首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Real-time PCR in nuclear ribosomal DNA (nrDNA) is becoming a well-established tool for the quantification of arbuscular mycorrhizal (AM) fungi, but this genomic region does not allow the specific amplification of closely related genotypes. The large subunit of mitochondrial DNA (mtDNA) has a higher-resolution power, but mtDNA-based quantification has not been previously explored in AM fungi. We applied real-time PCR assays targeting the large subunit of mtDNA to monitor the DNA dynamics of two isolates of Glomus intraradices sensu lato coexisting in the roots of medic (Medicago sativa). The mtDNA-based quantification was compared to quantification in nrDNA. The ratio of copy numbers determined by the nrDNA- and mtDNA-based assays consistently differed between the two isolates. Within an isolate, copy numbers of the nuclear and the mitochondrial genes were closely correlated. The two quantification approaches revealed similar trends in the dynamics of both isolates, depending on whether they were inoculated alone or together. After 12 weeks of cultivation, competition between the two isolates was observed as a decrease in the mtDNA copy numbers of one of them. The coexistence of two closely related isolates, which cannot be discriminated by nrDNA-based assays, was thus identified as a factor influencing the dynamics of AM fungal DNA in roots. Taken together, the results of this study show that real-time PCR assays targeted to the large subunit of mtDNA may become useful tools for the study of coexisting AM fungi.  相似文献   

2.
Entomopathogenic nematodes (EPNs) are important pathogens of soilborne insects and are sometimes developed commercially to manage insect pests. Numerous nematophagous fungal species (NF) prey on nematodes and are thought to be important in regulating natural or introduced EPN populations. However, nematophagy by these fungi in nature cannot be inferred using existing methods to estimate their abundance in soil because many of these fungi are saprophytes, resorting to parasitism primarily when certain nutrients are limiting. Therefore, we developed an assay to quantify NF DNA in samples of nematodes. Species-specific primers and TaqMan probes were designed from the ITS rDNA regions of Arthrobotrys dactyloides, Arthrobotrys oligospora, Arthrobotrys musiformis, Gamsylella gephyropagum and Catenaria sp. When tested against 23 non-target fungi, the TaqMan real-time PCR assay provided sensitive and target-specific quantification over a linear range. The amount of A. dactyloides or Catenaria sp. DNA in 20 infected nematodes, measured by real-time PCR, differed between fungal species (P=0.001), but not between experiments (P>0.05). However, estimates of relative NF parasitism using a bioassay with 20 nematodes infected by either species, differed greatly (P<0.001) depending on whether the fungi were alone or combined in the samples used in the assay. Tests done to simulate detection of NF DNA in environmental samples showed that, for all species, background genomic DNA and/or soil contaminants reduced the quantity of DNA detected. Nested PCR was ineffective for increasing the detection of NF in environmental samples. Indeed, real-time PCR detected higher amounts of NF DNA than did nested PCR. The spatial patterns of NF parasitism in a citrus orchard were derived using real-time PCR and samples of nematodes extracted from soil. The parasitism by Catenaria sp. was positively related to the abundance of both heterorhabditid and steinernematid EPNs. The possible significance of the associations is ambiguous because NF attack a broad range of nematode taxa whereas EPNs are a small minority of the total nematode population in a soil sample. These studies demonstrate the potential of real-time PCR to study the role of NF parasitism in soil food webs.  相似文献   

3.
Environmental sampling to monitor entomopathogen titre in forest soil, a known reservoir of insect pathogens such as fungi and viruses, is important in the evaluation of conditions that could trigger epizootics and in the development of strategies for insect pest management. Molecular or PCR-based analysis of environmental samples provides a sensitive method for strain- or species-based detection, and real-time PCR, in particular, allows quantification of the organism of interest. In this study we developed a DNA extraction method and a real-time PCR assay for detection and quantification of Entomophaga maimaiga (Zygomycetes: Entomophthorales), a fungal pathogen of the gypsy moth, in the organic layer of forest soil. DNA from fungal resting spores (azygospores) in soil was extracted using a detergent and bead mill homogenization treatment followed by purification of the crude DNA extract using Sephadex–polyvinylpolypyrrolidone microcolumns. The purification step eliminated most of the environmental contaminants commonly co-extracted with genomic DNA from soil samples but detection assays still required the addition of bovine serum albumin to relieve PCR inhibition. The real-time PCR assay used primers and probe based on sequence analysis of the nuclear ribosomal ITS region of several E. maimaiga and two E. aulicae strains. Comparison of threshold cycle values from different soil samples spiked with E. maimaiga DNA showed that soil background DNA and remaining co-extracted contaminants are critical factors determining detection sensitivity. Based on our results from comparisons of resting spore titres among different forest soils, estimates were best for organic soils with comparatively high densities of resting spores.  相似文献   

4.
sti35, a stress-responsive gene in Fusarium spp.   总被引:2,自引:0,他引:2       下载免费PDF全文
A stress-induced mRNA was identified in the phytopathogenic fungus Fusarium oxysporum f. sp. cucumerinum. Treatment of the fungus with ethanol resulted in the induction of a major mRNA species encoding a protein of approximate Mr 37,000. A full-length cDNA clone of the induced message was obtained. RNA blot analysis indicated that the mRNA was induced by various other stresses, including treatment with copper(II) chloride and heat (37 degrees C). However, it was not greatly induced by treatment with phaseollinisoflavan, an antifungal isoflavonoid produced by Phaseolus vulgaris (French bean). In contrast, phaseollinisoflavan induced the homologous mRNA in the related bean pathogen Fusarium solani f. sp. phaseoli. A genomic clone of the F. solani f. sp. phaseoli gene was obtained, and both this and the cDNA clone from F. oxysporum f. sp. cucumerinum were sequenced. The latter indicated an open reading frame of 320 codons encoding a 34,556-dalton polypeptide. The corresponding reading frame in F. solani f. sp. phaseoli was 324 codons, 89% identical to the F. oxysporum f. sp. cucumerium sequence, and was interrupted by a short intron. The gene was designated sti35 (stress-inducible mRNA). Although computer homology searches were negative, the cloned gene was observed to cross-hybridize to DNAs of other filamentous fungi, Saccharomyces cerevisiae, and soybean. Thus, sti35 appears to be a common gene among a variety of eucaryotes.  相似文献   

5.
Using dual cultures of arbuscular mycorrhizal (AM) fungi and Medicago truncatula separated by a physical barrier, we demonstrate that hyphae from germinating spores produce a diffusible factor that is perceived by roots in the absence of direct physical contact. This AM factor elicits expression of the Nod factor-inducible gene MtENOD11, visualized using a pMtENOD11-gusA reporter. Transgene induction occurs primarily in the root cortex, with expression stretching from the zone of root hair emergence to the region of mature root hairs. All AM fungi tested (Gigaspora rosea, Gigaspora gigantea, Gigaspora margarita, and Glomus intraradices) elicit a similar response, whereas pathogenic fungi such as Phythophthora medicaginis, Phoma medicaginis var pinodella and Fusarium solani f.sp. phaseoli do not, suggesting that the observed root response is specific to AM fungi. Finally, pMtENOD11-gusA induction in response to the diffusible AM fungal factor is also observed with all three M. truncatula Nod(-)/Myc(-) mutants (dmi1, dmi2, and dmi3), whereas the same mutants are blocked in their response to Nod factor. This positive response of the Nod(-)/Myc(-) mutants to the diffusible AM fungal factor and the different cellular localization of pMtENOD11-gusA expression in response to Nod factor versus AM factor suggest that signal transduction occurs via different pathways and that expression of MtENOD11 is differently regulated by the two diffusible factors.  相似文献   

6.
An innovative quantitative PCR-based method derived from the Kompetitive Allele Specific PCR Assay Reagent (KASPar) system was developed to quantify the genomic DNA from two coexisting genotypes on the same tissues of a host-plant. For this purpose, the classical end-point KASPar method was evolved to a real-time method thanks to the addition of an adapted measurement step after each PCR cycle. It was applied to the quantification of the two genotypes G1 and G2 of the Gaeumannomyces graminis var. tritici (Ggt) soilborne fungus, pathogenic on wheat roots. Specific primers targeting a single nucleotide polymorphism from the ITS sequence were used allowing simultaneous quantification of both genotypes in the same reaction. The assays were applied to quantify fungal DNA of each genotype, aside or mixed together, after DNA extraction from fungal pure cultures and from single or co-inoculated roots in artificial medium or in soil. The detection and quantification lower limits for the two genotypes were 1.25 pg and 5 pg for DNA from fungal pure cultures, and 1.8 pg and 7 pg for DNA from fungal inoculated roots. The advantages of this cost-effective method are the high levels of specificity, sensitivity and reproducibility. Moreover, the accuracy of the method is independent of the copy numbers of the target sequences. The method is the first one to adapt the non-quantitative genotyping KASPar system to a quantitative application of two known genotypes of a species simultaneously and is suitable for simultaneous genotype-specific quantification of any other organisms (fungi, bacteria, plants).  相似文献   

7.
A molecular method for profiling of fungal communities in soil was applied in experiments in soil microcosms, with two objectives, (1) to assess the persistence of two selected fungal species in soil, and (2) to analyze the response of the natural fungal community to a spill of sulphurous petrol in the same soil. To achieve the aims, two soil DNA extraction methods, one originally designed for the direct extraction of bacterial community DNA and the other one aimed to obtain fungal DNA, were tested for their efficiency in recovering DNA of fungal origin from soil. Both methods allowed for the efficient extraction of DNA from introduced Trichoderma harzianum spores as well as Arthrobotrys oligospora mycelial fragments, at comparable rates. Several PCR amplification systems based on primers specific for fungal 18S ribosomal RNA genes were tested to design strategies for the assessment of fungal communities in soil. The PCR systems produced amplicons of expected size with DNA of most fungi studied, which included members of the Ascomycetes, Basidiomycetes, Zygomycetes and Chytridiomycetes. On the other hand, the 18S rRNA genes of Oomycetes (including key plant pathogens) were poorly amplified. Plant (Solanum tuberosum), nematode (Meloidogyne sp.) and bacterial DNA was not amplified. For studies of soil fungal communities, a nested PCR approach was selected, in which the first PCR provided the required specificity for fungi, whereas the second (nested) PCR served to produce amplicons separable on denaturing gradient gels. Denaturing gradient gel electrophoresis (DGGE) allowed the resolution of mixtures of PCR products of several different fungi, as well as products resulting from mixed-template amplifications, into distinct banding patterns. The persistence of fungal species in soil was assessed using T. harzianum spores and A. oligospora hyphal fragments added to silt loam soil microcosms. Using PCR-DGGE, these fungi were detectable for about 14 days and 2 months, respectively. Both singly-inoculated soils and soils that had received mixed inoculants revealed, next to bands resulting from indigenous fungi, the expected bands in the DGGE profiles. The A. oligospora specific amplicon, by virtue of its unique migration in the denaturing gradient, was well detectable, whereas the T. harzianum specific product comigrated with products from indigenous fungi. PCR-DGGE analysis of DNA obtained from the silt loam soil treated with dibenzothiophene-containing petrol showed the progressive selection of specific fungal bands over time, whereas this selection was not observed in untreated soil microcosms. Cloning of individual molecules from the selected bands and analysis of their sequences revealed a complex of targets which clustered with the 18S rDNA sequences of the closely-related species Nectria haematococca, N. ochroleuca and Fusarium solani. Fungal isolates obtained from the treated soil on PDA plates were identified as Trichoderma sp., whereas those on Comada agar fell into the Cylindrocarpon group (anamorph of Nectria spp).  相似文献   

8.
Detection, identification and quantification of plant pathogens are the cornerstones of preventive plant disease management. To detect multiple pathogens in a single assay, DNA array technology currently is the most suitable technique. However, for sensitive detection, polymerase chain reaction (PCR) amplification before array hybridization is required. To evaluate whether DNA array technology can be used to simultaneously detect and quantify multiple pathogens, a DNA macroarray was designed and optimized for accurate quantification over at least three orders of magnitude of the economically important vascular wilt pathogens Verticillium albo-atrum and Verticillium dahliae. A strong correlation was observed between hybridization signals and pathogen concentrations for standard DNA added to DNA from different origins and for infested samples. While accounting for specific criteria like amount of immobilized detector oligonucleotide and controls for PCR kinetics, accurate quantification of pathogens was achieved in concentration ranges typically encountered in horticultural practice. Subsequently, quantitative assessment of other tomato pathogens (Fusarium oxysporum, Fusarium solani, Pythium ultimum and Rhizoctonia solani) in environmental samples was performed using DNA array technology and correlated to measurements obtained using real-time PCR. As both methods of quantification showed a very high degree of correlation, the reliability and robustness of the DNA array technology is shown.  相似文献   

9.
10.
Gel filtration and chromatographic separation of soil extracts gave three fractions which induced formation of chlamydospores by Fusarium solani f. sp. phaseoli. Depletion of nutrients had a similar effect.  相似文献   

11.
The ability to rapidly identify and quantify a microbial strain in a complex environmental sample has widespread applications in ecology, epidemiology, and industry. In this study, we describe a rapid method to obtain functionally specific genetic markers that can be used in conjunction with standard or real-time polymerase chain reaction (PCR) to determine the abundance of target fungal strains in selected environmental samples. The method involves sequencing of randomly cloned AFLP (amplified fragment length polymorphism) products from the target organism and the design of PCR primers internal to the AFLP fragments. The strain-specific markers were used to determine the fate of three industrially relevant fungi, Aspergillus niger, Aspergillus oryzae, and Chaetomium globosum, during a 4 month soil microcosm experiment. The persistence of each of the three fungal strains inoculated separately into intact soil microcosms was determined by PCR analyses of DNA directly extracted from soil. Presence and absence data based on standard PCR and quantification of the target DNA by real-time PCR showed that all three strains declined after inoculation (approximately 14-, 32-, and 4-fold for A. niger, A. oryzae, and C. globosum, respectively) but remained detectable at the end of the experiment, suggesting that these strains would survive for extended periods if released into nature.  相似文献   

12.
AIMS: To evaluate the virulence gene nec1 as a reliable marker for the detection of pathogenic Streptomyces species on potato tubers and in soil samples using conventional and real-time quantitative PCR assays. Methods AND RESULTS: Two pairs of conventional primers (outer and nested) and one set of primers/probe for use in real-time PCR were designed to detect the necrogenic protein encoding nec1 gene of Streptomyces scabiei strain ATCC 49173(T). The conventional PCR primers were also incorporated into a multiplex PCR assay to simultaneously detect the nec1 gene in conjunction with the potato pathogens Helminthosporium solani and Colletotrichum coccodes. The specificity of each PCR assay was confirmed by testing 32 pathogenic and nonpathogenic reference strains of Streptomyces representing 12 different species and 74 uncharacterized streptomycete strains isolated from diseased tubers. A clear correlation between pathogenicity and the detection of nec1 by PCR was demonstrated. The sensitivity and specificity of both the conventional and real-time PCR assays allowed the detection of nec1 on potato tubers in the absence of visible symptoms of common scab, and in seeded soil down to a level equivalent to three S. scabiei spores per gram soil. CONCLUSIONS: Reliable and quantitative PCR techniques were developed in this study for the specific detection of the virulence gene nec1 of pathogenic Streptomyces species on potato tubers and in soil samples, and the data demonstrated a clear correlation between pathogenicity in Streptomyces species and the presence of the nec1 gene. SIGNIFICANCE AND IMPACT OF THE STUDY: Together with the DNA extraction protocols, these diagnostic methods will allow a rapid and accurate assessment of tuber and soil contamination by pathogenic Streptomyces species.  相似文献   

13.
Strain identification in situ is an important factor in the monitoring of microorganisms used in the field. In this study, we demonstrated the use of sequence-characterized amplified region (SCAR) markers to detect genomic DNA from Trichoderma harzianum 2413 from soil. Two primers (SCAR A1/SCAR A1c) were tested against DNA of 27 isolates of Trichoderma spp. and amplified a 990-bp fragment from T. atroviride 11 and a 1.5-kb fragment from T. harzianum 2413, using an annealing temperature of 68°C. These fragments showed no significant homology to any sequence deposited in the databases. The primer pair, BR1 and BR2, was designed to the 1.5-kb fragment amplified from T. harzianum 2413, generating a SCAR marker. To test the specificity of these primers, experiments were conducted using the DNA from 27 Trichoderma spp. strains and 22 field soil samples obtained from four different countries. PCR results showed that BR1 and BR2 amplified an 837-bp fragment unique to T. harzianum 2413. Assays in which total DNA was extracted from sterile and nonsterile soil samples, inoculated with spore or mycelium combinations of Trichoderma spp. strains, indicated that the BR1 and BR2 primers could specifically detect T. harzianum 2413 in a pool of mixed DNA. No other soil-microorganisms containing these sequences were amplified using these primers. To test whether the 837-bp SCAR marker of T. harzianum 2413 could be used in real-time PCR experiments, new primers (Q2413f and Q2413r) conjugated with a TaqMan fluorogenic probe were designed. Real-time PCR assays were applied using DNA from sterile and nonsterile soil samples inoculated with a known quantity of spores of Trichoderma spp. strains.  相似文献   

14.
A real-time quantitative TaqMan-PCR was established for the absolute quantification of extramatrical hyphal biomass of the ectomycorrhizal fungus Piloderma croceum in pure cultures as well as in rhizotron samples with non-sterile peat substrate. After cloning and sequencing of internal transcribed spacer (ITS) sequences ITS1/ITS2 and the 5.8S rRNA gene from several fungi, including Tomentellopsis submollis, Paxillus involutus, and Cortinarius obtusus, species-specific primers and a dual-labelled fluorogenic probe were designed for Piloderma croceum. The dynamic range of the TaqMan assay spans seven orders of magnitude, producing an online-detectable fluorescence signal during the cycling run that is directly related to the starting number of ITS copies present. To test the confidence of the PCR-based quantification results, the hyphal length of Piloderma croceum was counted under the microscope to determine the recovery from two defined but different amounts of agar-cultivated mycelia. Inspection of the registered Ct values (defined as that cycle number at which a statistically significant increase in the reporter fluorescence can first be detected) in a 10-fold dilution series of template DNA represents a suitable and stringent quality control standard for exclusion of false PCR-based quantification results. The fast real-time PCR approach enables high throughput of samples, making this method well suited for quantitative analysis of ectomycorrhizal fungi in communities of natural and artificial ecosystems, so long as applicable DNA extraction protocols exist for different types of soil.  相似文献   

15.
An efficient and effective method for quantification of small amounts of nucleic acids contained within a sample specimen would be an important diagnostic tool for determining the content of mitochondrial DNA (mtDNA) in situations where the depletion thereof may be a contributing factor to the exhibited pathology phenotype. This study compares two quantification assays for calculating the total mtDNA molecule number per nanogram of total genomic DNA isolated from human blood, through the amplification of a 613-bp region on the mtDNA molecule. In one case, the mtDNA copy number was calculated by standard competitive polymerase chain reaction (PCR) technique that involves co-amplification of target DNA with various dilutions of a nonhomologous internal competitor that has the same primer binding sites as the target sequence, and subsequent determination of an equivalence point of target and competitor concentrations. In the second method, the calculation of copy number involved extrapolation from the fluorescence versus copy number standard curve generated by real-time PCR using various dilutions of the target amplicon sequence. While the mtDNA copy number was comparable using the two methods (4.92 +/- 1.01 x 10(4) molecules/ng total genomic DNA using competitive PCR vs 4.90 +/- 0.84 x 10(4) molecules/ng total genomic DNA using real-time PCR), both inter- and intraexperimental variance were significantly lower using the real-time PCR analysis. On the basis of reproducibility, assay complexity, and overall efficiency, including the time requirement and number of PCR reactions necessary for the analysis of a single sample, we recommend the real-time PCR quantification method described here, as its versatility and effectiveness will undoubtedly be of great use in various kinds of research related to mitochondrial DNA damage- and depletion-associated disorders.  相似文献   

16.
The ability of arbuscular mycorrhizal (AM) fungi of different origin and cultivation history to tolerate excessive levels of manganese (Mn) was studied using hydroponic sand culture. Maize plants were colonised with two lineages of Glomus sp. BEG 140 from Mn-contaminated soil kept for 2 years in metal-free substrate or in the original soil. For comparison, the plants were also inoculated with Glomus intraradices BEG 75 from uncontaminated soil or were left uncolonised. Manganese stress was simulated by irrigation with nutrient solutions containing Mn at high concentrations (0.1, 0.5 and 1 mM); control plants were supplied with 3.8 microM Mn. Whereas the growth of maize plants was not suppressed by Mn at the concentrations examined, the development of AM fungi was negatively influenced by the higher Mn concentrations, with significant differences between isolates and cultivation lineages. The isolate Glomus sp. from Mn-contaminated soil showed higher tolerance to Mn than G. intraradices from uncontaminated soil. Colonisation by G. intraradices was reduced by almost 90% when irrigated with 1 mM Mn, whereas colonisation by the Glomus sp. lineage kept in contaminated soil still reached high levels (65% of the colonisation level of the control plants). The lineage of Glomus sp. cultured in inert metal-free substrate tolerated excessive Mn levels to a lesser extent than the lineage kept long-term in the original contaminated soil, but withstood Mn at higher concentrations than the G. intraradices from uncontaminated soil.  相似文献   

17.
We developed two species-specific PCR assays for rapid and accurate detection of the pathogenic fungi Fusarium oxysporum f. sp. niveum and Mycosphaerella melonis in diseased plant tissues and soil. Based on differences in internal transcribed spacer (ITS) sequences of Fusarium spp. and Mycosphaerella spp., two pairs of species-specific primers, Fn-1/Fn-2 and Mn-1/Mn-2, were synthesized. After screening 24 isolates of F. oxysporum f. sp. niveum, 22 isolates of M. melonis, and 72 isolates from the Ascomycota, Basidiomycota, Deuteromycota, and Oomycota, the Fn-1/Fn-2 primers amplified only a single PCR band of approximately 320 bp from F. oxysporum f. sp.niveum, and the Mn-1/Mn-2 primers yielded a PCR product of approximately 420 bp from M. melonis. The detection sensitivity with primers Fn-1/Fn-2 and Mn-1/Mn-2 was 1fg of genomic DNA. Using ITS1/ITS4 as the first-round primers, combined with either Fn-1/Fn-2 and or Mn-1/Mn-2, two nested PCR procedures were developed, and the detection sensitivity increased 1000-fold to 1ag. The detection sensitivity for the soil pathogens was 100-microconidia/g soil. A duplex PCR method, combining primers Fn-1/Fn-2 and Mn-1/Mn-2, was used to detect F. oxysporum f. sp. niveum and M. melonis in plant tissues infected by the pathogens. Real-time fluorescent quantitative PCR assays were developed to detect and monitor the pathogens directly in soil samples. The PCR-based methods developed here could simplify both plant disease diagnosis and pathogen monitoring as well as guide plant disease management.  相似文献   

18.
The aneuploid and heterokaryotic nuclear condition of the soil fungus Rhizoctonia solani have provided challenges in obtaining a complete genome sequence. To better aid in the assembly and annotation process, a protoplast and single nucleotide polymorphism (SNP)-based method was developed to identify regenerated protoplasts with a reduced nuclear genome. Protocol optimization experiments showed that enzymatic digestion of mycelium from a 24 h culture of R. solani increased the proportion of protoplasts with a diameter of ≤7.5 μm and 1-4 nuclei. To determine whether strains regenerated from protoplasts with a reduced number of nuclei were genetically different from the parental strain, triallelic SNPs identified from variance records of the genomic DNA sequence reads of R. solani were used in PCR-based genotyping assays. Results from 16 of the 24 SNP-based PCR assays provided evidence that one of the three alleles was missing in the 11 regenerated protoplast strains, suggesting that these strains represent a reduced genomic complement of the parental strain. The protoplast and triallelic SNP-based method used in this study may be useful in strain development and analysis of other basidiomycete fungi with complex nuclear genomes.  相似文献   

19.
Abalone Haliotis midae exhibiting typical clinical signs of tubercle mycosis were discovered in South African culture facilities in 2006, posing a significant threat to the industry. The fungus responsible for the outbreak was identified as a Peronosporomycete, Halioticida noduliformans. Currently, histopathology and gross observation are used to diagnose this disease, but these 2 methods are neither rapid nor sensitive enough to provide accurate and reliable diagnosis. Real-time quantitative PCR (qPCR) is a rapid and reliable method for the detection and quantification of a variety of pathogens, so therefore we aimed to develop a qPCR assay for species-specific detection and quantification of H. noduliformans. Effective extraction of H. noduliformans genomic DNA from laboratory grown cultures, as well as from spiked abalone tissues, was accomplished by grinding samples using a pellet pestle followed by heat lysis in the presence of Chelax-100 beads. A set of oligonucleotide primers was designed to specifically amplify H. noduliformans DNA in the large subunit (LSU) rRNA gene, and tested for cross-reactivity to DNA extracted from related and non-related fungi isolated from seaweeds, crustaceans and healthy abalone; no cross-amplification was detected. When performing PCR assays in an abalone tissue matrix, an environment designed to be a non-sterile simulation of environmental conditions, no amplification occurred in the negative controls. The qPCR assay sensitivity was determined to be approximately 0.28 pg of fungal DNA (~2.3 spores) in a 25 μl reaction volume. Our qPCR technique will be useful for monitoring and quantifying H. noduliformans for the surveillance and management of abalone tubercle mycosis in South Africa.  相似文献   

20.
Common PCR assays for quantification of fungi in living plants cannot be used to study saprophytic colonization of fungi because plant decomposition releases PCR-inhibiting substances and saprophytes degrade the plant DNA which could serve as internal standard. The microsatellite PCR assays presented here overcome these problems by spiking samples prior to DNA extraction with mycelium of a reference strain. PCR with fluorescent primers co-amplifies microsatellite fragments of different length from target and reference strains. These fragments were separated in a capillary sequencer with fluorescence detection. The target/reference ratio of fluorescence signal was used to calculate target biomass in the sample. Such PCR assays were developed for the mycotoxin deoxynivalenol (DON)-producing wheat and maize pathogen Fusarium graminearum and the biocontrol agent Trichoderma atroviride, using new microsatellite markers. In contrast to real-time PCR assays, the novel PCR assays showed reliable fungal biomass quantification in samples with differentially decomposed plant tissue. The PCR assays were used to quantify the two fungi after competitive colonization of autoclaved maize leaf tissue in microcosms. Using a DON-producing F. graminearum wild-type strain and its nontoxigenic mutant we found no evidence for a role of DON production in F. graminearum defense against T. atroviride. The presence of T. atroviride resulted in a 36% lower wild-type DON production per biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号