共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
The analysis of microbial communities in environmental samples requires accurate and reproducible methods for extraction of DNA from sample matrices that have different physical and chemical characteristics. Even with the same sample type, variations in laboratory methods can result in different DNA yields. To circumvent this problem, we have developed an easy and inexpensive way to normalize the quantities of DNA that involves the addition of an internal standard prepared from plasmid DNA. The method was evaluated by comparing DNA yields using different DNA extraction procedures, after which the DNA was used for microbial community analysis by PCR-denaturing gradient gel electrophoresis (PCR-DGGE) of 16S ribosomal RNA (rRNA) and for quantification of 16S rRNA gene copy numbers in environmental samples by real-time PCR. Our results show that use of the internal standard allows normalization of the resulting data and more accurate quantification of gene copy numbers in soil samples. These methods should also have broad application for various other types of environmental samples. 相似文献
3.
Nitric oxide reductase-targeted real-time PCR quantification of denitrifier populations in soil 总被引:1,自引:0,他引:1
Dandie CE Miller MN Burton DL Zebarth BJ Trevors JT Goyer C 《Applied and environmental microbiology》2007,73(13):4250-4258
The quantification of denitrifying bacteria is a component in the further understanding of denitrification processes in the environment. Real-time PCR primers were designed to target two segments of the denitrifier population (cnorB(P) [Pseudomonas mandelii and closely related strains] and cnorB(B) [Bosea, Bradyrhizobium, and Ensifer spp.]) in agricultural soils based on functional cnorB (nitric oxide reductase) gene sequences. Total population numbers were measured using 16S rRNA gene real-time PCR. Two soil microcosm experiments were conducted. Experiment 1 examined the response of the indigenous soil microbial population to the addition of 500 mg/kg glucose-C daily over 7 days in soil microcosms. Changes in the total population were correlated (r = 0.83) between 16S rRNA gene copy numbers and microbial biomass carbon estimates. Members of the cnorB(P) population of denitrifiers showed typical r-strategy by being able to increase their proportion in the total population from starting levels of <0.1% to around 2.4% after a daily addition of 500 mg/kg glucose-C. The cnorB(B) guild was not able to increase its relative percentage of the total population in response to the addition of glucose-C, instead increasing copy numbers only in proportion with the total population measured by 16S rRNA genes. Experiment 2 measured population dynamics in soil after the addition of various amounts of glucose-C (0 to 500 mg/kg) and incubation under denitrifying conditions. cnorB(P) populations increased proportionally with the amount of glucose-C added (from 0 to 500 mg/kg). In soil microcosms, denitrification rates, respiration, and cnorB(P) population densities increased significantly with increasing rates of glucose addition. cnorB(B) guild densities did not increase significantly under denitrifying conditions in response to increasing C additions. 相似文献
4.
Detection and quantification of Entomophaga maimaiga resting spores in forest soil using real-time PCR 总被引:2,自引:0,他引:2
Louela A. Castrillo Lene Thomsen Punita Juneja Ann E. Hajek 《Mycological Research》2007,111(3):324-331
Environmental sampling to monitor entomopathogen titre in forest soil, a known reservoir of insect pathogens such as fungi and viruses, is important in the evaluation of conditions that could trigger epizootics and in the development of strategies for insect pest management. Molecular or PCR-based analysis of environmental samples provides a sensitive method for strain- or species-based detection, and real-time PCR, in particular, allows quantification of the organism of interest. In this study we developed a DNA extraction method and a real-time PCR assay for detection and quantification of Entomophaga maimaiga (Zygomycetes: Entomophthorales), a fungal pathogen of the gypsy moth, in the organic layer of forest soil. DNA from fungal resting spores (azygospores) in soil was extracted using a detergent and bead mill homogenization treatment followed by purification of the crude DNA extract using Sephadex–polyvinylpolypyrrolidone microcolumns. The purification step eliminated most of the environmental contaminants commonly co-extracted with genomic DNA from soil samples but detection assays still required the addition of bovine serum albumin to relieve PCR inhibition. The real-time PCR assay used primers and probe based on sequence analysis of the nuclear ribosomal ITS region of several E. maimaiga and two E. aulicae strains. Comparison of threshold cycle values from different soil samples spiked with E. maimaiga DNA showed that soil background DNA and remaining co-extracted contaminants are critical factors determining detection sensitivity. Based on our results from comparisons of resting spore titres among different forest soils, estimates were best for organic soils with comparatively high densities of resting spores. 相似文献
5.
Quantitative real-time PCR (qPCR) has been widely implemented for clinical hepatitis B viral load testing, but a lack of standardization and relatively poor precision hinder its usefulness. Droplet digital PCR (ddPCR) is a promising tool that offers high precision and direct quantification. In this study, we compared the ddPCR QX100 platform by Bio-Rad with the CFX384 Touch Real-Time PCR Detection System (Bio-Rad, USA) to detect serial plasmid DNA dilutions of known concentrations as well as HBV DNA extracted from patient serum samples. Both methods showed a high degree of linearity and quantitative correlation. However, ddPCR assays generated more reproducible results and detected lower copy numbers than qPCR assays. Patient sample quantifications by ddPCR and qPCR were highly agreeable based on the Bland–Altman analysis. Collectively, our findings demonstrate that ddPCR offers improved analytical sensitivity and specificity for HBV measurements and is suitable for clinical HBV detection. 相似文献
6.
In order to develop a protocol to quantify cyanobacteria and Microcystis simultaneously, the primers and probe were designed from the conserved regions of 16S rRNA gene sequences of cyanobacteria and Microcystis, respectively. Probe match analysis of the Ribosomal Database Project showed that the primers matched with over 97% of cyanobacterial 16S rRNA genes, indicating these can be used to amplify cyanobacteria specifically. The TaqMan probe, which is located between two primers, matched with 98.2% of sequences in genus GpXI, in which most Microcystis strains are included. The numbers of cyanobacterial genes were estimated with the emission of SYBR Green from the amplicons with two primers, whereas those of Microcystis spp. were measured from the fluorescence of CAL Fluor Gold 540 emitted by exonuclease activity of Taq DNA polymerase in amplification. It is expected that this method enhances the accuracy and reduces the time to count cyanobacteria and potential toxigenic Microcystis spp. in aquatic environmental samples. 相似文献
7.
Lorusso A Decaro N Greco G Corrente M Fasanella A Buonavoglia D 《Journal of applied microbiology》2007,103(4):918-923
AIMS: The aim of this study was to develop a rapid, sensitive, specific tool for detection and quantification of Mycoplasma agalactiae DNA in sheep milk samples. METHODS AND RESULTS: A real-time polymerase chain reaction (PCR) assay targeting the membrane-protein 81 gene of M. agalactiae was developed. The assay specifically detected M. agalactiae DNA without cross-amplification of other mycoplasmas and common pathogens of small ruminants. The method was reproducible and highly sensitive, providing precise quantification of M. agalactiae DNA over a range of nine orders of magnitude. Compared with an established PCR assay, the real-time PCR was one-log more sensitive, detecting as few as 10(1) DNA copies per 10 microl of plasmid template and 6.5x10(0) colour changing units of reference strain Ba/2. CONCLUSIONS: The real-time PCR assay is a reliable method for the detection and quantification of M. agalactiae DNA in sheep milk samples. The assay is more sensitive than gel-based PCR protocols and provides quantification of the M. agalactiae DNA contained in milk samples. The assay is also quicker than traditional culture methods (2-3 h compared with at least 1 week). SIGNIFICANCE AND IMPACT OF THE STUDY: The established real-time PCR assay will help study the patterns of shedding of M. agalactiae in milk, aiding pathogenesis and vaccine efficacy studies. 相似文献
8.
Trung TT Hetzer A Göhler A Topfstedt E Wuthiekanun V Limmathurotsakul D Peacock SJ Steinmetz I 《Applied and environmental microbiology》2011,77(18):6486-6494
The soil bacterium and potential biothreat agent Burkholderia pseudomallei causes the infectious disease melioidosis, which is naturally acquired through environmental contact with the bacterium. Environmental detection of B. pseudomallei represents the basis for the development of a geographical risk map for humans and livestock. The aim of the present study was to develop a highly sensitive, culture-independent, DNA-based method that allows direct quantification of B. pseudomallei from soil. We established a protocol for B. pseudomallei soil DNA isolation, purification, and quantification by quantitative PCR (qPCR) targeting a type three secretion system 1 single-copy gene. This assay was validated using 40 soil samples from Northeast Thailand that underwent parallel bacteriological culture. All 26 samples that were B. pseudomallei positive by direct culture were B. pseudomallei qPCR positive, with a median of 1.84 × 10(4) genome equivalents (range, 3.65 × 10(2) to 7.85 × 10(5)) per gram of soil, assuming complete recovery of DNA. This was 10.6-fold (geometric mean; range, 1.1- to 151.3-fold) higher than the bacterial count defined by direct culture. Moreover, the qPCR detected B. pseudomallei in seven samples (median, 36.9 genome equivalents per g of soil; range, 9.4 to 47.3) which were negative by direct culture. These seven positive results were reproduced using a nested PCR targeting a second, independent B. pseudomallei-specific sequence. Two samples were direct culture and qPCR negative but nested PCR positive. Five samples were negative by both PCR methods and culture. In conclusion, our PCR-based system provides a highly specific and sensitive tool for the quantitative environmental surveillance of B. pseudomallei. 相似文献
9.
Rudi K Høidal HK Katla T Johansen BK Nordal J Jakobsen KS 《Applied and environmental microbiology》2004,70(2):790-797
Campylobacter jejuni is a major cause of diarrheal disease and food-borne gastroenteritis. The main reservoir of C. jejuni in poultry is the cecum, with an estimated content of 6 to 8 log10 CFU/g. If a flock is infected with C. jejuni, the majority of the birds in that flock will harbor the bacterium. Diagnostics at the flock level could thus be an important control point. The aim of the work presented here was to develop a complete quantitative PCR-based detection assay for C. jejuni obtained directly from cecal contents and fecal samples. We applied an approach in which the same paramagnetic beads were used both for cell isolation and for DNA purification. This integrated approach enabled both fully automated and quantitative sample preparation and a DNA extraction method. We developed a complete quantitative diagnostic assay through the combination of the sample preparation approach and real-time 5'-nuclease PCR. The assay was evaluated both by spiking the samples with C. jejuni and through the detection of C. jejuni in naturally colonized chickens. Detection limits between 2 and 25 CFU per PCR and a quantitative range of >4 log10 were obtained for spiked fecal and cecal samples. Thirty-one different poultry flocks were screened for naturally colonized chickens. A total of 262 (204 fecal and 58 cecal) samples were analyzed. Nineteen of the flocks were Campylobacter positive, whereas 12 were negative. Two of the flocks contained Campylobacter species other than C. jejuni. There was a large difference in the C. jejuni content, ranging from 4 to 8 log10 CFU/g of fecal or cecal material, for the different flocks tested. Some issues that have not yet promoted much attention are the prequantitative differences in the ability of C. jejuni to colonize poultry and the importance of these differences for causing human disease through food contamination. Understanding the colonization kinetics in poultry is therefore of great importance for controlling human infections by this bacterium. 相似文献
10.
Detection and quantification of mitochondrial DNA deletions in individual cells by real-time PCR 总被引:8,自引:0,他引:8
He L Chinnery PF Durham SE Blakely EL Wardell TM Borthwick GM Taylor RW Turnbull DM 《Nucleic acids research》2002,30(14):e68
Defects of mitochondrial DNA (mtDNA) are an important cause of disease and play a role in the ageing process. There are multiple copies of the mitochondrial genome in a single cell. In many patients with acquired or inherited mtDNA mutations, there exists a mixture of mutated and wild type genomes (termed heteroplasmy) within individual cells. As a biochemical and clinical defect is only observed when there are high levels of mutated mtDNA, a crucial investigation is to determine the level of heteroplasmic mutations within tissues and individual cells. We have developed an assay to determine the relative amount of deleted mtDNA using real-time fluorescence PCR. This assay detects the vast majority of deleted molecules, thus eliminating the need to develop specific probes. We have demonstrated an excellent correlation with other techniques (Southern blotting and three- primer competitive PCR), and have shown this technique to be sensitive to quantify the level of deleted mtDNA molecules in individual cells. Finally, we have used this assay to investigate patients with mitochondrial disease and shown in individual skeletal muscle fibres that there exist different patterns of abnormalities between patients with single or multiple mtDNA deletions. We believe that this technique has significant advantages over other methods to quantify deleted mtDNA and, employed alongside our method to sequence the mitochondrial genome from single cells, will further our understanding of the role of mtDNA mutations in human disease and ageing. 相似文献
11.
DNA isolation from forest soil suitable for PCR assays of fungal and plant rRNA genes 总被引:1,自引:0,他引:1
Gerardo Vázquez-Marrufo MA. Soledad Vázquez-Garciduenas Blanca E. Gómez-Luna Víctor Olalde-Portugal 《Plant Molecular Biology Reporter》2002,20(4):379-390
This protocol for DNA isolation from forest soil samples is advantageous because it uses only one liquid transference step
and can process several samples with minimal time and equipment. The use of benzyl chloride early in the extraction protocol
increases DNA yield and purity. The obtained DNA is useful for PCR amplification of nuclear and mitochondrial ribosomal related
sequences from fungi and ribosomal DNA from plant chloroplasts. Isolated DNA can be used either undiluted or at low dilutions
in PCR assays. A final glassmilk treatment of isolated DNA is useful to recover high molecular weight DNA fractions from agarose
gel. DNA losses during glassmilk treatment can generate negative PCR results. 相似文献
12.
Reconstructing the diets of pinnipeds by visually identifying prey remains recovered in faecal samples is challenging because of differences in digestion and passage rates of hard parts. Analysing the soft-matrix of faecal material using DNA-based techniques is an alternative means to identify prey species consumed, but published techniques are largely nonquantitative, which limits their usefulness for some applications. We further developed and validated a real-time PCR technique using species-specific mitochondrial DNA primers to quantify the proportion of prey in the diets of Steller sea lions (Eumetopias jubatus), a pinniped species thought to be facing significant diet related challenges in the North Pacific. We first demonstrated that the proportions of prey tissue DNA in mixtures of DNA isolated from four prey species could be estimated within a margin of ~ 12% of the percent in the mix. These prey species included herring Clupea palasii, eulachon Thaleichthyes pacificus, squid Loligo opalescens and rosethorn rockfish Sebastes helvomaculatus. We then applied real-time PCR to DNA extracted from faecal samples obtained from Steller sea lions in captivity that were fed 11 different combinations of herring, eulachon, squid and Pacific ocean perch rockfish (Sebastes alutus), ranging from 7% to 75% contributions per meal (by wet weight). The difference between the average percentage estimated by real-time PCR and the percentage of prey consumed was generally <12% for all diets fed. Our findings indicate that real-time PCR of faecal DNA can detect the approximate relative quantity of prey consumed for complex diets and prey species, including cephalopods and fish. 相似文献
13.
14.
Species-specific detection and quantification methods for barnacle larvae using quantitative real-time polymerase chain reaction (qPCR) were developed. Species-specific primers for qPCR were designed for 13 barnacle species in the mitochondrial 12S ribosomal RNA gene region. Primer specificity was examined by PCR using template DNA extracted from each of the 13 barnacle species, other unidentified barnacle species, and field collected zooplankton samples. The resulting PCR products comprised single bands following agarose gel electrophoresis when the templates corresponded to primers. The amplifications were highly species-specific even for the field plankton samples. The field plankton samples were subjected to qPCR assay. The calculated DNA contents for each barnacle species were closely correlated with the number of larvae measured by microscopic examination. The method could be applied to quantify barnacle larvae in natural plankton samples. 相似文献
15.
Noriyuki Endo Kana Sato Kiyotaka Matsumura † Erina Yoshimura Yukiko Odaka Yasuyuki Nogata 《Biofouling》2013,29(8):901-911
Species-specific detection and quantification methods for barnacle larvae using quantitative real-time polymerase chain reaction (qPCR) were developed. Species-specific primers for qPCR were designed for 13 barnacle species in the mitochondrial 12S ribosomal RNA gene region. Primer specificity was examined by PCR using template DNA extracted from each of the 13 barnacle species, other unidentified barnacle species, and field collected zooplankton samples. The resulting PCR products comprised single bands following agarose gel electrophoresis when the templates corresponded to primers. The amplifications were highly species-specific even for the field plankton samples. The field plankton samples were subjected to qPCR assay. The calculated DNA contents for each barnacle species were closely correlated with the number of larvae measured by microscopic examination. The method could be applied to quantify barnacle larvae in natural plankton samples. 相似文献
16.
Real-time PCR has been widely used to evaluate gene abundance in natural microbial habitats. However, PCR-inhibitory substances often reduce the efficiency of PCR, leading to the underestimation of target gene copy numbers. Digital PCR using microfluidics is a new approach that allows absolute quantification of DNA molecules. In this study, digital PCR was applied to environmental samples, and the effect of PCR inhibitors on DNA quantification was tested. In the control experiment using λ DNA and humic acids, underestimation of λ DNA at 1/4400 of the theoretical value was observed with 6.58ngμL(-1) humic acids. In contrast, digital PCR provided accurate quantification data with a concentration of humic acids up to 9.34ngμL(-1). The inhibitory effect of paddy field soil extract on quantification of the archaeal 16S rRNA gene was also tested. By diluting the DNA extract, quantified copy numbers from real-time PCR and digital PCR became similar, indicating that dilution was a useful way to remedy PCR inhibition. The dilution strategy was, however, not applicable to all natural environmental samples. For example, when marine subsurface sediment samples were tested the copy number of archaeal 16S rRNA genes was 1.04×10(3)copies/g-sediment by digital PCR, whereas real-time PCR only resulted in 4.64×10(2)copies/g-sediment, which was most likely due to an inhibitory effect. The data from this study demonstrated that inhibitory substances had little effect on DNA quantification using microfluidics and digital PCR, and showed the great advantages of digital PCR in accurate quantifications of DNA extracted from various microbial habitats. 相似文献
17.
This study quantified Neospora caninum DNA in the blood and brain of pregnant and aborted heifers by monitoring PCR product formation in real-time using SYBR Green I, a double-stranded DNA-binding dye. Primers were designed to amplify a 188 bp product specific to N. caninum from the Nc-5 gene fragment of N. caninum. Similarly, a 71 bp product was amplified from the 28S rRNA gene of bovine genomic DNA that served as a control. Agarose gel electrophoresis and analysis of the melting curve for PCR products showed that both primer pairs were specific to their targets. Standard curves were generated for both bovine and N. caninum genomic DNA, and were used to compute the relative concentration of parasite to bovine DNA in the test samples. The concentration of N. caninum DNA in 1 ng of bovine genomic DNA obtained from blood ranged between 0.097 ng at the 1st week of the observation and 0 ng at the 15th week in aborted cows. In pregnant cows, the values ranged between 0.080 ng at the 1st week and 0.155 ng at the 15th week of observation. There was a sustained decrease of DNA concentration in the aborted group after abortion and an increase in DNA concentration in the pregnant group. Comparison of parasite DNA in blood and brain of infected heifers showed a higher DNA concentration in brain than in blood. This study shows that N. caninum DNA can be quantified to obtain the relative concentration of parasite DNA to host genomic DNA in blood. This technique allows testing of a large number of samples at one time and can be done without the need for slaughter of tested animals. 相似文献
18.
Real-time PCR methods have recently been developed for the quantification of Helicobacter pylori from infected mouse stomachs. However, the extent to which results is affected by the efficiency of different methods of DNA extraction and the degree of inhibition of the subsequent PCR have largely been ignored. In this study, mouse stomachs were processed using two homogenisation methods: complete disruption using a blender and homogenisation by vortexing with glass beads. Each procedure was followed by DNA purification by three different protocols-two commercially available kits-Qiagen DNA Mini Tissue kit and Qiagen Stool Kit and a phenol-chloroform extraction method. PCR inhibition was assessed by screening for mouse DNA and for H. pylori DNA after spiking stomach extracts with H. pylori 16S rDNA. PCR inhibition was found to be lower in DNA samples prepared by vortexing and processed by column kits. Validation of procedures was performed by quantification of H. pylori DNA and mouse DNA in infected mouse stomachs. Homogenisation with glass beads followed by the Qiagen Tissue kit was found to be the most suitable protocol combining high extraction and detection efficiency of 16S rDNA in the presence of a mouse DNA background. 相似文献
19.