasis is critical to the well-being of an organism and is determined by the balance of cell proliferation and death. Two genes that function together to regulate growth, proliferation, and apoptosis in Drosophila are warts (wts), encoding a serine/threonine kinase, and salvador (sav), encoding a WW domain containing Wts-interacting protein. However, the mechanisms by which sav and wts regulate growth and apoptosis are not well understood. Here, we describe mutations in hippo (hpo), which encodes a protein kinase most related to mammalian Mst1 and Mst2. Like wts and sav, hpo mutations result in increased tissue growth and impaired apoptosis characterized by elevated levels of the cell cycle regulator cyclin E and apoptosis inhibitor DIAP1. Hpo, Sav, and Wts interact physically and functionally, and regulate DIAP1 levels, likely by Hpo-mediated phosphorylation and subsequent degradation. Thus, Hpo links Sav and Wts to a key regulator of apoptosis.  相似文献   

8.
9.
Soluble factors such as polypeptide growth factors, mitogenic lipids, inflammatory cytokines, and hormones are known regulators of cell proliferation. However, the effect of mechanical stimuli on cell proliferation is less well understood. Here we examined the effect of low intensity pulsed ultrasound (US), which is used to promote wound healing, on the proliferation of primary human foreskin fibroblasts and the underlying signaling mechanisms. We show that a single 6-11-min US stimulation increases bromodeoxyuridine incorporation. In addition, an increase in the total cell number is observed after sequential US stimulation. US induced stress fiber and focal adhesion formation via activation of Rho. We further observed that US selectively induced activation of extracellular signal-regulated kinase (ERK) 1/2. Inhibition of Rho-associated coiled-coil-containing protein kinase (ROCK) prevented US-induced ERK1/2 activation, demonstrating that the Rho/ROCK pathway is an upstream regulator of ERK activation in response to US. Consequently, activation of ROCK and MEK-1 was required for US-induced DNA synthesis. Finally, an integrin beta(1) blocking antibody as well as a RGD peptide prevented US-induced DNA synthesis. In addition, US slightly increased phosphorylation of Src at Tyr(416), and Src activity was found to be required for ERK1/2 activation in response to US. In conclusion, our data demonstrate for the first time that US promotes cell proliferation via activation of integrin receptors and a Rho/ROCK/Src/ERK signaling pathway.  相似文献   

10.
In metazoans, TOR is an essential protein that functions as a master regulator of cellular growth and proliferation. Over the past decade, there has been an explosion of information about this critical master kinase, ranging from the composition of the TOR protein complex to its ability to act as an integrator of numerous extracellular signals. Unfortunately, this plethora of information has also raised numerous questions regarding TOR function. Currently, the prevailing view is that mammalian TOR (mTOR) exists in at least two molecular complexes, mTORC1 and mTORC2, which are largely defined by the presence of either RAPTOR or RICTOR. However, additional co-factors have been identified for each complex, and their importance in mediating mTOR signals has been incompletely elucidated. Similarly, there are differences in mTOR function that reflect the tissue of origin. In this review, we present an alternative view to mTOR complex formation and function, which envisions mTOR regulation and signal propagation as a reflection of cell type- and basal state-dependent conditions. The re-interpretation of mTOR biology in this framework may facilitate the design of therapies most likely to effectively inhibit this central regulator of cell behavior.  相似文献   

11.
The proto-oncogene c-Kit, a transmembrane receptor tyrosine kinase, is an important regulator of cell growth whose constitutively active oncogenic counterpart, v-kit, induces sarcomas in cats. Mutations in murine c-kit that reduce the receptor tyrosine kinase activity cause deficiencies in the migration and proliferation of melanoblasts, hematopoietic stem cells, and primordial germ cells. We therefore investigated whether c-Kit regulates normal human melanocyte proliferation and plays a role in melanomas. We show that normal human melanocytes respond to mast cell growth factor (MGF), the Kit-ligand that stimulates phosphorylation of tyrosyl residues in c-Kit and induces sequential phosphorylation of tyrosyl residues in several other proteins. One of the phosphorylated intermediates in the signal transduction pathway was identified as an early response kinase (mitogen-activated protein [MAP] kinase). Dephosphorylation of a prominent 180-kDa protein suggests that MGF also activates a phosphotyrosine phosphatase. In contrast, MGF did not induce proliferation, the cascade of protein phosphorylations, or MAP kinase activation in the majority of cells cultured from primary nodular and metastatic melanomas that grow independently of exogenous factors. In the five out of eight human melanoma lines expressing c-kit mRNAs, c-Kit was not constitutively activated. Therefore, although c-Kit-kinase is a potent growth regulator of normal human melanocytes, its activity is not positively associated with malignant transformation.  相似文献   

12.
Hepatic stem cell niche plays an important role in hepatic oval cell-mediated liver regeneration. As a component of hepatic stem cell niche, the role of hepatic stellate cells (HSCs) in oval cell proliferation needs further studies. In the present study, we isolated HSCs from rats at indicated time point after partial hepatectomy (PH) in 2-acetylaminofluorene/PH oval cell proliferation model. Conditional medium (CM) from HSCs were collected to detect their effects on proliferation and the mitogen-activated protein kinase pathway activation of two oval cell lines. We found that CM collected from HSCs at early phase of liver regeneration (4 and 9?days group) contained high levels of hepatocyte growth factor (HGF) and stimulated oval cell proliferation via extracellular signal-regulated kinase and p38 pathway. CM collected from HSCs at terminal phase of liver regeneration (12 and 15?days group) contained high levels of transforming growth factor (TGF)-β1, which suppressed DNA synthesis of oval cells. The shift between these two distinct effects depended on the balance between HGF and TGF-β1 secreted by HSCs. Our study demonstrated that HSCs acted as a positive regulator at the early phase and a negative regulator at the terminal phase of the oval cell-mediated liver regeneration. Copyright ? 2012 John Wiley & Sons, Ltd.  相似文献   

13.
mTOR (the ammalian target of mpamycin)是一个进化上十分保守的蛋白激酶,属于PIKK(the phosphatidylinsoitol kinase—related kinase)超家族,作为Ser/Thr激酶而起作用。它可以汇聚和整合来自于营养、生长因子、能量和环境压力对细胞的刺激信号,进而通过下游效应器(4EBPl和S6Ks)调节细胞生长。mTOR信号通路还影响胚胎干细胞和早期胚胎的发育,并且与肿瘤、肥胖及代谢紊乱等疾病有关。对mTOR信号通路的生理功能、分子组成和调节机制的研究不仅可以深入了解细胞生长调控的机制,而且对于相关疾病的治疗具有重要意义。  相似文献   

14.
Interleukin 3 (IL-3) is an important regulator of haemopoietic stem cell proliferation both in vivo and in vitro. Little is known about the possible mechanisms whereby this growth factor acts on stem cells to stimulate cell survival and proliferation. Here we have investigated the role of intracellular pH and the Na+/H+ antiport in stem cell proliferation using the multipotential IL-3-dependent stem cell line, FDCP-Mix 1. Evidence is presented that IL-3 can stimulate the activation of an amiloride-sensitive Na+/H+ exchange via protein kinase C activation. IL-3-mediated activation of the Na+/H+ exchange is not observed in FDCP-Mix 1 cells where protein kinase C levels have been down-modulated by treatment with phorbol esters. Also the protein kinase C inhibitor H7 can inhibit IL-3-mediated increases in intracellular pH. This activation of Na+/H+ exchange via protein kinase C has been shown to occur with no measurable effects of IL-3 on inositol lipid hydrolysis or on cytosolic Ca2+ levels. Evidence is also presented that this IL-3-stimulated alkalinization acts as a signal for cellular proliferation in stem cells.  相似文献   

15.
Cytokines and growth factors are important extracellular regulatory proteins. They exert their biological functions through binding to their cognate receptors on the cell surface and triggering intracellular signaling cascades. However, the intracellular signaling mechanisms of cytokines and growth factors are not well understood. Accumulating evidence has shown that protein phosphorylation and dephosphorylation carried out by protein kinases and protein phosphatases are fundamental biochemical events in intracellular signal transduction. SHP-2, a Src homology (SH) 2 domain-containing protein tyrosine phosphatase (PTP), is widely involved in a variety of signaling pathways triggered by cytokines and growth factors, including the MAP kinase, Jak-Stat, and PI3 kinase pathways. Recent studies have clearly demonstrated that this phosphatase plays an important role in transducing signals relayed from the cell surface to the nucleus, and is a critical intracellular regulator in cytokine and growth factor-induced cell survival, proliferation, and differentiation.  相似文献   

16.
The Akt kinase is a key regulator of cell proliferation and survival. It is activated in part by PDK1-induced phosphorylation. Here we show that RalGDS, a Ras effector protein that activates Ral GTPases, has a second function that promotes Akt phosphorylation by PDK1 by bringing these two kinases together. In support of this conclusion is our finding that suppression of RalGDS expression in cells inhibits both epidermal growth factor and insulin-induced phosphorylation of Akt. Moreover, while PDK1 complexes with N-GDS, Akt complexes with the central region of RalGDS through an intermediary, JIP1. The biological significance of this newly discovered RalGDS function is highlighted by the observation that an N-terminally deleted mutant of RalGDS that retains the ability to activate Ral proteins but loses the ability to activate Akt also fails to promote cell proliferation. Thus, RalGDS forms a nexus that transduces growth factor signaling to both Ral GTPase and Akt-mediated signaling cascades.  相似文献   

17.
Hepatic stem cell niche plays an important role in hepatic oval cell‐mediated liver regeneration. As a component of hepatic stem cell niche, the role of hepatic stellate cells (HSCs) in oval cell proliferation needs further studies. In the present study, we isolated HSCs from rats at indicated time point after partial hepatectomy (PH) in 2‐acetylaminofluorene/PH oval cell proliferation model. Conditional medium (CM) from HSCs were collected to detect their effects on proliferation and the mitogen‐activated protein kinase pathway activation of two oval cell lines. We found that CM collected from HSCs at early phase of liver regeneration (4 and 9 days group) contained high levels of hepatocyte growth factor (HGF) and stimulated oval cell proliferation via extracellular signal‐regulated kinase and p38 pathway. CM collected from HSCs at terminal phase of liver regeneration (12 and 15 days group) contained high levels of transforming growth factor (TGF)‐β1, which suppressed DNA synthesis of oval cells. The shift between these two distinct effects depended on the balance between HGF and TGF‐β1 secreted by HSCs. Our study demonstrated that HSCs acted as a positive regulator at the early phase and a negative regulator at the terminal phase of the oval cell‐mediated liver regeneration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
One proposed strategy to suppress the proliferation of imatinib-resistant cells in chronic myeloid leukemia (CML) is to inhibit key proteins downstream of Bcr-Abl. The PI3K/Akt pathway is activated by Bcr-Abl and is specifically required for the growth of CML cells. To identify targets of this pathway, we undertook a proteomic screen and identified several proteins that differentially bind 14-3-3, dependent on Bcr-Abl kinase activity. An siRNA screen of candidates selected by bioinformatics analysis reveals cold-shock domain protein A (CSDA), shown previously to regulate cell cycle progression in epithelial cells, to be a positive regulator of proliferation in a CML cell line. We show that Akt can phosphorylate the serine 134 residue of CSDA but, downstream of Bcr-Abl activity, this modification is mediated through the activation of MEK/p90 ribosomal S6 kinase (RSK) signaling. Inhibition of RSK, similarly to treatment with imatinib, blocked proliferation specifically in Bcr-Abl-positive leukemia cell lines, as well as cells from CML patients. Furthermore, these primary CML cells showed an increase in CSDA phosphorylation. Expression of a CSDA phospho-deficient mutant resulted in the decrease of Bcr-Abl-dependent transformation in Rat1 cells. Our results support a model whereby phosphorylation of CSDA downstream of Bcr-Abl enhances proliferation in CML cells to drive leukemogenesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号