首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 994 毫秒
1.
The transition state of the Vmax mutant of AMP nucleosidase from Azotobacter vinelandii [Leung, H. B., & Schramm, V. L. (1981) J. Biol. Chem. 256, 12823-12829] has been characterized by heavy-atom kinetic isotope effects in the presence and absence of MgATP, the allosteric activator. The enzyme catalyzes hydrolysis of the N-glycosidic bond of AMP at approximately 2% of the rate of the normal enzyme with only minor changes in the Km for substrate, the activation constant for MgATP, and the Ki for formycin 5'-phosphate, a tight-binding competitive inhibitor. Isotope effects were measured as a function of the allosteric activator concentration that increases the turnover number of the enzyme from 0.006 s-1 to 1.2 s-1. The kinetic isotope effects were measured with the substrates [1'-3H]AMP, [2'-2H]AMP, [2'-2H]AMP, [9-15N]AMP, and [1',9-14C, 15N]AMP. All substrates gave significant kinetic isotope effects in a pattern that establishes that the reaction expresses intrinsic kinetic isotope effects in the presence or absence of MgATP. The kinetic isotope effect with [9-15N]AMP decreased from 1.034 +/- 0.002 to 1.021 +/- 0.002 in response to MgATP. The [1'-3H]AMP isotope effect increased from 1.086 +/- 0.003 to 1.094 +/- 0.002, while the kinetic isotope effect for [1',9-14C, 15N]AMP decreased from 1.085 +/- 0.003 to 1.070 +/- 0.004 in response to allosteric activation with MgATP. Kinetic isotope effects with [1'-14C]AMP and [2'-2H]AMP were 1.041 +/- 0.006 and 1.089 +/- 0.002 and were not changed by addition of MgATP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The mechanism of acid and enzymatic hydrolysis of the N-glycosidic bond of AMP has been investigated by fitting experimentally observed kinetic isotope effects [Parkin, D. W., & Schramm, V. L. (1987) Biochemistry (preceding paper in this issue)] to calculated kinetic isotope effects for proposed transition-state structures. The sensitivity of the transition-state calculations was tested by "arying the transition-state structure and comparing changes in the calculated kinetic isotope effects with the experimental values of the isotope effect measurements. The kinetic isotope effects for the acid-catalyzed hydrolysis of AMP are best explained by a transition state with considerable oxycarbonium character in the ribose ring, significant bonding remaining to the departing adenine ring, participation of a water nucleophile, and protonation of the adenine ring. A transition-state structure without preassociation of the water nucleophile cannot be eliminated by the data. Enzymatic hydrolysis of the N-glycosidic bond of AMP by AMP nucleosidase from Azotobacter vinelandii was analyzed in the absence and presence of MgATP, the allosteric activator that increases Vmax approximately 200-fold. The transition states for enzyme-catalyzed hydrolysis that best explain the kinetic isotope effects involve early SN1 transition states with significant bond order in the glycosidic bond and protonation of the adenine base. The enzyme enforces participation of an enzyme-bound water molecule, which has weak bonding to C1' in the transition state. Activation of AMP nucleosidase by MgATP causes the bond order of the glycosidic bond in the transition state to increase significantly. Hyperconjugation in the ribosyl group is altered by enzymatic stabilization of the oxycarbonium ion. This change is consistent with the interaction of an amino acid on the enzyme. Together, these changes stabilize a carboxonium-like transition-state complex that occurs earlier in the reaction pathway than in the absence of allosteric activator. In addition to the allosteric changes that alter transition-state structure, the presence of other inductive effects that are unobserved by kinetic isotope measurements is also likely to increase the catalytic rate.  相似文献   

3.
4.
The transition state of adenosine nucleosidase (EC 3.2.2.7) isolated from yellow lupin (Lupinus luteus) was determined based upon a series of heavy atom kinetic isotope effects. Adenosine labeled with 13C, 2H, and 15N was analyzed by liquid chromatography/electrospray mass spectrometry to determine kinetic isotope effects. Values of 1.024+/-0.004, 1.121+/-0.005, 1.093+/-0.004, 0.993+/-0.006, and 1.028+/-0.005 were found for [1'-13C], [1'-2H], [2'-2H], [5'-2H], and [9-15N] adenosine, respectively. Using a bond order bond energy vibrational analysis, a transition state consisting of a significantly broken C-N bond, formation of an oxocarbenium ion in the ribose ring, a conformation of C3-exo for the ribose ring, and protonation of the heterocyclic base was proposed. This transition state was found to be very similar to the transition state for nucleoside hydrolase, another purine metabolizing enzyme, isolated from Crithidia fasciculata.  相似文献   

5.
Parikh SL  Schramm VL 《Biochemistry》2004,43(5):1204-1212
Bacterial protein toxins are the most powerful human poisons known, exhibiting an LD(50) of 0.1-1 ng kg(-)(1). A major subset of such toxins is the NAD(+)-dependent ADP-ribosylating exotoxins, which include pertussis, cholera, and diphtheria toxin. Diphtheria toxin catalyzes the ADP ribosylation of the diphthamide residue of eukaryotic elongation factor 2 (eEF-2). The transition state of ADP ribosylation catalyzed by diphtheria toxin has been characterized by measuring a family of kinetic isotope effects using (3)H-, (14)C-, and (15)N-labeled NAD(+) with purified yeast eEF-2. Isotope trapping experiments yield a commitment to catalysis of 0.24 at saturating eEF-2 concentrations, resulting in suppression of the intrinsic isotope effects. Following correction for the commitment factor, intrinsic primary kinetic isotope effects of 1.055 +/- 0.003 and 1.022 +/- 0.004 were observed for [1(N)'-(14)C]- and [1(N)-(15)N]NAD(+), respectively; the double primary isotope effect was 1.066 +/- 0.004 for [1(N)'-(14)C, 1(N)-(15)N]NAD(+). Secondary kinetic isotope effects of 1.194 +/- 0.002, 1.101 +/- 0.003, 1.013 +/- 0.005, and 0.988 +/- 0.002 were determined for [1(N)'-(3)H]-, [2(N)'-(3)H]-, [4(N)'-(3)H]-, and [5(N)'-(3)H]NAD(+), respectively. The transition state structure was modeled using density functional theory (B1LYP/6-31+G) as implemented in Gaussian 98, and theoretical kinetic isotope effects were subsequently calculated using Isoeff 98. Constraints were varied in a systematic manner until the calculated kinetic isotope effects matched the intrinsic isotope effects. The transition state model most consistent with the intrinsic isotope effects is characterized by the substantial loss in bond order of the nicotinamide leaving group (bond order = 0.18, 1.99 A) and weak participation of the attacking imidazole nucleophile (bond order = 0.03, 2.58 A). The transition state structure imparts strong oxacarbenium ion character to the ribose ring even though significant bond order remains to the nicotinamide leaving group. The transition state model presented here is asymmetric and consistent with a dissociative S(N)1 type mechanism in which attack of the diphthamide nucleophile lags behind departure of the nicotinamide.  相似文献   

6.
The biosynthesis of S-adenosylmethionine occurs in a unique enzymatic reaction in which the synthesis of the sulfonium center results from displacement of the entire polyphosphate chain from MgATP. The mechanism of S-adenosylmethionine synthetase (ATP:L-methionine s-adenosyltransferase) from Escherichia coli has been characterized by kinetic isotope effect and substrate trapping measurements. Replacement of 12C by 14C at the 5' carbon of ATP yields a primary Vmax/Km isotope effect (12C/14C) of 1.128 +/- 0.003 in the absence of added monovalent cation activator (K+). At saturating K+ concentrations (10 mM) the primary isotope effect diminishes slightly to 1.108 +/- 0.003, indicating that the step in the mechanism involving bond breaking at the 5' carbon of MgATP has a small commitment to catalysis at conditions near Vmax. No alpha-secondary 3H isotope effect from [5'-3H]ATP was detected, (1H/3H) = 1.000 +/- 0.002, even in the absence of KCl. There was no significant primary sulfur isotope effect from [35S]methionine at KCl concentrations from 0 to 10 mM. Substitution of the methyl group of methionine with tritium yielded a beta-secondary isotope effect (CH3/C3H3) = 1.009 +/- 0.008 independent of KCl concentration. The reaction of selenomethionine and [5'-14C]ATP gave a primary isotope effect of 1.097 +/- 0.006, independent of KCl concentration. Substrate trapping experiments demonstrated that the step in the mechanism involving bond making to sulfur of methionine does not have a significant commitment to catalysis at 0.25 mM KCl, therefore intrinsic isotope effects were observed. Substrate trapping experiments indicated that the step involving bond breaking at carbon 5' of MgATP has a 10% commitment to catalysis at 0.25 mM KCl. The isotope effects are interpreted in terms of an Sn2-like transition state structure in which bonding of the C5' is symmetric with respect to the departing tripolyphosphate group and the incoming sulfur of methionine. With selenomethionine as substrate an earlier transition state is implicated.  相似文献   

7.
The kinetic alpha-deuterium isotope effect on Vmax/Km for hydrolysis of NMN catalyzed by AMP nucleosidase at saturating concentrations of the allosteric activator MgATP2- is kH/kD = 1.155 +/- 0.012. This value is close to that reported previously for the nonenzymatic hydrolysis of nucleosides of related structure, suggesting that the full intrinsic isotope effect for enzymatic NMN hydrolysis is expressed under these conditions; that is, bond-changing reactions are largely or completely rate-determining and the transition state has marked oxocarbonium ion character. The kinetic alpha-deuterium isotope effect for this reaction is unchanged when deuterium oxide replaces water as solvent, corroborating this conclusion. Furthermore, this isotope effect is independent of pH over the range 6.95-9.25, for which values of Vmax/Km change by a factor of 90, suggesting that the isotope-sensitive and pH-sensitive steps for AMP-nucleosidase-catalyzed NMN hydrolysis are the same. Values of kH/kD for AMP nucleosidase-catalyzed hydrolysis of NMN decrease with decreasing saturation of enzyme with MgATP2- and reach unity when the enzyme is less than half-saturated with this activator. This requires that the rate-determining step changes from cleavage of the covalent C-N bond to one which is isotope-independent. In contrast to the case for NMN hydrolysis, AMP nucleosidase-catalyzed hydrolysis of AMP at saturating concentrations of MgATP2- shows a kinetic alpha-deuterium isotope effect of unity. Thus, covalent bond-changing reactions are largely or completely rate-determining for hydrolysis of a poor substrate, NMN, but make little or no contribution to rate-determining step for hydrolysis of a good substrate, AMP, by maximally activated enzyme. This behavior has several precedents.  相似文献   

8.
[1'-3H]- and [2'-3H]dihydroneopterin triphosphate (NH2TP) were prepared enzymatically from [4-3H]- and [5-3H]glucose and converted to tetrahydrobiopterin (BH4) by an extract from bovine adrenal medulla. The formation of BH4 from both [1'-3H]- and [2'-3H]-NH2TP proceeds with virtually complete loss of the respective tritium label. The breaking of the CH-bond at C-1' is characterized by a kinetic isotope effect of 2.6 +/- 0.5. A smaller kinetic isotope effect of 1.5 +/- 0.2 was found for the breaking of the CH-bond at C-2'.  相似文献   

9.
Recent studies have shown that Plasmodium falciparum is sensitive to a purine salvage block at purine nucleoside phosphorylase (PNP) and that human PNP is a target for T-cell proliferative diseases. Specific tight-binding inhibitors might be designed on the basis of specific PNP transition state structures. Kinetic isotope effects (KIEs) were measured for arsenolysis of inosine catalyzed by P. falciparum and human purine nucleoside phosphorylases. Intrinsic KIEs from [1'-(3)H]-, [2'-(3)H]-, [1'-(14)C]-, [9-(15)N]-, and [5'-(3)H]inosines were 1.184 +/- 0.004, 1.031 +/- 0.004, 1.002 +/- 0.006, 1.029 +/- 0.006, and 1.062 +/- 0.002 for the human enzyme and 1.116 +/- 0.007, 1.036 +/- 0.003, 0.996 +/- 0.006, 1.019 +/- 0.005, and 1.064 +/- 0.003 for P. falciparum PNPs, respectively. Analysis of KIEs indicated a highly dissociative D(N)A(N) (S(N)1) stepwise mechanism with very little leaving group involvement. The near-unity 1'-(14)C KIEs for both human and P. falciparum PNP agree with the theoretical value for a 1'-(14)C equilibrium isotope effect for oxacarbenium ion formation when computed at the B1LYP/6-31G(d) level of theory. The 9-(15)N KIE for human PNP is also in agreement with theory for equilibrium formation of hypoxanthine and oxacarbenium ion at this level of theory. The 9-(15)N KIE for P. falciparum PNP shows a constrained vibrational environment around N9 at the transition state. A relatively small beta-secondary 2'-(3)H KIE for both enzymes indicates a 3'-endo conformation for ribose and relatively weak hyperconjugation at the transition state. The large 5'-(3)H KIE reveals substantial distortion at the 5'-hydroxymethyl group which causes loosening of the C5'-H5' bonds during the reaction coordinate.  相似文献   

10.
Li L  Luo M  Ghanem M  Taylor EA  Schramm VL 《Biochemistry》2008,47(8):2577-2583
Transition-state structures of human and bovine of purine nucleoside phosphorylases differ, despite 87% homologous amino acid sequences. Human PNP (HsPNP) has a fully dissociated transition state, while that for bovine PNP (BtPNP) has early SN1 character. Crystal structures and sequence alignment indicate that the active sites of these enzymes are the same within crystallographic analysis, but residues in the second-sphere from the active sites differ significantly. Residues in BtPNP have been mutated toward HsPNP, resulting in double (Asn123Lys; Arg210Gln) and triple mutant PNPs (Val39Thr; Asn123Lys; Arg210Gln). Steady-state kinetic studies indicated unchanged catalytic activity, while pre-steady-state studies indicate that the chemical step is slower in the triple mutant. The mutant enzymes have higher affinity for inhibitors that are mimics of a late dissociative transition state. Kinetic isotope effects (KIEs) and computational chemistry were used to identify the transition-state structure of the triple mutant. Intrinsic KIEs from [1'-3H], [1'-14C], [2'-3H], [5'-3H], and [9-15N] inosines were 1.221, 1.035, 1.073, 1.062 and 1.025, respectively. The primary intrinsic [1'-14C] and [9-15N] KIEs indicate a highly dissociative SN1 transition state with low bond order to the leaving group, a transition state different from the native enzyme. The [1'-14C] KIE suggests significant nucleophilic participation at the transition state. The transition-state structure of triple mutant PNP is altered as a consequence of the amino acids in the second sphere from the catalytic site. These residues are implicated in linking the dynamic motion of the protein to formation of the transition state.  相似文献   

11.
Singh V  Lee JE  Núñez S  Howell PL  Schramm VL 《Biochemistry》2005,44(35):11647-11659
Methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) catalyzes reactions linked to polyamine metabolism, quorum sensing pathways, methylation reactions, and adenine salvage. It is a candidate target for antimicrobial drug design. Kinetic isotope effects (KIEs) were measured on the MTAN-catalyzed hydrolysis of 5'-methylthioadenosine (MTA) to determine the transition state structure. KIEs measured at pH 7.5 were near unity due to the large forward commitment to catalysis. Intrinsic KIEs were expressed by increasing the pH to 8.5. Intrinsic KIEs from MTAs labeled at 1'-(3)H, 1'-(14)C, 2'-(3)H, 4'-(3)H, 5'-(3)H, 9-(15)N, and Me-(3)H(3) were 1.160 +/- 0.004, 1.004 +/- 0.003, 1.044 +/- 0.004, 1.015 +/- 0.002, 1.010 +/- 0.002, 1.018 +/- 0.006, and 1.051 +/- 0.002, respectively. The large 1'-(3)H and small 1'-(14)C KIEs indicate that the Escherichia coli MTAN reaction undergoes a dissociative (D(N)A(N)) (S(N)1) mechanism with little involvement of the leaving group or participation of the attacking nucleophile at the transition state, causing the transition state to have significant ribooxacarbenium ion character. A transition state constrained to match the intrinsic KIEs was located with density functional theory [B3LYP/6-31G(d,p)]. The leaving group (N9) is predicted to be 3.0 A from the anomeric carbon. The small beta-secondary 2'-(3)H KIE of 1.044 corresponds to a modest 3'-endo conformation for ribose and a H1'-C1'-C2'-H2' dihedral angle of 53 degrees at the transition state. Natural bond orbital analysis of the substrate and the transition state suggests that the 4'-(3)H KIE is due to hyperconjugation between the lone pair (n(p)) of O3' and the antibonding (sigma) orbital of the C4'-H4' group, and the methyl-(3)H(3) KIE is due to hyperconjugation between the n(p) of sulfur and the sigma of methyl C-H bonds. Transition state analogues that resemble this transition state structure are powerful inhibitors, and their molecular electrostatic potential maps closely resemble that of the transition state.  相似文献   

12.
Transition states can be predicted from an enzyme's affinity to related transition-state analogues. 5'-Methylthioadenosine nucleosidases (MTANs) are involved in bacterial quorum sensing pathways and thus are targets for antibacterial drug design. The transition-state characteristics of six MTANs are compared by analyzing dissociation constants (K(d)) with a small array of representative transition-state analogues. These inhibitors mimic early or late dissociative transition states with K(d) values in the picomolar range. Our results indicate that the K(d) ratio for mimics of early and late transition states are useful in distinguishing between these states. By this criterion, the transition states of Neisseria meningitides and Helicobacter pylori MTANs are early dissociative, whereas Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniae, and Klebsiella pneumoniae MTANs have late dissociative characters. This conclusion is confirmed independently by the characteristic [1'- (3)H] and [1'- (14)C] kinetic isotope effects (KIEs) of these enzymes. Large [1'- (3)H] and unity [1'- (14)C] KIEs are observed for late dissociative transition states, whereas early dissociative states showed close-to-unity [1'- (3)H] and significant [1'- (14)C] KIEs. K d values of various MTANs for individual transition-state analogues provide tentative information about transition-state structures due to varying catalytic efficiencies of enzymes. Comparing K d ratios for mimics of early and late transition states removes limitations inherent to the enzyme and provides a better predictive tool in discriminating between possible transition-state structures.  相似文献   

13.
rihC is one of a group of three ribonucleoside hydrolases found in Escherichia coli (E. coli). The enzyme catalyzes the hydrolysis of selected nucleosides to ribose and the corresponding base. A family of Vmax/Km kinetic isotope effects using uridine labeled with stable isotopes, such as 2H, 13C, and 15N, were determined by liquid chromatography/mass spectrometry (LC/MS). The kinetic isotope effects were 1.012+/-0.006, 1.027+/-0.005, 1.134+/-0.007, 1.122+/-0.008, and 1.002+/-0.004 for [1'-13C], [1-15N], [1'-2H], [2'-2H], and [5'-2H2] uridine, respectively. A transition state based upon a bond-energy bond-order vibrational analysis (BEBOVIB) of the observed kinetic isotope effects is proposed. The main features of this transition state are activation of the heterocyclic base by protonation of/or hydrogen bonding to O2, an extensively broken C-N glycosidic bond, formation of an oxocarbenium ion in the ribose ring, C3'-exo ribose ring conformation, and almost no bond formation to the attacking nucleophile. The proposed transition state for the prokaryotic E. coli nucleoside hydrolase is compared to that of a similar enzyme isolated from Crithidia fasciculata (C. fasciculata).  相似文献   

14.
Silva RG  Schramm VL 《Biochemistry》2011,50(42):9158-9166
The reversible phosphorolysis of uridine to generate uracil and ribose 1-phosphate is catalyzed by uridine phosphorylase and is involved in the pyrimidine salvage pathway. We define the reaction mechanism of uridine phosphorylase from Trypanosoma cruzi by steady-state and pre-steady-state kinetics, pH-rate profiles, kinetic isotope effects from uridine, and solvent deuterium isotope effects. Initial rate and product inhibition patterns suggest a steady-state random kinetic mechanism. Pre-steady-state kinetics indicated no rate-limiting step after formation of the enzyme-products ternary complex, as no burst in product formation is observed. The limiting single-turnover rate constant equals the steady-state turnover number; thus, chemistry is partially or fully rate limiting. Kinetic isotope effects with [1'-(3)H]-, [1'-(14)C]-, and [5'-(14)C,1,3-(15)N(2)]uridine gave experimental values of (α-T)(V/K)(uridine) = 1.063, (14)(V/K)(uridine) = 1.069, and (15,β-15)(V/K)(uridine) = 1.018, in agreement with an A(N)D(N) (S(N)2) mechanism where chemistry contributes significantly to the overall rate-limiting step of the reaction. Density functional theory modeling of the reaction in gas phase supports an A(N)D(N) mechanism. Solvent deuterium kinetic isotope effects were unity, indicating that no kinetically significant proton transfer step is involved at the transition state. In this N-ribosyl transferase, proton transfer to neutralize the leaving group is not part of transition state formation, consistent with an enzyme-stabilized anionic uracil as the leaving group. Kinetic analysis as a function of pH indicates one protonated group essential for catalysis and for substrate binding.  相似文献   

15.
The synthesis of a new 8-spin-labeled analog of AMP, 8-[[[(2,2,5,5-tetramethyl-1-oxy-3-pyrrolidinyl)carbamoyl]methyl]thio]adenosine 5'-phosphate (8-slAMP), is described. The procedure is facile and results in high yields. 8-slAMP is a competitive inhibitor of AMP nucleosidase with a Ki of 19 microM as compared to a Km of 100 microM for AMP. The analog is not a substrate for the enzyme and does not displace MgATP2- from the allosteric sites under the usual assay conditions. The EPR spectrum of the bound spin probe reveals a highly immobilized nitroxide group. Binding studies with 8-slAMP at 8 degrees C indicate three independent binding sites (Kd = 1.4 microM) per molecule of enzyme (Mr = 320,000). These properties make 8-slAMP a good spin probe for AMP nucleosidase. The analog may also be useful for other proteins known or suspected of binding AMP analogs in a syn conformation.  相似文献   

16.
AMP nucleosidase: kinetic mechanism and thermodynamics   总被引:1,自引:0,他引:1  
W E DeWolf  F A Emig  V L Schramm 《Biochemistry》1986,25(14):4132-4140
The kinetic mechanism of AMP nucleosidase (EC 3.2.2.4; AMP + H2O----adenine + ribose 5-phosphate) from Azotobacter vinelandii is rapid-equilibrium random by initial rate studies of the forward and reverse reactions in the presence of MgATP, the allosteric activator. Inactivation-protection studies have established the binding of adenine to AMP nucleosidase in the absence of ribose 5-phosphate. Product inhibition by adenine suggests a dead-end complex of enzyme, AMP, and adenine. Methanol does not act as a nucleophile to replace H2O in the reaction, and products do not exchange into substrate during AMP hydrolysis. Thus, the reactive complex has the properties of concerted hydrolysis by an enzyme-directed water molecule rather than by formation of a covalent intermediate with ribose 5-phosphate. The Vmax in the forward reaction (AMP hydrolysis) is 300-fold greater than that in the reverse reaction. The Keq for AMP hydrolysis has been experimentally determined to be 170 M and is in reasonable agreement with Keq values of 77 and 36 M calculated from Haldane relationships. The equilibrium for enzyme-bound substrate and products strongly favors the enzyme-product ternary complex ([enzyme-adenine ribose 5-phosphate]/[enzyme-AMP] = 480). The temperature dependence of the kinetic constants gave Arrhenius plots with a distinct break between 20 and 25 degrees C. Above 25 degrees C, AMP binding demonstrates a strong entropic effect consistent with increased order in the Michaelis complex. Below 20 degrees C, binding is tighter and the entropic component is lost, indicating distinct enzyme conformations above and below 25 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Luo M  Li L  Schramm VL 《Biochemistry》2008,47(8):2565-2576
Purine nucleoside phosphorylase (PNP) catalyzes the reversible phosphorolysis of purine (2'-deoxy)ribonucleosides to give the corresponding purine base and (2'-deoxy)ribose 1-phosphate as products. Human and bovine PNPs (HsPNP and BtPNP) form distinct transition states despite 87% identity in amino acid sequence. A PNP hybrid was produced by replacing K22 and H104 in HsPNP with the corresponding Glu and Arg residues found in BtPNP. We solved the transition-state structure of E:R-HsPNP (K22E:H104R mutant of HsPNP) using competitive kinetic isotope effects (KIE) and global density functional calculations. An array of PNP transition states was generated from optimized structure candidates with varied C1'-N9, C1'-Ophosphate distances, ribosyl pucker configurations and N7-protonation states. Isotopically labeled [1'-3H], [2'-3H], [1'-14C], [9-15N], [1'-14C, 9-15N] and [5'-3H2]inosines gave intrinsic KIE values of 1.210, 1.075, 1.035, 1.024, 1.065, 1.063 with E:R-HsPNP, respectively. The suite of E:R-HsPNP KIEs match a single structure from the array of PNP transition-state candidates. The transition state of E:R-HsPNP is fully dissociative, N7-protonated hypoxanthine (C1'-N9 distance >or= 3.0 A) with partial participation of phosphate (C1'-Ophosphate distance = 2.26 A), 2'-C-exo-ribosyl ring pucker and the O5'-C5'-C4'-O4' dihedral angle near 60 degrees . The transition state of E:R-HsPNP is altered from the fully dissociative DN*AN character for HsPNP to a late phosphate-associative character. E:R-HsPNP differs from native HsPNP by only two residues over 25 A away from the active site. New interactions caused by the mutations increase the catalytic efficiency of the enzyme for formation of a late transition state with increased participation of the phosphate nucleophile. Dynamic coupling motions from the remote mutations to the catalytic sites are proposed.  相似文献   

18.
Zhang Y  Schramm VL 《Biochemistry》2011,50(21):4813-4818
Orotate phosphoribosyltransferases (OPRTs) form and break the N-ribosidic bond to pyrimidines by way of ribocation-like transition states (TSs) and therefore exhibit large α-secondary 1'-(3)H k(cat)/K(m) kinetic isotope effects (KIEs) [Zhang, Y., and Schramm, V. L. (2010) J. Am. Chem. Soc. 132, 8787-8794]. Substrate binding isotope effects (BIEs) with OPRTs report on the degree of ground-state destabilization for these complexes and permit resolution of binding and transition-state effects from the k(cat)/K(m) KIEs. The BIEs for interactions of [1'-(3)H]orotidine 5'-monophosphate (OMP) with the catalytic sites of Plasmodium falciparum and human OPRTs are 1.104 and 1.108, respectively. These large BIEs establish altered sp(3) bond hybridization of C1' toward the sp(2) geometry of the transition states upon OMP binding. Thus, the complexes of these OPRTs distort OMP part of the way toward the transition state. As the [1'-(3)H]OMP k(cat)/K(m) KIEs are approximately 1.20, half of the intrinsic k(cat)/K(m) KIEs originate from BIEs. Orotidine, a slow substrate for these enzymes, binds to the catalytic site with no significant [1'-(3)H]orotidine BIEs. Thus, OPRTs are unable to initiate ground-state destabilization of orotidine by altered C1' hybridization because of the missing 5'-phosphate. However the k(cat)/K(m) KIEs for [1'-(3)H]orotidine are also approximately 1.20. The C1' distortion for OMP happens in two steps, half upon binding and half on going from the Michaelis complex to the TS. With orotidine as the substrate, there is no ground-state destabilization in the Michaelis complexes, but the C1' distortion at the TS is equal to that of OMP. The large single barrier for TS formation with orotidine slows the rate of barrier crossing.  相似文献   

19.
Gerratana B  Frey PA  Cleland WW 《Biochemistry》2001,40(9):2972-2977
The transition-state structure for the reaction catalyzed by kanamycin nucleotidyltransferase has been determined from kinetic isotope effects. The primary (18)O isotope effects at pH 5.7 (close to the optimum pH) and at pH 7.7 (away from the optimum pH) are respectively 1.016 +/- 0.003 and 1.014 +/- 0.002. Secondary (18)O isotope effects of 1.0033 +/- 0.0004 and 1.0024 +/- 0.0002 for both nonbridge oxygen atoms were measured respectively at pH 5.7 and 7.7. These isotope effects are consistent with a concerted reaction with a slightly associative transition-state structure.  相似文献   

20.
The enzyme clavaminate synthase (CS) catalyzes the formation of the first bicyclic intermediate in the biosynthetic pathway to the potent beta-lactamase inhibitor clavulanic acid. Our previous work has led to the proposal that the cyclization/desaturation of the substrate proclavaminate proceeds in two oxidative steps, each coupled to a decarboxylation of alpha-ketoglutarate and a reduction of dioxygen to water [Salowe, S. P., Marsh, E. N., & Townsend, C. A. (1990) Biochemistry 29, 6499-6508]. We have now employed kinetic isotope effect studies to determine the order of oxidations for CS purified from Streptomyces clavuligerus. By using (4'RS)-[4'-3H,1-14C]-rac-proclavaminate, a primary T(V/K) = 8.3 +/- 0.2 was measured from [3H]water release data, while an alpha-secondary T(V/K) = 1.06 +/- 0.01 was determined from the changing 3H/14C ratio of the product clavaminate. Values for the primary and alpha-secondary effects of 11.9 +/- 1.7 and 1.12 +/- 0.07, respectively, were obtained from the changing 3H/14C ratio of the residual proclavaminate by using new equations derived for a racemic substrate bearing isotopic label at both primary and alpha-secondary positions. Since only the first step of consecutive irreversible reactions will exhibit a V/K isotope effect, we conclude that C-4' is the initial site of oxidation in proclavaminate. As expected, no significant changes in the 3H/14C ratio of residual substrate were observed with [3-3H,1-14C]-rac-proclavaminate. However, two new tritiated compounds were produced in this incubation, apparently the result of isotope-induced branching brought about by the presence of tritium at the site of the second oxidation. One of these compounds was identified by comparison to authentic material as dihydroclavaminate, a stable intermediate that normally remains enzyme-bound. On the basis of the body of information available and the similarities to alpha-ketoglutarate-dependent dioxygenases, a comprehensive mechanistic scheme for CS is proposed to account for this unusual enzymatic transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号