共查询到20条相似文献,搜索用时 0 毫秒
1.
The metabolism of polyethylene glycol (PEG) was investigated with a synergistic, mixed culture of Flavobacterium and Pseudomonas species, which are individually unable to utilize PEGs. The PEG dehydrogenase linked with 2,6-dichlorophenolindophenol was found in the particulate fraction of sonic extracts and catalyzed the formation of a 2,4-dinitrophenylhydrazine-positive compound, possibly an an aldehyde. The enzyme has a wide substrate specificity towards PEGs: from diethylene glycol to PEG 20,000 Km values for tetraethylene glycol (TEG), PEG 400, and PEG 6,000 were 11, 1.7, and 15 mM, respectively. The metabolic products formed from TEG by intact cells were isolated and identified by combined gas chromatography-mass spectrometry as triethylene glycol and TEG-monocarboxylic acid plus small amounts of TEG-dicarboxylic acid, diethylene glycol, and ethylene glycol. From these enzymatic and analytical data, the following metabolic pathway was proposed for PEG: HO(CH2CH2O)nCH2CH2OH leads to HO(CH2CH2O)nCH2CHO leads to HO(CH2CH2O)nCH2COOH leads to HO(CH2CH2O)n-1CH2CH2OH. 相似文献
2.
Fluorene and its three heteroatomic analogs, dibenzofuran, dibenzothiophene, and carbazole, are environmental contaminants in areas impacted by spills of creosote. In addition, dibenzofuran has been used as an insecticide, and it is formed from the photolysis of chlorinated biphenyl ethers. Many biodegradation studies of dibenzofuran have considered it as a model for chlorinated dibenzofurans, which are of greater environmental concern. This paper reviews the bacterial degradation of fluorene and its analogs. These compounds are susceptible to three different modes of initial oxidation: (i) the naphthalene-like attack, in which one of the aromatic rings is oxidized to a dihydrodiol; (ii) an angular dioxygenase attack, in which the carbon bonded to the methylene group in fluorene or to the heteroatoms in the analogs, and the adjacent carbon in the aromatic ring are both oxidized; and (iii) the five-membered ring attack, in which the methylene carbon atom in fluorene or the sulfur atom in dibenzothiophene is oxidized. The metabolites, enzymology, and genetics of these transformation are summarized. Literature data are presented, indicating that the electronegativity of the atom connecting the two aromatic rings influences the attack of the angular dioxygenase. In dibenzofuran and carbazole, the connecting atoms, O and N respectively, have high electronegativities, and these compounds serve as substrates for angular dioxygenases. In contrast, the connecting atoms in dibenzothiophene and fluorene, S and C respectively, have lower electronegativities, and these atoms must be oxidized before the angular dioxygenases attack these compounds. 相似文献
3.
A prospective study of fungal and bacterial flora of burn wounds was carried out from February 2004 to February 2005 at the Burns Unit of Hospital Regional da Asa Norte, Brasília, Brazil. During the period of the study, 203 patients were treated at the Burns Unit. Wound swab cultures were assessed at weekly intervals for four weeks. Three hundred and fifty four sampling procedures (surface swabs) were performed from the burn wounds. The study revealed that bacterial colonization reached 86.6% within the first week. Although the gram-negative organisms, as a group, were more predominant, Staphylococcus aureus (28.4%) was the most prevalent organism in the first week. It was however surpassed by Pseudomonas aeruginosa form third week onwards. For S. aureus and P. aeruginosa vancomycin and polymyxin were found to be the most effective drugs. Most of the isolates showed high level resistance to antimicrobial agents. Fungi were found to colonize the burn wound late during the second week postburn, with a peak incidence during the third and fourth weeks. Species identification of fungi revealed that Candida tropicalis was the most predominant, followed by Candida parapsilosis. It is crucial for every burn institution to determine the specific pattern of burn wound microbial colonization, the time-related changes in the dominant flora, and the antimicrobial sensitivity profiles. This would enable early treatment of imminent septic episodes with proper empirical systemic antibiotics, without waiting for culture results, thus improving the overall infection-related morbidity and mortality. 相似文献
4.
The aim of this work has been to study the substrate specificity of two aromatic peroxygenases concerning polyaromatic compounds of different size and structure as well as to identify the key metabolites of their oxidation. Thus, we report here on new pathways and reactions for 2-methylnaphthalene, 1-methylnaphthalene, dibenzofuran, fluorene, phenanthrene, anthracene and pyrene catalyzed by peroxygenases from Agrocybe aegerita and Coprinellus radians (abbreviated as AaP and CrP). AaP hydroxylated the aromatic rings of all substrates tested at different positions, whereas CrP showed a limited capacity for aromatic ring-hydroxylation and did not hydroxylate phenanthrene but preferably oxygenated fluorene at the non-aromatic C9-carbon and methylnaphthalenes at the side chain. The results demonstrate for the first time the broad substrate specificity of fungal peroxygenases for polyaromatic compounds, and they are discussed in terms of their biocatalytic and environmental implications. 相似文献
5.
Bacterial oxidation of propane 总被引:6,自引:0,他引:6
Abstract Much recent work in the field of biohydrometallurgy has been directed to the study of bio-oxidation of gold ores by acidophilic iron and sulfur oxidizing microorganisms. This work has been done worldwide and has resulted in several pilot plant and commercial scale operations for gold ore bio-oxidation. Bioleaching of gold by metabolic products of microorganisms has received less attention, but also offers opportunities for industrial application, especially if future regulations restrict the use of cyanide. This paper reviews recent progress in the use of microorganisms tooxidize the sulfidic matrix in refractory gold ores (bio-oxidation) and to solubilize elemental gold (bioleaching). 相似文献
6.
7.
8.
9.
A series of 10 branched-chain alkanes and 4 cycloalkanes were employed individually as elective culture substrates for bacteria in soil. Only 2-methylbutane and 2-methylpentane yielded bacteria, one each. Both bacteria grew at the expense of eachn-alkane from C1 to C22 but they were very selective for branched-chain substrates. Compounds with less branching were most readily utilized. Neither organism grew at the expense of various cycloalkanes as sole sources of carbon and energy. The 2-methylbutane isolate was studied in detail. Resting cell suspensions were able to produce α-ketoglutaric acid from each of the compounds the bacterium was able to utilize for growth. “Non-growth hydrocarbons” were also oxidized; in each case only neutral ketonic substances were detected. A series of cycloparaffins, from C3- to C8-membered rings, was oxidized to the corresponding cyclomonoketones. No oxidation products of cyclododecane (C12), 1,4-cyclohexadiene (C6) or benzene could be detected. The metabolic products identified are consistent with the formation of a cyclomonoalcohol as the immediate precursor of the ketone. The alcohol is formed from cycloalkanes, the cycloalkenes, and cycloalkene oxide as substrates. Alcohol formation from the first two probably takes place by independent parallel, rather than sequential, reaction pathways. The epoxide may be a non-obligate intermediate in the cyclomonoolefin conversion to the alcohol. Significant aspects of these conversions are discussed. 相似文献
10.
11.
Bacterial oxidation of the polycyclic aromatic hydrocarbons acenaphthene and acenaphthylene. 总被引:12,自引:8,他引:4 下载免费PDF全文
A Beijerinckia sp. and a mutant strain, Beijerinckia sp. strain B8/36, were shown to cooxidize the polycyclic aromatic hydrocarbons acenaphthene and acenaphthylene. Both organisms oxidized acenaphthene to the same spectrum of metabolites, which included 1-acenaphthenol, 1-acenaphthenone, 1,2-acenaphthenediol, acenaphthenequinone, and a compound that was tentatively identified as 1,2-dihydroxyacenaphthylene. In contrast, acenaphthylene was oxidized to acenaphthenequinone and the compound tentatively identified as 1,2-dihydroxyacenaphthylene by the wild-type strain of Beijerinckia. Both of these products were also formed when the organism was incubated with synthetic cis-1,2-acenaphthenediol. A metabolite identified as cis-1,2-acenaphthenediol was formed from acenaphthylene by the mutant Beijerinckia sp. strain B8/36. Cell extracts prepared from the wild-type Beijerinckia strain contain a constitutive pyridine nucleotide-dependent dehydrogenase which can oxidize 1-acenaphthenol and 9-fluorenol. The results indicate that although acenaphthene and acenaphthylene are both oxidized to acenaphthenequinone, the pathways leading to the formation of this end product are different. 相似文献
12.
13.
14.
《Current biology : CB》2022,32(7):1523-1533.e6
15.
Murphy CD 《Biotechnology letters》2007,29(1):45-49
Caldariomyces fumago chloroperoxidase degrades monofluorophenols at both pH 3 and pH 6. 4-Fluorophenol is most readily degraded and its oxidation
is most efficient at pH 6. GC-MS analyses of the reaction products revealed compounds relating to the reaction of fluorophenol
radical. The degradation of fluorinated compounds is of significant environmental interest and this versatile enzyme may by
employed to treat contaminated soil or water prior to discharge. 相似文献
16.
17.
The most serious complication of prolonged intravenous infusion of hypertonic dextrose and amino acids is infection. Frequently, the etiology is fungal rather than bacterial. Previous authors have suggested that bacterial survival and growth in the solutions is suppressed by (a) high dextrose concentration, (b) high osmolality, or (c) low pH. This paper presents evidence that proposals (a) and (b) are untenable and (c) is only partly responsible. We call attention to the presence of a factor that is antibacterial but not antifungal; namely, a high concentration of glycine. 相似文献
18.
Regio- and stereospecific oxidation of fluorene, dibenzofuran, and dibenzothiophene by naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4. 下载免费PDF全文
The regio- and stereospecific oxidation of fluorene, dibenzofuran, and dibenzothiophene was examined with mutant and recombinant strains expressing naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4. The initial oxidation products were isolated and identified by gas chromatography-mass spectrometry and nuclear magnetic resonance spectrometry. Salicylate-induced cells of Pseudomonas sp. strain 9816/11 and isopropyl-beta-D-thiogalactopyranoside-induced cells of Escherichia coli JM109(DE3)(pDTG141) oxidized fluorene to (+)-(3S,4R)-cis-3,4-dihydroxy-3,4-dihydrofluorene (80 to 90% relative yield; > 95% enantiomeric excess [ee]) and 9-fluorenol (< 10% yield). The same cells oxidized dibenzofuran to (1R,2S)-cis-1,2-dihydroxy-1, 2-dihydrodibenzofuran (60 to 70% yield; > 95% ee) and (3S,4R)-cis-3, 4-dihydroxy-3,4-dihydrodibenzofuran (30 to 40% yield; > 95% ee). Induced cells of both strains, as well as the purified dioxygenase, also oxidized dibenzothiophene to (+)-(1R,2S)-cis-1,2-dihydroxy-1, 2-dihydrodibenzothiophene (84 to 87% yield; > 95% ee) and dibenzothiophene sulfoxide (< 15% yield). The major reaction catalyzed by naphthalene dioxygenase with each substrate was stereospecific dihydroxylation in which the cis-dihydrodiols were of identical regiochemistry and of R configuration at the benzylic center adjacent to the bridgehead carbon atom. The regiospecific oxidation of dibenzofuran differed from that of the other substrates in that a significant amount of the minor cis-3,4-dihydrodiol regioisomer was formed. The results indicate that although the absolute stereochemistry of the cis-diene diols was the same, the nature of the bridging atom or heteroatom influenced the regiospecificity of the reactions catalyzed by naphthalene dioxygenase. 相似文献
19.