首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Structural rationalizations for differences in catalytic efficiency and stability between mesophilic and cold-adapted trypsins have been suggested from a detailed comparison of eight trypsin structures. Two trypsins, from Antarctic fish and Atlantic cod, have been constructed by homology modeling techniques and compared with six existing X-ray structures of both cold-adapted and mesophilic trypsins. The structural analysis focuses on the cold trypsin residue determinants found in a more extensive comparison of 27 trypsin sequences, and reveals a number of structural features unique to the cold-adapted trypsins. The increased substrate affinity of the psychrophilic trypsins is probably achieved by a lower electrostatic potential of the S1 binding pocket particularly arising from Glu221B, and from the lack of five hydrogen bonds adjacent to the catalytic triad. The reduced stability of the cold trypsins is expected to arise from reduced packing in two distinct core regions, fewer interdomain hydrogen bonds and from a destabilized C-terminal alpha-helix. The helices of the cold trypsins lack four hydrogen bonds and two salt-bridges, and they have poorer van der Waals packing interactions to the body of the molecule, compared to the mesophilic counterparts.  相似文献   

2.
Atlantic cod trypsin I is an appropriate representative of the traditionally classified cold-adapted group I trypsins, and the recombinant form of cod trypsin Y is the only biochemically characterized member of the novel group III trypsins. Trypsin Y is adapted to lower temperatures than all other presently known trypsins. This review describes the basic characteristics of and practical uses for trypsins of Atlantic cod, as well as those of other organisms. Overexpression of the recombinant forms of cod trypsins I and Y in microorganisms is explained as well as the advantages of using site-directed mutagenesis to increase their stability toward autolysis and thermal inactivation. Trypsins appear to play a key role in the nutrition and development of marine fish. We discuss the potential use of cod trypsins as biomarkers to evaluate the nutritional status of cod larvae and describe the industrial applications of cod trypsin I and other trypsins.  相似文献   

3.
Human cationic and anionic trypsins are sulfated on Tyr154, a residue which helps to shape the prime side substrate-binding subsites. Here, we used phage display technology to assess the significance of tyrosine sulfation for the specificity of human trypsins. The prime side residues P1′–P4′ in the binding loop of bovine pancreatic trypsin inhibitor (BPTI) were fully randomized and tight binding inhibitor phages were selected against non-sulfated and sulfated human cationic trypsin. The selection pattern for the two targets differed mostly at the P2′ position, where variants selected against non-sulfated trypsin contained primarily aliphatic residues (Leu, Ile, Met), while variants selected against sulfated trypsin were enriched also for Arg. BPTI variants carrying Arg, Lys, Ile, Leu or Ala at the P2′ position of the binding loop were purified and equilibrium dissociation constants were determined against non-sulfated and sulfated cationic and anionic human trypsins. BPTI variants harboring apolar residues at P2′ exhibited 3–12-fold lower affinity to sulfated trypsin relative to the non-sulfated enzyme, whereas BPTI variants containing basic residues at P2′ had comparable affinity to both trypsin forms. Taken together, the observations demonstrate that the tyrosyl sulfate in human trypsins interacts with the P2′ position of the substrate-like inhibitor and this modification increases P2′ selectivity towards basic side chains.  相似文献   

4.
A qualitative evaluation of electrostatic features of the substrate binding region of seven isoenzymes of trypsin has been performed by using the continuum electrostatic model for the solution of the Poisson-Boltzmann equation. The sources of the electrostatic differences among the trypsins have been sought by comparative calculations on selective charges: all charges, conserved charges, partial charges, unique cold trypsin charges, and a number of charge mutations. As expected, most of the negative potential at the S(1) region of all trypsins is generated from Asp(189), but the potential varies significantly among the seven trypsin isoenzymes. The three cold active enzymes included in this study possess a notably lower potential at and around the S(1)-pocket compared with the warm active counterparts; this finding may be the main contribution to the increased binding affinity. The source of the differences are nonconserved charged residues outside the specificity pocket, producing electric fields at the S(1)-pocket that are different in both sign and magnitude. The surface charges of the mesophilic trypsins generally induce the S(1) pocket positively, whereas surface charges of the cold trypsins produce a negative electric field of this region. Calculations on mutants, where charged amino acids were substituted between the trypsins, showed that mutations in Loop2 (residues 221B and 224) and residue 175, in particular, were responsible for the low potential of the cold enzymes.  相似文献   

5.
The recently classified group III trypsins include members like Atlantic cod (Gadus morhua) trypsin Y as well as seven analogues from other cold-adapted fish species. The eight group III trypsins have been characterized from their cDNAs and deduced amino acid sequences but none of the enzymes have been isolated from their native sources. This study describes the successful expression and purification of a recombinant HP-thioredoxin-trypsin Y fusion protein in the His-Patch ThioFusion Escherichia coli expression system and its purification by chromatographic methods. The recombinant form of trypsin Y was previously expressed in Pichia pastoris making it the first biochemically characterized group III trypsin. It has dual substrate specificity towards trypsin and chymotrypsin substrates and demonstrates an increasing activity at temperatures between 2 and 21 degrees C with a complete inactivation at 30 degrees C. The aim of the study was to facilitate further studies of recombinant trypsin Y by finding an expression system yielding higher amounts of the enzyme than possible in our hands in the P. pastoris system. Also, commercial production of trypsin Y will require an efficient and inexpensive expression system like the His-Patch ThioFusion E. coli expression system described here as the enzyme is produced in very low amounts in the Atlantic cod.  相似文献   

6.
The aim of this study was to examine the differences between hydrophobicity and packing effects in specifying the three-dimensional structure and stability of proteins when mutating hydrophobes in the hydrophobic core. In DNA-binding proteins (leucine zippers), Leu residues are conserved at positions "d," and beta-branched amino acids, Ile and Val, often occur at positions "a" in the hydrophobic core. In order to discern what effect this selective distribution of hydrophobes has on the formation and stability of two-stranded alpha-helical coiled coils/leucine zippers, three Val or three Ile residues were simultaneously substituted for Leu at either positions "a" (9, 16, and 23) or "d" (12, 19, and 26) in both chains of a model coiled coil. The stability of the resulting coiled coils was monitored by CD in the presence of Gdn.HCl. The results of the mutations of Ile to Val at either positions "a" or "d" in the reduced or oxidized coiled coils showed a significant hydrophobic effect with the additional methylene group in Ile stabilizing the coiled coil (delta delta G values range from 0.45 to 0.88 kcal/mol/mutation). The results of mutations of Leu to Ile or Val at positions "a" in the reduced or oxidized coiled coils showed a significant packing effect in stabilizing the coiled coil (delta delta G values range from 0.59 to 1.03 kcal/mol/mutation). Our results also indicate the subtle control hydrophobic packing can have not only on protein stability but on the conformation adopted by the amphipathic alpha-helices. These structural findings correlate with the observation that in DNA-binding proteins, the conserved Leu residues at positions "d" are generally less tolerant of amino acid substitutions than the hydrophobic residues at positions "a."  相似文献   

7.
The existence of a diverse trypsin gene family with a main role in the proteolytic digestion process has been proved in vertebrate and invertebrate organisms. In lepidopteran insects, a diversity of trypsin-like genes expressed in midgut has also been identified. Genomic DNA and cDNA trypsin-like sequences expressed in the Mediterranean corn Borer (MCB), Sesamia nonagrioides, midgut are reported in this paper. A phylogenetic analysis revealed that at least three types of trypsin-like enzymes putatively involved in digestion are conserved in MCB and other lepidopteran species. As expected, a diversity of sequences has been found, including four type-I (two subtypes), four type-II (two subtypes) and one type-III. In parallel, four different trypsins have been purified from midgut lumen of late instar MCB larvae. N-terminal sequencing and mass spectrometric analyses of purified trypsins have been performed in order to identify cDNAs coding for major trypsins among the diversity of trypsin-like sequences obtained. Thus, it is revealed that the four purified trypsins in MCB belong to the three well-defined phylogenetic groups of trypsin-like sequences detected in Lepidoptera. Major active trypsins present in late instar MCB lumen guts are trypsin-I (type-I), trypsin-IIA and trypsin-IIB (type-II), and trypsin-III (type-III). Trypsin-I, trypsin-IIA and trypsin-III showed preference for Arg over Lys, but responded differently to proteinaceous or synthetic inhibitors. As full-length cDNA clones coding for the purified trypsins were available, three-dimensional protein models were built in order to study the implication of specific residues on their response to inhibitors. Thus, it is predicted that Arg73, conserved in type-I lepidopteran trypsins, may favour reversible inhibition by the E-64. Indeed, the substitution of Val213Cys, unique for type-II lepidopteran trypsins, may be responsible for their specific inhibition by HgCl2. The implication of these results on the optimisation of the use of protease inhibitors for pest control, and on the identification of endoprotease-mediated resistance to Bacillus thuringiensis Cry-toxins is discussed.  相似文献   

8.
Au JK  Olivares AO  Henn A  Cao W  Safer D  De La Cruz EM 《Biochemistry》2008,47(13):4181-4188
We have investigated the contributions of hydrophobic residues, the conserved and variable proline residues, and the conserved lysine residues to the affinity and kinetics of thymosin beta4 (Tbeta4) binding to MgATP-actin monomers. Pro4, Lys18, Lys19, Pro27, Leu28, Pro29, and Ile34 were substituted with alanine residues. Mutagenesis of Pro4 or Pro27 has little effect (or=10-fold, but the kinetic basis of the lower stability varies among the mutants. Substitution of the conserved lysine residues weakens the affinity by slowing association and accelerating dissociation. Substitution of hydrophobic residue Leu28 or Ile34 weakens the affinity by accelerating dissociation. These results favor a reaction mechanism in which Tbeta4 binds actin monomers following a two-step mechanism in which the formation of a bimolecular complex is followed by isomerization to a strong binding state that is coupled to the formation of widely distributed hydrophobic contacts. The isomerization equilibrium is slowed by mutagenesis of Pro29, as revealed by the double-exponential time course of association. Mutagenesis of Pro4 or Pro27 accelerates binding and dissociation but minimally affects the binding affinity (相似文献   

9.
An anionic trypsin (TRY-EP) was purified from North Pacific krill (Euphausia pacifica) by ammonium sulfate precipitation, ion-exchange and gel-filtration chromatography. The purified enzyme was identified as a trypsin by LC-ESI-MS/MS analysis. The relative molecular mass of TRY-EP was 33 kDa, with isoelectric point of 4.5. The histidine, tryptophan, arginine, lysine, aspartic acid and glutamic acid residues were functional groups to TRY-EP. TRY-EP was activated by Ca2+ and Mg2+ and inhibited by some heavy metal ions (Zn2+, Cu2+, Pb2+ and Hg2+), organic solvents (ethanol, glycerin, DMSO and acetone) and specific trypsin inhibitors (benzamidine, CEOM, SBTI and TLCK). TRY-EP was active over a wide pH (6.0–11.0) and temperature (10–70°C) range, with optimum of pH 9.0 and 40–50°C. TRY-EP was stable between pH 6.0 and 11.0 and below 30°C. Compared with some trypsins from the Temperate and Tropical Zone organisms, TRY-EP and other trypsins from the Frigid Zone organisms have higher affinity to substrate and 2–42-fold physiological efficiency.  相似文献   

10.
Mutation Asn-21 --> Ile in human cationic trypsinogen (Tg-1) has been associated with hereditary pancreatitis. Recent studies with rat anionic Tg (Tg-2) indicated that the analogous Thr-21 --> Ile mutation stabilizes the zymogen against autoactivation, whereas it has no effect on catalytic properties or autolytic stability of trypsin (Sahin-Tóth, M. (1999) J. Biol. Chem. 274, 29699-29704). In the present paper, human cationic Tg (Asn-21-Tg) and mutants Asn-21 --> Ile (Ile-21-Tg) and Asn-21 --> Thr (Thr-21-Tg) were expressed in Escherichia coli, and zymogen activation, zymogen degradation, and trypsin autolysis were studied. Enterokinase activated Asn-21-Tg approximately 2-fold better than Ile-21-Tg or Thr-21-Tg, and catalytic parameters of trypsins were comparable. At 37 degrees C, in 5 mm Ca(2+), all three trypsins were highly stable. In the absence of Ca(2+), Asn-21- and Ile-21-trypsins suffered autolysis in an indistinguishable manner, whereas Thr-21-trypsin exhibited significantly increased stability. In sharp contrast to observations with the rat proenzyme, at pH 8.0, 37 degrees C, autoactivation kinetics of Asn-21-Tg and Ile-21-Tg were identical; however, at pH 5. 0, Ile-21-Tg autoactivated at an enhanced rate relative to Asn-21-Tg. Remarkably, at both pH values, Thr-21-Tg showed markedly higher autoactivation rates than the two other zymogens. Finally, autocatalytic proteolysis of human zymogens was limited to cleavage at Arg-117, and no digestion at Lys-188 was detected. The observations indicate that zymogen stabilization by Ile-21 as observed in rat Tg-2 is not characteristic of human Tg-1. Instead, an increased propensity to autoactivation under acidic conditions might be relevant to the pathomechanism of the Asn-21 --> Ile mutation in hereditary pancreatitis. In the same context, faster autoactivation and increased trypsin stability caused by the Asn-21 --> Thr mutation in human Tg-1 might provide a rationale for the evolutionary divergence from Thr-21 found in other mammalian trypsinogens.  相似文献   

11.
A serine protease shown to be trypsin was purified from the pyloric caeca of Atlantic cod (Gadus morhua), and resolved into three differently charged species by chromatofocusing (pI 6.6, 6.2 and 5.5). All three trypsins had similar molecular mass of 24.2 kDa. N-terminal amino acid sequence analysis of cod trypsin showed considerable similarity with other known trypsins, particularly with dogfish and some mammalian trypsins. The apparent Km values determined at 25 degrees C for the predominant form of Atlantic cod trypsin towards p-tosyl-L-arginine methyl ester and N-benzoyl-L-arginine p-nitroanilide were 29 microM and 77 microM respectively, which are notably lower values than those determined for bovine trypsin (46 microM and 650 microM respectively). The difference was particularly striking when the amidase activity of the enzymes was compared. Furthermore, the kcat values determined for the Atlantic cold trypsins were consistently higher than the values determined for bovine trypsin. The higher catalytic efficiency (kcat/Km) of Atlantic cod trypsin as compared to bovine trypsin may reflect an evolutionary adaptation of the poikilothermic species to low environmental temperatures.  相似文献   

12.
Trypsin is a highly valuable protease that has many industrial and biomedical applications. The growing demand for non-animal sources of the enzyme and for trypsins with special properties has driven the interest to clone and express this protease in microorganisms. Reports about expression of recombinant trypsins show wide differences in the degree of success and are contained mainly in patent applications, which disregard the difficulties associated with the developments. Although the yeast Pichia pastoris appears to be the microbial host with the greatest potential for the production of trypsin, it has shown problems when expressing cold-adapted fish trypsins (CAFTs). CAFTs are considered of immense value for their comparative advantage over other trypsins in a number of food-processing and biotechnological applications. Thus, to investigate potential obstacles related to the production of CAFTs in P. pastoris, the cunner fish trypsin (CFT) was cloned in different Pichia expression vectors. The vectors were constructed targeting both internal and secreted expression and keeping the CFT native signal peptide. Western-blotting analysis confirmed the expression with evident differences for each construct, observing a major effect of the leader peptide sequence on the expression patterns. Immobilized nickel affinity chromatography yielded a partially purified recombinant CFT, which exhibited trypsin-specific activity after activation with bovine enterokinase.  相似文献   

13.
A 35-mer polypeptide isolated from the hemolymph of desert locust Schistocerca gregaria (SG) proved to be a canonical inhibitor of bovine trypsin (K(i) = 0.2 microM). Despite having a trypsin-specific arginine at the primary specificity P(1) site, it inhibits bovine chymotrypsin almost as well (K(i) = 2 microM). Furthermore, while the latter reactivity improves 10(4)-fold by the single replacement of P(1) Arg by Leu, changing P(1)' from Lys to Met only moderately improves trypsin affinity (K(i) = 30 nM). The apparent low compatibility to trypsin, however, is not observed vs two arthropodal trypsins: SG peptides with P(1) Arg inhibit crayfish and shrimp trypsins with K(i) values in the picomolar range. This unprecedented high discrimination between orthologous enzymes is postulated to derive from flexibility differences in the protein-protein interaction. The more than four orders of magnitude phylum selectivity makes these peptides prospective candidates for agricultural use.  相似文献   

14.
A comparative study of thermostability and amino acid composition of phenylalanyl-tRNA synthetases from E. coli and Thermus thermophilus HB8 has been carried out. In the thermophilic protein the proline, leucine, phenylalanine, arginine content was considerably increased, whereas that of asparagine, isoleucine, serine, threonine and lysine was decreased as compared to the mesophilic protein. Using tritium topography, Pro, (Leu + Ile) and Gly were found to be the most accessible on the surfaces of the both enzymes. In the E. coli enzyme the threonine residues were also easy to access, while on the surface of the thermophilic enzyme arginine residues were more abundant. A quantitative assay of the surface compositions revealed the increased exposure of (Leu + Ile) residues in the thermophilic protein as well as of the charged asparagine and arginine residues. A possible relationship of the observed effects to thermostability is discussed.  相似文献   

15.
In this paper, the DNA fragment of trypsin genes from eight crustaceans were cloned and sequenced. The amino acid composition of the 24 deduced and 42 selected trypsin sequences were compared. Low arginine, methionine, and proline content and high aspartic acid, glutamic acid, and isoleucine content attributed to the distinct catalytic efficiency of crustacean trypsins.  相似文献   

16.
Many plant proteinase inhibitors have lysine at the P1 position, presumably to avoid hydrolysis by insect trypsins. Lepidopteran trypsins appear to have adapted to resist proteinase inhibitors through increased inhibitor hydrolysis and decreased binding to inhibitor hydrophilic reactive sites. Lepidopteran digestive trypsins prefer lysine at the P1 position and have substrate binding subsites more hydrophobic than trypsins from insects in other orders. All available sequences of sensitive and inhibitor-insensitive insect trypsins were aligned with porcine trypsin, for which interactions with Kunitz and Bowman-Birk inhibitor are known. After discounting conserved positions and positions not typical of sensitive or insensitive trypsins, the following residues were considered important to insect trypsin-PI interactions (chymotrypsin numbering): 60, 94, 97, 98, 99, 188, 190, 213, 215, 217, 219, 228. These residues support the Neighbor Joining analysis tree branches separating sensitive and insensitive trypsin sequences. Primary sequences interacting with PIs are around the active site, with some forming part of the S1 (188, 217, 219 and 228) or S4 (99, 215) pockets.  相似文献   

17.
A procedure has been developed for the synthesis of oligopeptide amide using inverse substrates as acyl donors with amino acid amide instead of p-nitroanilide as acyl acceptor and trypsins of different origin (bovine, Streptomyces griseus and chum salmon trypsins) as the catalyst. The effectiveness of this procedure was demonstrated by the synthesis of a pentapeptide, Boc-[Leu5]-enkephalin amide, as a model compound. The method was the first enzymatic method shown to be successful at each successive coupling step for the synthesis of the oligopeptide. Bovine and chum salmon trypsins were superior to Streptomyces griseus trypsin as the catalyst.  相似文献   

18.
Autoproteolytic stability is a crucial factor for the application of proteases in biotechnology. In contrast to vertebrate enzymes, trypsins from shrimp and crayfish are known to be resistant against autolysis. We show by characterisation of a novel trypsin from the gastric fluid of the marine crab Cancer pagurus that this property might be assigned to the entire class of crustaceans. The isolated and cloned crab trypsin (C.p.TryIII) exhibits all characteristic properties of crustacean trypsins. However, its overall sequence identity to other trypsins of this systematic class is comparatively low. The high resistance against autoproteolysis was determined by mass spectrometry, which revealed a low susceptibility of the N-terminal domain towards autolysis. By homology modelling of the tertiary structure, the elevated stability was attributed to the distinctly different pattern of autolytic cleavage sites, which is conserved in all known crustacean trypsin sequences.  相似文献   

19.
Structures of glycoconjugate N-glycans and glycolipids of invertebrates show significant differences from those of vertebrates. These differences are due largely to the vertebrate beta1,4-galactosyltransferase-1 (beta4Gal-T1), which is found as a beta1,4-N-acetylgalactosaminyltransferase (beta4GalNAc-T1) in invertebrates. Mutation of Tyr285 to Ile or Leu in human beta4Gal-T1 converts the enzyme into an equally efficient beta4GalNAc-T1. A comparison of all the human beta4Gal-T1 ortholog enzymes shows that this Tyr285 residue in human beta4Gal-T1 is conserved either as Tyr or Phe in all vertebrate enzymes, while in all invertebrate enzymes it is conserved as an Ile or Leu. We find that mutation of the corresponding Ile residue to Tyr in Drosophila beta4GalNAc-T1 converts the enzyme to a beta4Gal-T1 by reducing its N-acetylgalactosaminyltransferase activity by nearly 1000-fold, while enhancing its galactosyltransferase activity by 80-fold. Furthermore, we find that, similar to the vertebrate/mammalian beta4Gal-T1 enzymes, the wild-type Drosophila beta4GalNAc-T1 enzyme binds to a mammary gland-specific protein, alpha-lactalbumin (alpha-LA). Thus, it would seem that, during the evolution of vertebrates from invertebrates over 500 million years ago, beta4Gal-T1 appeared as a result of the single amino acid substitution of Tyr or Phe for Leu or Ile in the invertebrate beta4GalNAc-T1. Subsequently, the pre-existing alpha-LA-binding site was utilized during mammalian evolution to synthesize lactose in the mammary gland during lactation.  相似文献   

20.
PMP-D2 and HI, two peptides from Locusta migratoria, were shown to belong to the family of tight-binding protease inhibitors. However, they interact weakly with bovine trypsin (K(i) around 100 nM) despite a trypsin-specific Arg at the primary specificity site P1. Here we demonstrate that they are potent inhibitors of midgut trypsins isolated from the same insect and of a fungal trypsin from Fusarium oxysporum (K(i) 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号