首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The appearance of feathers defines the appearance of birds. A number of changes defined, preceded or accompanied the event. The changes were hierarchical in nature and included revolutions in genomic organization (i.e., HOX and the feather keratin genes), protein sequence and shape, the large scale organization of proteins into filaments, and in the geometry of the cells and their roles in the follicle. Changes at each of these levels differ or produced different products than found in its analog in reptiles. They are essentially unique to birds and produced an evolutionary novelty. I used analysis of extant structure and information on development to reconstruct key events in the evolution of feathers. The ancestral reptilian epidermal structure, while probably a scale or tubercles, is still unidentified. The structural genes of feather proteins (φ-keratin) are tandem repeats probably assembled from pre-existing exons. They are unlike the alpha-keratin of vertebrate soft epidermis. Amino-acid composition, shape, and behavior of feather keratins are unique among vertebrates. The 3-dimensional organization of the follicle and the developmental processes are also unique. Although we lack a complete understanding of the appearance and early role of feathers, they are clearly the results of novel events.  相似文献   

2.
    
It has long been known that species should not be distributed randomly in morphospace (a multidimensional trait space), even under simple models of evolution. However, recent studies suggest that position in morphospace can affect aspects of evolution such as the durations of clades and the species richness of their constituent taxa. Here we investigate the dynamics of morphospace occupancy in living and fossil marine bivalves using shell size and aspect ratio, two functionally important traits. Multiple lines of evidence indicate that the center of a family's morphospace today represents a location where taxonomic diversity is maximized, apparently owing to lower extinction rates. Within individual bivalve families, species with narrow geographic ranges are distributed throughout the morphospace but widespread species, which are generally expected to be extinction resistant, tend to be concentrated near the center. The morphospace centers of most species‐rich families today (defined as the median value for all species in the family) tend to be close to the positions of the family founders, further suggesting an association between position in morphospace and net diversification rates. However, trajectories of individual subclades (genera) are inconsistent with the center of morphospace being an evolutionary attractor.  相似文献   

3.
Changes in the taxon ages of fossil marine families that are alive and those that become extinct in each stage of the Phanerozoic reflect changes in the origination rate, differences in the extinction rate of families with different taxon ages, and mass extinction events. Extinct families are generally much younger than the population from which they were drawn. Periods dominated by higher numbers of younger families are more susceptible to larger size extinctions and greater variation in extinction size. As a result the relative size of extinction peaks must be viewed with regard to the taxon age structure of the population. Mass extinctions cause little change in the taxon age of the fauna. However, adaptive radiations cause a large drop in the average age of the families that are alive at any given time. Families must be treated as dynamic entities in macroevolutionary studies because their probabilities of extinction change over time.  相似文献   

4.
    
Aim To analyse the diversity dynamics of Miocene mammalian faunas in the Iberian Peninsula in order to determine whether the patterns are related to the dispersal of taxa from other areas into this region. Location Mainly the Iberian Peninsula, but two close geographical areas (Central Europe and the Eastern Mediterranean) are also considered in some of our calculations. Methods Genus‐level faunal lists for a total of 299 localities from the Iberian Peninsula, covering 10 successive biochronological units [Mammal Neogene (MN) zones] that span from the latest Early Miocene to the early Pliocene (about 17–4 Ma), were compiled. The dataset was expanded with a further 331 localities in Central Europe and the Eastern Mediterranean for the same time span. Next, a taxonomically standardized database was used to create composite faunal lists of micro‐ and macromammalian genera present during each MN zone. Separate genera‐by‐MN‐zone matrices for both micro‐ and macromammals were built for each region. Mean standing diversity as well as origination and extinction rates were calculated for the Iberian Peninsula, and their correlation with preservation rates is discussed. Simpson’s coefficient of faunal similarity with Central Europe and the Eastern Mediterranean was calculated in order to evaluate whether diversity patterns were related to changes in the affinity of the Iberian mammalian faunas with those of other regions. Results Diversity changes in the Iberian macromammalian faunas coincide with periods of increased faunal similarity with other regions, suggesting a relationship to the expansions and contractions of the geographical ranges of the constituent taxa. This pattern is not recognized for micromammals; that is, their diversity trends are not related to changes in geographical ranges. Main conclusions Climatic shifts result in expansions or contractions in the geographical ranges of macromammals, owing to changes in the distribution of their preferred habitats. The lower dispersal ability of micromammals results in a higher extinction risk when habitat fragmentation confines their populations to relatively small environmental patches. Hence, they are more severely affected by climatic changes. Our results thus emphasize the role of climatic forcing in mammalian biogeography and diversity.  相似文献   

5.
    
Aim To evaluate the influence of geographical distribution on the extinction risk of benthic marine invertebrates using data from the fossil record, both during times of background extinction and across a mass‐extinction episode. Total geographical range is contrasted with proxies of global abundance to assess the relationships between the two essential components of geographical distribution and extinction risk. Location A global occurrence data base of fossil benthic macro‐organisms from the Triassic and Jurassic periods was used for this study. Methods Geographical distributions and biodiversity dynamics were assessed for each genus (all taxa) or species (bivalves) based on a sample‐standardized data set and palaeogeographical reconstructions. Geographical ranges were measured by the maximum great circle distance of a taxon within a stratigraphic interval. Global abundance was assessed by the number of localities at which a taxon was recorded. Widespread and rare taxa were separated using median and percentile values of the frequency distributions of occurrences. Results The frequency distribution of geographical ranges is very similar to that for modern taxa. Although no significant correlation could be established between local abundance and geographical range, proxies of global abundance are strongly correlated with geographical range. Taxon longevities are correlated with both mean geographical range and mean global abundance, but range size appears to be more critical than abundance in determining extinction risk. These results are valid when geographical distribution is treated as a trait of taxa and when assessed for individual geological stages. Main conclusions Geographical distribution is a key predictor of extinction risk of Triassic and Jurassic benthic marine invertebrates. An important exception is in the end‐Triassic mass extinction, which equally affected geographically restricted and widespread genera, as well as common and rare genera. This suggests that global diversity crises may curtail the role of geographical distribution in determining extinction risk.  相似文献   

6.
    
I consider evolutionary approaches to deducing factors that have made the ladybird beetle Harmonia axyridis such a successful invader, and the contribution that studies of this species in its native range can make. Work aiming to demonstrate which (pre)adaptations have made the species so successful often fails to compare these putative characters with those of other ladybirds. This has led to a tendency for “argument by design”‐type claims on characters widely shared by non‐invasive coccinellids. There is good evidence from genetic studies that evolutionary change occurred in invasive populations, contributing to their success. There is some evidence for subsequent evolutionary change after the establishment of invasive H. axyridis, primarily in the native organisms with which the ladybird interacts. I show here that there appears to have been little adaptation in H. axyridis, over about 20 generations, to the alkaloids of one North American native intraguild prey, the ladybird Coleomegilla maculata. Studies of H. axyridis in its native range are important, as they provide a snapshot of the ancestral ladybird, unobscured by subsequent evolutionary change related to its invasiveness. They provide baseline data about phenomena such as interactions with natural enemies and intraguild predation, and they also can provide pointers as to how H. axyridis might further adapt in the regions it has colonized. Harmonia axyridis represents an ideal opportunity for greater international co‐operation between scientists studying this species in its native range in Asia and scientists studying it in Europe, America and Africa, where it is an invasive exotic.  相似文献   

7.
    
Perhaps the most pressing issue in predicting biotic responses to present and future global change is understanding how environmental factors shape the relationship between ecological traits and extinction risk. The fossil record provides millions of years of insight into how extinction selectivity (i.e., differential extinction risk) is shaped by interactions between ecological traits and environmental conditions. Numerous paleontological studies have examined trait‐based extinction selectivity; however, the extent to which these patterns are shaped by environmental conditions is poorly understood due to a lack of quantitative synthesis across studies. We conducted a meta‐analysis of published studies on fossil marine bivalves and gastropods that span 458 million years to uncover how global environmental and geochemical changes covary with trait‐based extinction selectivity. We focused on geographic range size and life habit (i.e., infaunal vs. epifaunal), two of the most important and commonly examined predictors of extinction selectivity. We used geochemical proxies related to global climate, as well as indicators of ocean acidification, to infer average global environmental conditions. Life‐habit selectivity is weakly dependent on environmental conditions, with infaunal species relatively buffered from extinction during warmer climate states. In contrast, the odds of taxa with broad geographic ranges surviving an extinction (>2500 km for genera, >500 km for species) are on average three times greater than narrow‐ranging taxa (estimate of odds ratio: 2.8, 95% confidence interval = 2.3–3.5), regardless of the prevailing global environmental conditions. The environmental independence of geographic range size extinction selectivity emphasizes the critical role of geographic range size in setting conservation priorities.  相似文献   

8.
    
Evolutionary lineages differ greatly in their net diversification rates, implying differences in rates of extinction and speciation. Lineages with a large average range size are commonly thought to have reduced extinction risk (although linking low extinction to high diversification has proved elusive). However, climate change cycles can dramatically reduce the geographic range size of even widespread species, and so most species may be periodically reduced to a few populations in small, isolated remnants of their range. This implies a high and synchronous extinction risk for the remaining populations, and so for the species as a whole. Species will only survive through these periods if their individual populations are “threat tolerant,” somehow able to persist in spite of the high extinction risk. Threat tolerance is conceptually different from classic extinction resistance, and could theoretically have a stronger relationship with diversification rates than classic resistance. I demonstrate that relationship using primates as a model. I also show that narrowly distributed species have higher threat tolerance than widespread ones, confirming that tolerance is an unusual form of resistance. Extinction resistance may therefore operate by different rules during periods of adverse global environmental change than in more benign periods.  相似文献   

9.
    
The constraint envelope describing the relationship between geographical range size and body size has usually been explained by a minimum viable population size model, furnishing a strong argument for species selection if geographical range size turns out to be ‘heritable’. Recent papers have questioned this assumption of nonzero geographical range heritability at a phylogenetic level, meaning that the logic that constraint envelopes provide support for higher‐level selection fails. However, I believe that analysis of constraint envelopes can still furnish insights for the hierarchical expansion of evolutionary theory because the fitness furnished by variation in body size, which is frequently measured as a highly ‘heritable’ trait at the species level, can be partitioned into anagenetic and cladogenetic components. The constraint envelope furnishes an explicit mechanism for large‐body biased extinction rates influencing the distribution of body size. More importantly, it is possible to envisage a scenario in which anagenetic trends driving an increase in body size in higher latitudes within species (Bergmann's rule) are counteracted by available habitat area or continental edges constraining overall species distribution in these higher latitudes, increasing the probability of extinction. Under this combined model, faunas at higher latitudes and under habitat constraints may reach equilibrium points between these opposing hierarchical adaptive forces at smaller body size than faunas with less intense higher‐level constraints and will tend to be more right‐skewed.  相似文献   

10.
The architects of punctuated equilibrium and species selection as well as more recent workers (Vrba) have narrowed the original formulation of species selection and made it dependent upon so-called emergent characters. One criticism of this narrow version is the dearth of emergent characters with a consequent diminution in the robustness of species selection as an important evolutionary process. We argue that monomorphic species characters may at times be the focus of selection and that under these circumstances selection at the organism level is by-passed due to the absence of critical variance. Selection therefore shifts to the species level where variability reemerges in a clade. The absence of critical variance among organisms prevents effect macroevolution from operating. If species-wide properties are important in macroevolutionary processes, as we contend, systematists should pay more attention to their elucidation.  相似文献   

11.
    
The magnitude and extent of global change during the Cenozoic is remarkable, yet the impacts of these global changes on the biodiversity and evolutionary dynamics of species diversification remain poorly understood. To investigate this question, we combine paleontological and neontological data for the angiosperm order Fagales, an ecologically important clade of about 1370 species of trees with an exceptional fossil record. We show differences in patterns of accumulation of generic diversity, species richness, and turnover rates for Fagales. Generic diversity evolved rapidly since the Late Cretaceous and peaked during the Eocene or Oligocene. Turnover rates were high during periods of extreme global climate change, but relatively low when the climate remained stable. Species richness accumulated gradually throughout the Cenozoic, possibly at an accelerated pace after the Middle Miocene. Species diversification occurred in new environments: Quercoids radiating in Oligocene subtropical seasonally arid habitats, Casuarinaceae in Australian pyrophytic biomes, and Betula in Late Neogene holarctic habitats. These radiations were counterbalanced by regional extinctions in Late Neogene mesic warm‐temperate forests. Thus, the overall diversification at species level is linked to regional radiations of clades with appropriate ecologies exploiting newly available habitats.  相似文献   

12.
Continuing downward trends in the population sizes of many species, in the conservation status of threatened species, and in the quality, extent and connectedness of habitats are of increasing concern. Identifying the attributes of declining populations will help predict how biodiversity will be impacted and guide conservation actions. However, the drivers of biodiversity declines have changed over time and average trends in abundance or distributional change hide significant variation among species. While some populations are declining rapidly, the majority remain relatively stable and others are increasing. Here we dissect out some of the changing drivers of population and geographic range change, and identify biological and geographical correlates of winners and losers in two large datasets covering local population sizes of vertebrates since 1970 and the distributions of Galliform birds over the last two centuries. We find weak evidence for ecological and biological traits being predictors of local decline in range or abundance, but stronger evidence for the role of local anthropogenic threats and environmental change. An improved understanding of the dynamics of threat processes and how they may affect different species will help to guide better conservation planning in a continuously changing world.  相似文献   

13.
    
Phylogenetic studies of geographic range evolution are increasingly using statistical model selection methods to choose among variants of the dispersal‐extinction‐cladogenesis (DEC) model, especially between DEC and DEC+J, a variant that emphasizes “jump dispersal,” or founder‐event speciation, as a type of cladogenetic range inheritance scenario. Unfortunately, DEC+J is a poor model of founder‐event speciation, and statistical comparisons of its likelihood with DEC are inappropriate. DEC and DEC+J share a conceptual flaw: cladogenetic events of range inheritance at ancestral nodes, unlike anagenetic events of dispersal and local extinction along branches, are not modelled as being probabilistic with respect to time. Ignoring this probability factor artificially inflates the contribution of cladogenetic events to the likelihood, and leads to underestimates of anagenetic, time‐dependent range evolution. The flaw is exacerbated in DEC+J because not only is jump dispersal allowed, expanding the set of cladogenetic events, its probability relative to non‐jump events is assigned a free parameter, j, that when maximized precludes the possibility of non‐jump events at ancestral nodes. DEC+J thus parameterizes the mode of speciation, but like DEC, it does not parameterize the rate of speciation. This inconsistency has undesirable consequences, such as a greater tendency towards degenerate inferences in which the data are explained entirely by cladogenetic events (at which point branch lengths become irrelevant, with estimated anagenetic rates of 0). Inferences with DEC+J can in some cases depart dramatically from intuition, e.g. when highly unparsimonious numbers of jump dispersal events are required solely because j is maximized. Statistical comparison with DEC is inappropriate because a higher DEC+J likelihood does not reflect a more close approximation of the “true” model of range evolution, which surely must include time‐dependent processes; instead, it is simply due to more weight being allocated (via j) to jump dispersal events whose time‐dependent probabilities are ignored. In testing hypotheses about the geographic mode of speciation, jump dispersal can and should instead be modelled using existing frameworks for state‐dependent lineage diversification in continuous time, taking appropriate cautions against Type I errors associated with such methods. For simple inference of ancestral ranges on a fixed phylogeny, a DEC‐based model may be defensible if statistical model selection is not used to justify the choice, and it is understood that inferences about cladogenetic range inheritance lack any relation to time, normally a fundamental axis of evolutionary models.  相似文献   

14.
    
Currently 1677 species are listed under the U.S. Endangered Species Act (ESA), yet only a small percentage have been delisted due to recovery. In the fall of 2021, the U.S. Fish and Wildlife Service proposed delisting 23 species due to extinction. Tracking changes in species ‘recovery status over time is critical to understanding species’ statuses, informing adaptive management strategies, and assessing the performance of the ESA to prevent further species loss. In this paper, we describe four key obstacles in tracking species recovery status under the ESA. First, ESA 5-year reviews lack a standardized format and clear documentation. Second, despite having been listed for decades, many species still suffer major data gaps in their biology and threats, rendering it difficult if not impossible to track progress towards recovery. Third, many species have continued declining after listing, yet given the above (1 & 2), understanding potential causes (proximate and/or ultimate) can be difficult. Fourth, many species currently have no path to clear recovery, which represents a potential failing of the process. We conclude with a discussion of potential policy responses that could be addressed to enhance the efficacy of the ESA.  相似文献   

15.
16.
17.
A hybrid zone of the land snails Mandarina mandarina and Mandarina chichijimana in the oceanic Bonin Islands was studied morphologically and genetically to show the potential of hybridization as a source of morphological novelties. These species are clearly distinguishable on the basis of allozymes, colour polymorphisms, shell form and genital morphology, but exhibit a hybrid zone from the northeast to southwest of Chichijima island. There is a cline in the frequency of the colour patterns characteristic of each of the species, and specimens with intermediate colour pattern on the shells appear in the hybrid zone. Not only specimens with colour patterns that are overlapping of the patterns of the two species, but also specimens with unique colour patterns appear in the hybrid populations. These unique colour patterns are not found in the pure populations of both species or other Mandarina species in Chichijima Islands, and it is suggested that these are produced by the hybridization. Because of the appearance of many types of unique colour patterns, variability of the colour polymorphism in the hybrid populations are remarkably higher than that in the pure populations. This result suggests that the novel morphology is produced by the hybridization between species with distinctive morphology. This reveals the importance of hybridization as a source of morphological variation, diversity and evolutionary novelty.  相似文献   

18.
19.
Species introductions into nearby communities may seem innocuous, however, these introductions, like long-distance introductions (e.g. trans- and intercontinental), can cause extinctions and alter the evolutionary trajectories of remaining community members. These 'local introductions' can also more cryptically homogenize formerly distinct populations within a species. We focus on several characteristics and the potential consequences of local introductions. First, local introductions are commonly successful because the species being introduced is compatible with existing abiotic and biotic conditions; many nearby communities differ because of historical factors and the absence of certain species is simply the result of barriers to dispersal. Moreover, the species with which they interact most strongly (e.g. prey) may have, for example, lost defences making the establishment even more likely. The loss or absence of defences is especially likely when the absent species is a strongly interacting species, which we argue often includes mammals in terrestrial communities. Second, the effects of the introduction may be difficult to detect because the community is likely to converge onto nearby communities that naturally have the introduced species (hence the perceived innocuousness). This homogenization of formerly distinct populations eliminates the geographic diversity of species interactions and the geographic potential for speciation, and reduces regional species diversity. We illustrate these ideas by focusing on the introduction of tree squirrels into formerly squirrel-less forest patches. Such introductions have eliminated incipient species of crossbills (Loxia spp.) co-evolving in arms races with conifers and will likely have considerable impacts on community structure and ecosystem processes.  相似文献   

20.
As range shifts coincident with climate change have become increasingly well documented, efforts to describe the causes of range boundaries have increased. Three mechanisms—genetic impoverishment, migration load, or a physical barrier to dispersal—are well described theoretically, but the data needed to distinguish among them have rarely been collected. We describe the distribution, abundance, genetic variation, and environment of Tetraclita rubescens, an intertidal barnacle that expanded its northern range limit by several hundreds of kilometres from San Francisco, CA, USA, since the 1970s. We compare geographic variation in abundance with abiotic and biotic patterns, including sea surface temperatures and the distributions of 387 co‐occurring species, and describe genetic variation in cytochrome c oxidase subunit I, mitochondrial noncoding region, and nine microsatellite loci from 27 locations between Bahia Magdalena (California Baja Sur, Mexico) and Cape Mendocino (CA, USA). We find very high gene flow, high genetic diversity, and a gradient in physical environmental variation coincident with the range limit. We infer that the primary cause of the northern range boundary in T. rubescens is migration load arising from flow of maladapted alleles into peripheral locations and that environmental change, which could have reduced selection against genotypes immigrating into the newly colonized portion of the range, is the most likely cause of the observed range expansion. Because environmental change could similarly affect all taxa in a region whose distributional limits are established by migration load, these mechanisms may be common causes of range boundaries and largely synchronous multi‐species range expansions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号