首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main purpose of this study was to directly quantify the relative contribution of Ca2+ cycling to resting metabolic rate in mouse fast (extensor digitorum longus, EDL) and slow (soleus) twitch skeletal muscle. Resting oxygen consumption of isolated muscles (VO2, µL/g wet weight/s) measured polarographically at 30°C was ~20% higher (P<0.05) in soleus (0.326 ± 0.022) than in EDL (0.261 ± 0.020). In order to quantify the specific contribution of Ca2+ cycling to resting metabolic rate, the concentration of MgCl2 in the bath was increased to 10 mM to block Ca2+ release through the ryanodine receptor, thus eliminating a major source of Ca2+ leak from the sarcoplasmic reticulum (SR), and thereby indirectly inhibiting the activity of the sarco(endo) plasmic reticulum Ca2+-ATPases (SERCAs). The relative (%) reduction in muscle VO2 in response to 10 mM MgCl2 was similar between soleus (48.0±3.7) and EDL (42.4±3.2). Using a different approach, we attempted to directly inhibit SERCA ATPase activity in stretched EDL and soleus muscles (1.42x optimum length) using the specific SERCA inhibitor cyclopiazonic acid (CPA, up to 160 µM), but were unsuccessful in removing the energetic cost of Ca2+ cycling in resting isolated muscles. The results of the MgCl2 experiments indicate that ATP consumption by SERCAs is responsible for 40–50% of resting metabolic rate in both mouse fast- and slow-twitch muscles at 30°C, or 12–15% of whole body resting VO2. Thus, SERCA pumps in skeletal muscle could represent an important control point for energy balance regulation and a potential target for metabolic alterations to oppose obesity.  相似文献   

2.
Arrhenius plots of rabbit skeletal muscle sarcolemmal Na+,K+-ATPase contain no temperature breaks. The apparent activation energy (22.8 kcal/mole in the presence of 1 mM MgCl2 or 15.9 kcal/mole in the presence of 3 mM MgCl2) does not depend on the Na+/K+ ratio in the incubation medium, but decreases in the presence of anserine (instead of Tris buffer).  相似文献   

3.
The activities of DNA polymerization and DNA ligation in extract of Chinese hamster ovary cells were both stimulated by MgCl2. DNA polymerization was stimulated by MgCl2 above 0.25 mM, whereas, MgCl2 above 2 mM was required to stimulate DNA ligation. The activity of DNA polymerization maintained a plateau at MgCl2 1–12 mM, whereas DNA ligation reached a maximal activity at MgCl2 6 mM and decreased thereafter. NiCl2 0.1-0.2 mM also had a stimulatory effect on DNA polymerization, but was much less potent than MgCl2. However, nickel ion (Ni2+) had no detectable stimulating effect on the activity of DNA ligation. In the presence of MgCl2, the activities of DNA polymerization and DNA ligation decreased with increasing concentration of NiCl2. Ni2+ inhibition of DNA polymerization was reduced by increasing the concentration of MgCl2, but increasing the concentration of MgCl2 did not reduce Ni2+ inhibition of DNA ligation. Preincubating cell extract with MgCl2 decreased the Ni2+ inhibition of DNA polymerization but not DNA ligation. These results suggest that Ni2+ may compete with magnesium ion (Mg2+) to reduce DNA polymerization, but this mechanism seems not applicable to Ni2+ inhibition of DNA ligation.  相似文献   

4.
Disruption of the coat of coated vesicles is accompanied by the release of clathrin and other proteins in soluble form. The ability of solubilized coated vesicle proteins to reassemble into empty coats is influenced by Mg2+, Tris ion concentration, pH, and ionic strength. The proteins solubilized by 2 M urea spontaneously reassemble into empty coats following dialysis into isolation buffer (0.1 M MES–1 mM EGTA–1 mM MgCl2–0.02% NaN3, pH 6.8). Such reassembled coats have sedimentation properties similar to untreated coated vesicles. Clathrin is the predominant protein of reassembled coats; most of the other proteins present in native coated vesicles are absent. We have found that Mg2+ is important in the coat assembly reaction. At pH 8 in 0.01 M or 0.1 M Tris, coats dissociate; however, 10 mM MgCl2 prevents dissociation. If the coats are first dissociated at pH 8 and then the MgCl2 raised to 10 mM, reassembly occurs. These results suggest that Mg2+ stabilizes the coat lattice and promotes reassembly. This hypothesis is supported by our observations that increasing Mg2+ (10 μM–10 mM) increases reassembly whereas chelation of Mg2+ by (EGTA) inhibits reassembly. Coats reassembled in low-Tris (0.01 M, pH 8) supernatants containing 10 mM MgCl2 do not sediment, but upon dialysis into isolation buffer (pH 6.8), these coats become sedimentable. Nonsedimentable coats are noted also either when partially purified clathrin (peak I from Sepharose CL4B columns) is dialyzed into low-ionic-strength buffer or when peaks I and II are dialyzed into isolation buffer. Such nonsedimentable coats may represent intermediates in the assembly reaction which have normal morphology but lack some of the physical properties of native coats. We present a model suggesting that tightly intertwined antiparallel clathrin dimers form the edges of the coat lattice.  相似文献   

5.
Net sodium influx under K-free conditions was independent of the intracellular sodium ion concentration, [Na]i, and was increased by ouabain. Unidirectional sodium influx was the sum of a component independent of [Na]i and a component that increased linearly with increasing [Na]i. Net influx of sodium ions in K-free solutions varied with the external sodium ion concentration, [Na]o, and a steady-state balance of the sodium ion fluxes occurred at [Na]o = 40 mM. When solutions were K-free and contained 10-4 M ouabain, net sodium influx varied linearly with [Na]o and a steady state for the intracellular sodium was observed at [Na]o = 13 mM. The steady state observed in the presence of ouabain was the result of a pump-leak balance as the external sodium ion concentration with which the muscle sodium would be in equilibrium, under these conditions, was 0.11 mM. The rate constant for total potassium loss to K-free Ringer solution was independent of [Na]i but dependent on [Na]o. Replacing external NaCl with MgCl2 brought about reductions in net potassium efflux. Ouabain was without effect on net potassium efflux in K-free Ringer solution with [Na]o = 120 mM, but increased potassium efflux in a medium with NaCl replaced by MgCl2. When muscles were enriched with sodium ions, potassium efflux into K-free, Mg++-substituted Ringer solution fell to around 0.1 pmol/cm2·s and was increased 14-fold by addition of ouabain.  相似文献   

6.
The distribution of the Mg-dependent ATPase associated with a microsomal fraction of rabbit psoas muscle was studied histochemically and its localization in relation to the vesicles of the fraction and to the structure of intact fixed muscle was determined. Although enzyme activity was retained after fixation in hydroxyadipaldehyde and in glyoxal, it was lost after fixation in glutaraldehyde or after 4 hr fixation in formaldehyde. Activity was optimally demonstrated when incubations were conducted at 17°C, in media containing 125 mM Trismaleate buffer, pH 7.5, 5 mM ATP, 4 mM MgCl2, and 1 mM Pb(NO3)2. After such incubations, activity was present throughout the sarcoplasmic reticulum, but was absent from the T system. Activation by Na or K could not be demonstrated histochemically. However, the other biochemical properties of the enzyme in the isolated vesicles and in intact muscle were similar with respect to Mg dependence, substrate specificity, inhibition by Ca, N-ethyl maleimide, p-hydroxymercuribenzoate, and lack of inhibition by ouabain.  相似文献   

7.
Commercially obtained E. coli ß-galactosidase was stored at 25 °C in buffer containing 1 mM MgCl2 and in buffer containing no added MgCl2. Samples were removed at set times and the activity of individual enzyme molecules assayed. When stored in the presence of 1 mM magnesium, the number of active molecules did not change over a 2.5-h period. When stored in the absence of added MgCl2, over half the enzyme molecules became inactive within the first hour. However, those molecules which retained activity remained active for the duration of the experiment. This indicates that there may exist two populations of E. coli ß-galactosidase, one which requires storage in the presence of the higher concentration of Mg2+ in order to remain active. There was no observed correlation between this requirement for magnesium and reaction rate. Additionally, the presence of the 1 mM MgCl2 was found to decrease the average activity of the ß-galactosidase molecules under the conditions employed.  相似文献   

8.
MnCl2 was partially effective as a substitute for MgCl2 in activating the K+-dependent phosphatase reaction catalyzed by a purified (Na+ + K+)-ATPase enzyme preparation from canine kidney medulla, the maximal velocity attainable being one-fourth that with MgCl2. Estimates of the concentration of free Mn2+ available when the reaction was half-maximally stimulated lie in the range of the single high-affinity divalent cation site previously identified (Grisham, C.M. and Mildvan, A.S. (1974) J. Biol. Chem. 249, 3187–3197). MnCl2 competed with MgCl2 as activator of the phosphatase reaction, again consistent with action through a single site. However, with MnCl2 appreciable ouabaininhibitable phosphatase activity occurred in the absence of added KCl, and the apparent affinities for K+ as activator of the reaction and for Na+ as inhibitor were both decreased. For the (Na+ + K+)-ATPase reaction substituting MnCl2 for MgCl2 was also partially effective, but no stimulation in the absence of added KCl, in either the absence or presence of NaCl, was detectable. Moreover, the apparent affinity for K+ was increased by the substitution, although that for Na+ was decreased as in the phosphatase reaction. Substituting MnCl2 also altered the sensitivity to inhibitors. For both reactions the inhibition by ouabain and by vanadate was increased, as was binding of [48V]-vanadate to the enzyme; furthermore, binding in the presence of MnCl2 was, unlike that with MgCl2, insensitive to KCl and NaCl. Inhibition of the phosphatase reaction by ATP was decreased with 1 mM but not 10 mM KCl. Finally, inhibition of the (Na+ + K+)-ATPase reaction by Triton X-100 was increased, but that by dimethylsulfoxide decreased after such substitution.  相似文献   

9.
Vanadate was a potent inhibitor of the membrane-bound (Ca+Mg)-ATPase from rat brain, the concentration required for 50% inhibition under conditions optimal for enzymatic activity being 3 M. Vanadate inhibition increased with the MgCl2 concentration, half-maximal inhibition occurring at 2 mM MgCl2, near the MgCl2 concentration required for half-maximal activation of the ATPase activity. MnCl2 could substitute for MgCl2, and at concentrations of 1 mM (Ca+Mn)-ATPase activity was greater than (Ca+Mg)-ATPase activity, although sensitivity to vanadate was less. Vanadate inhibition increased also with the KCl concentration, half-maximal inhibition occurring at 8 mM, again near the concentration required for half-maximal activation of ATPase activity. By contrast, NaCl stimulated (Ca+Mg)-ATPase activity without potentiating vanadate inhibition. These effects of cations on ATPase activity and vanadate inhibition resemble properties of certain transport ATPases and thus suggest mechanistic and functional similarities.  相似文献   

10.
Five active isoenzymes of Neurospora mitochondrial malate dehydrogenase of 105,000, 91,000, 78,000, 65,000 and 39,000 daltons were observed when the enzyme was extracted from mycelia and centrifuged in a sucrose gradient with 5 mM tris-Cl at pH 9. Only one active species of 65,000 daltons was observed in either 100 mM tris-Cl, pH 9, or 5 or 100 mM sodium citrate at either pH 4 or 6. The addition of 10 mM of either MgCl2 or CaCl2 to the 5 mM tris-Cl pH 9 buffer reversed the aggregation and led to the occurrence of only the 65,000 daltons species. The addition of either 10, 50 or 100 mM KCl to the 5 mM tris-Cl pH 9 buffer yielded 4, 3 and 1 isoenzymes, respectively. The latter's molecular weight was 65,000. Thus, in alkaline solution, monovalent cations at 100 mM and divalent cations at 10 mM prevent the formation of multiple molecular weight species.  相似文献   

11.
J.O. Tsokos  S. Bloom 《BBA》1976,423(1):42-51
Spontaneously beating myocardial fragments prepared by mechanical disaggregation have hyperpermeable sarcolemmae. Such preparations were used to study mitochondrial function in situ. The myocardial fragments suspended in a phosphate-buffered salt solution containing 1–3 mM MgCl2 showed a low rate of oxygen uptake. Addition of succinate, pyruvate plus malate or glutamate was followed by an increase in the rate of O2 uptake. Addition of ADP to fragments engaged in State 4 respiration was followed by initiation of more rapid State 3 respiration, with respiratory control ratios routinely greater than 3 for succinate and glutamate. If the fragments were suspended in the same medium containing 3 mM ATP (a medium in which contractile activity occurs), State 3 was initiated upon addition of substrate. The suspension medium used in these experiments contained about 8 μM calcium as contamination. Addition of calcium chloride to give a final concentration of 0.14 to 0.57 mM stimulated State 4 respiration of the myocardial fragments. In contrast, similar additions made during State 3 inhibited respiration. The maximum degree of inhibition brought respiration close to the State 4 rate. If calcium was added prior to ADP, respiratory stimulation by the nucleotide was diminished. Respiratory function of myocardial fragments and of mitochondria isolated from them was similar in terms of response to substrate, ADP, and calcium addition in State 4. Response to calcium in State 3 was different in that inhibition was long-lived only at low [Pi] in the case of mitochondria, but at low or high [Pi] in the case of the fragments.  相似文献   

12.
The effects of sodium, lithium, and magnesium on the in vitro binding properties of the D1 antagonist [3H]SCH23390 were examined with membrane preparations from rat neostriatum (CPU; caudate-putamen) and cerebral cortex (CTX). The saturation binding isotherms for both tissues performed in the presence of 120 mM of either Na+ or Li+ revealed an increase in the affinity, as compared to that observed when the incubation buffer was composed of Tris-Cl 50 mM with MgCl2 1 mM alone. For the CPU there were no changes in the maximum binding capacity (B max) in the different buffers used. In the case of the CTX, there was a loss of [3H]SCH23390 binding sites when either Na+ or Li+ 120 mM were added to the incubations, suggesting a lack of selectivity of this ligand in the absence of group IA cations. The agonist state of the [3H]SCH23390 binding site was studied in competition experiments with dopamine. The highest agonist affinity was obtained in 50 mM Tris-Cl buffer with 1 mM MgCl2 while the addition of 120 mM of either Na+ or Li+ caused a 3- to 5-fold decrease in the potency of dopamine to compete with specific [3H]SCH23390 binding in both CPU and CTX. The presence of magnesium was essential for the competition experiments; i.e.: a concentration of 1 mM MgCl2 was optimum to obtain dopamine antagonism of ligand binding, while increasing Mg2+ to 2 or 5 mM did not appear to further improve the inhibitions. The results support both agonist and antagonist affinity shifts for the dopamine D1 receptor labeled with [3H]SCH23390. Receptor affinity studies should take into account that pharmacological specificity may vary with the incubation buffer utilized, especially when comparing binding data from different laboratories performed under varying ionic conditions.  相似文献   

13.
Summary New cytochemical method, based on biochemical experiments, was elaborated for the ultrastructural localization of phospho(enol)pyruvate carboxylase (EC 4.1.1.31). The procedure was used to study the saprophytic submerged mycelium of the ascomycetous fungusClaviceps purpurea Tul. producing clavine alkaloids. The pelleted mycelium was fixed in ice cold 3% glutaraldehyde in 50 mM cacodylate buffer pH 7.2 and washed repeatedly in the same cold buffer. The reaction mixture contained 100 mM Tris-HCl buffer pH 9.0, 10 mM phospho(enol)pyruvate, 30 mM sodium potassium tartrate, 3 mM Pb(NO3)2, 60 mM MgCl2 and 30 mM NaHCO3. Enzyme activity was localized in vacuoles, particularly inside lipid globules (spherosomes) and less frequently in membranous vesicles. Acetyl-CoA activated PEP-carboxylase both in cell free extracts and in the cytochemical staining. Aspartate inhibited the enzyme in the biochemical assay with coupled malate dehydrogenase system; the cytochemical reaction was not influenced, probably due to the interference of asparagine synthase (EC 6.3.1.1).  相似文献   

14.
Fibrinogen showed essentially no binding (KD>1 mM ) to platelet αIIbβ3 integrin in solution in the presence of Triton or octylglucoside above critical micellar concentrations. Under these conditions the integrin was an αβ monomer. After removal of the detergent from the Triton containing buffer (25 mM Tris/HCl;, 150 mM NaCl, 1 mM CaCl2, 1 mM MgCl2, pH 7.4) the integrin formed aggregates with hexamers as the most prominent species, as demonstrated by analytical ultracentrifugation and electron microscopy. Tracer sedimentation equilibrium experiments indicate that fibrinogen binds to the integrin aggregates, but with a surprisingly large KD (at least 3 μM ). This value is 10- to 100-fold higher than values determined by solid phase assays or with integrins reconstituted onto lipid bilayers.  相似文献   

15.
16.
Trehalose-6-phosphate synthase, catalyzing the reaction between UDP-glucose and glucose 6-phosphate and forming trehalose 6-phosphate, was isolated and partially purified (30-fold) from the phototrophic, haloalkaliphilic bacteriumEctothiorhodospira halochloris. The activity is stabilized by 20mM MgCl2, 50mM NaCe and 2M glycine betaine. The molecular weight was 63000.The enriched enzyme had a MgCl2 optimum at 3–6mM, a pH optimum at 7.5 (in Tris-HCl buffer) and a temperature optimum at 50°C. The Km-values were 1.5×10–3M for UDP-glucose and 2×10–3M for glucose 6-phosphate. The enzyme showed a salinity dependence with optimal concentrations between 100 and 300mM salt. Higher concentrations of salt resulted in a decrease in activity. In the presence of inhibitory salt concentrations the compatible solute glycine betaine had a protective effect with a maximum between 0.5 and 2.0M.  相似文献   

17.
A new and simple method was presented to isolate purified holoenzyme of E. coli RNA polymerase. When a purified enzyme preparation was chromatographed on a DNA-cellulose column equilibrated with a buffer containing 10mM MgCl2, holoenzyme was separated from core enzyme. Thus holoenzyme was eluted at 0.15M KCl and core enzyme at 0.25M KCl.  相似文献   

18.
The intra-chloroplastic distribution of ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) between thylakoid membranes and stroma was studied by determining the enzyme activities in the two fractions, obtained by the rapid centrifugation of hypotonically disrupted chloroplast preparations of spinach and pea leaf tissues. The membrane-associated form of RuBisCO was found to increase in proportion to the concentration of MgCl2 in the disrupting medium; with 20 mM MgCl2 approximately 20% of the total RuBisCO of spinach chloroplasts and 10% of that of pea chloroplasts became associated with thylakoid membranes. Once released from membranes in the absence of MgCl2, addition of MgCl2 did not cause reassociation of the enzyme. The inclusion of KCl in the hypotonic disruption buffer also caused the association of RuBisCO with membranes; however, up to 30 mM KCl, only minimal enzyme activities could be detected in the membranes, whereas above 40 mM KCl there was a sharp increase in the membrane-associated form of the enzyme.Higher concentrations of chloroplasts during the hypotonic disruption, as well as addition of purified preparations of RuBisCO to the hypotonic buffer, resulted in an increase of membrane-associated activity. Therefore, the association of the enzyme with thylakoid membranes appears to be dependent on the concentration of RuBisCO. P-glycerate kinase and aldolase also associated to the thylakoid membranes but NADP-linked glyceraldehyde-3-P dehydrogenase did not. The optimal conditions for enzyme association with the thylakoid membranes were examined; maximal association occurred at pH 8.0. The association was temperature-insensitive in the range of 4° to 25° C. RuBisCO associated with the thylakoid membranes could be gradually liberated to the soluble form upon shaking in a Vortex mixer at maximal speed, indicating that the association is loose.Abbreviations DTT dithiothreitol - RuBP ribulose 1,5-bisphosphate - RuBisCO ribulose 1,5-bisphosphate carboxylase/oxygenase - MES 2-(N-morpholino) ethane sulfonic acid  相似文献   

19.
Rabbit muscle aldolase (E.C. 4. 1. 2. 13) was guanidinated by reaction with O-methylisourea. Up to 60% of the lysine residues can be guanidinated without any dissociation of the tetramer but with a complete loss of enzymatic activity. Native and guanidinated aldolase can be dissociated into monomers in 2.4 m MgCl2 with only slight change in conformation of the subunit. Nitrotroponylation of guanidinated aldolase in dilute buffer gives no reaction whereas in 2.4 m MgCl2 nitrotroponlylation modifies another 8–12% of the lysine residues. Removal of MgCl2 by dialysis affords 100% recovery of activity and tetrameric structure for native aldolase and 100% recovery of tetrameric structure for guanidinated aldolase. In contrast nitrotroponylated and guanidinated aldolase remains monomeric before precipitating as the MgCl2 concentration is lowered. It is concluded that lysine may be involved in the protein-protein interaction of the subunit contact domains of muscle aldolase.  相似文献   

20.
Effects on positive phototaxis and the cell motility of 7 cationsin 5mM MOPS (morpholinopropane sulfonic acid) buffer (pH 7.0)containing 0.16 mM NaCl, 0.68 mM KCl, 0.5 mM CaCl2 and 0.16mM MgCl2 were studied in the unicellular flagellate Cryptomonaswith a photoelectrical measuring apparatus and photomicrography.When calcium ion was removed from the medium by adding 1 mMEGTA (ethylene glycol-bis-(ß-amino-ethylether)-N,N'-tetraaceticacid), the phototactic response was totally inhibited, but theswimming rate was not much affected. The effect of EGTA waspartially reversed by the addition of 1 mM CaCl2. When 15mMKCl or RbCl was added to the medium, phototaxis was greatlyinhibited, but there was no significant influence on the swimmingrate. Similar but less inhibitory effects were induced in thepresence of NaCl, LiCl and CsCl. KCl-induced inhibition waspartially removed by the addition of 15 mM CaCl2 or MgCl2. (Received June 25, 1982; Accepted September 27, 1982)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号