首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of metal ions on the rearrangement of dopachrome   总被引:6,自引:0,他引:6  
In vitro experiments are reported showing that a number of transition metal ions exert a profound influence on both the kinetics and chemical course of the rearrangement of dopachrome, a key step in the biosynthesis of melanins. HPLC analysis shows that Cu2+, Ni2+ and Co2+ are particularly effective in inducing the non-decarboxylative rearrangement of dopachrome at physiological pH values, leading mainly to 5,6-dihydroxyindole-2-carboxylic acid, whereas in the absence of metal ions the reaction proceeds with concomitant loss of carbon dioxide to give almost exclusively 5,6-dihydroxyindole. Kinetic experiments provide evidence that the rate of the metal-promoted rearrangement is first order with respect to both aminochrome and metal concentration and decreases in the presence of increasing concentrations of EDTA, consistent with a mechanism involving a direct 1:1 dopachrome-metal ion interaction in the transition state. When considered in the light of the known metal accumulation in pigmented tissues, the results of this study provide a new entry into the regulatory mechanisms involved in the biosynthesis of melanins.  相似文献   

2.
The ability of the peroxidase/H2O2 system to promote the oxidative polymerization of 5,6-dihydroxyindole (DI) and 5,6-dihydroxyindole-2-carboxylic acid (DICA) to melanin pigments was investigated in comparison with tyrosinase. commonly regarded as the sole enzyme involved in melanogenesis. In 0.025 M phosphate buffer at pH 6.8, tyrosinase (2.7 x 10(-3) U/ml) induced a smooth oxidation of 3.0 x 10(-5) M DI (initial rate = 4.4 x 10(-5) M/s) to give a complex mixture of products with the 2,4'-dimer I as the main component, whereas, under the same conditions, peroxidase (0.44 U/ml) and 1.2 x 10(-4) M H2O2 caused the instantaneous conversion of the substrate to a well-defined pattern of products, comprising the 2,4'-and 2,7'-DI dimers I and II, and the related trimers III and IV. When 3.0 x 10(-5) M DICA was used as the substrate, the difference in the effectiveness of the enzymes was much more pronounced. Thus, while peroxidase accomplished the fast oxidation of the indole, yielding the dimer V and the trimer VI as the main products, tyrosinase proved unable to induce more than a poor and sluggish reaction with an initial rate of 5.6.10(-6) M/s. These results raise the possibility that peroxidase, rather than, or in addition to, tyrosinase, may play a critical role in the later stages of the biosynthesis of melanins.  相似文献   

3.
Reexamination of the structure of eumelanin   总被引:4,自引:0,他引:4  
The generally accepted concept that the black melanin eumelanin is made mostly from 5,6-dihydroxyindole but not from 5,6-dihydroxyindole-2-carboxylic acid (DHIC) was reexamined by comparison of synthetic and natural eumelanins. The analytical methods used were elemental analysis and determination of the carboxyl group by acid treatment to yield CO2 and by permanganate oxidation to yield pyrrole-2,3,5-tricarboxylic acid. It was found that DHIC-derived monomer units comprise only approx. 10% of enzymically prepared dopa-melanins but as much as a half of intact, natural eumelanins. The results also show that dopa-melanins prepared at higher pH retain higher percentages of the carboxyl group of dopa and contain higher percentages of pyrrole units, and that melanins are decomposed to a significant extent on acid treatment, the method commonly used to isolate melanins from natural sources.  相似文献   

4.
The conversion of tyrosine into dopa [3-(3,4-dihydroxyphenyl)alanine] is the rate limiting step in the biosynthesis of melanins catalysed by tyrosinase. This hydroxylation reaction is characterized by a lag period, the extent of which depends on various parameters, notably the presence of a suitable hydrogen donor such as dopa or tetrahydropterin. We have now found that catalytic amounts of Fe2+ ions have the same effect as dopa in stimulating the tyrosine hydroxylase activity of the enzyme. Kinetic experiments showed that the shortening of the induction time depends on the concentration of the added metal and the nature of the buffer system used and is not suppressed by superoxide dismutase, catalase, formate or mannitol. Notably, Fe3+ ions showed only a small delaying effect on tyrosinase activity. Among the other metals which were tested, Zn2+, Co2+, Cd2+ and Ni2+ had no detectable influence, whereas Cu2+ and Mn2+ exhibited a marked inhibitory effect on the kinetics of tyrosine oxidation. These findings are discussed in the light of the commonly accepted mechanism of action of tyrosinase.  相似文献   

5.
To identify the divalent metal ions that can support the self-cleavage activity of the genomic ribozyme of human hepatitis delta virus (HDV), we tested the activity of various divalent metal ions in the ribozyme reactions catalyzed by HDV88 (683-770 nt) and 88DI3 (HDV88 with the sequence from 740-752 nt deleted). Among various metal ions tested, Mg2+, Mn2+, Ca2+ and Sr2+ efficiently supported the self-cleavage reactions of the HDV88 and 88DI3 ribozymes. In the case of the 88DI3 ribozyme, other divalent metal ions, such as Cd2+, Ba2+, Co2+, Pb2+ and Zn2+, were also able to support the self-cleavage reaction to some extent (< 10%). In the presence of spermidine (0.5 mM), the cleavage reaction was promoted at lower concentrations of effective divalent metal ions. The HDV ribozyme represents the only example of ribozyme to date of a ribozyme that catalyzes the self-cleavage reaction in the presence of Ca2+ ions as efficiently as it does in the presence of Mg2+ ions.  相似文献   

6.
The exfoliative toxins ExhA and ExhB produced by Staphylococcus hyicus strains NCTC10350 and 1289D-88, respectively, were investigated with regard to the effect of divalent metal ions on toxin production as measured in indirect enzyme-linked immunosorbent assay (ELISA) using monoclonal antibodies. Data were obtained as endpoint titer values and used as semiquantitative measures for the amount of exfoliative toxin detected in culture supernatants. It was shown that the endpoint titers of ExhA in supernatants from cultures of strain NCTC10350 grown in the presence of 0.5 mM CaCl2, Cu(NO3)2 or ZnSO4 were higher compared to titers obtained by growth in medium supplemented with a number of other divalent metal salts. The titer of ExhB as determined in the indirect ELISA was increased by addition of 0.5 mM CoCl2, Cu(NO3)2 or CuSO4 to the growth medium. When ExhA or ExhB, prepared without addition of metal salt to the liquid growth medium, was subsequently incubated with 25 mM of Co2+, Cu2+ or Zn2+, the endpoint titers of the toxins were increased. Dialysis of ExhA and ExhB prepared with Zn2+ and Co2+, respectively, against certain metal chelators, resulted in a reduction of the titer determined in ELISA. Other metal chelators had varied effect in the detection of the toxins in ELISA. It was, however, not possible to restore the recognition of toxins by the monoclonal antibodies by incubation of EDDHA-dialyzed toxin preparations with Co2+, Cu2+ or Zn2+. The results of this study suggest that ExhA and ExhB are metalloproteins.  相似文献   

7.
The interaction of DNA with divalent metal ions: Ba2+, Mg2+, Mn2+, Ni2+, Cu2+ in solutions at different ionic strengths mu was investigated. The combination of following methods: flow birefringence, viscometry, UV-spectroscopy and circular dichroism made possible to follow the state of the secondary and tertiary structure of the DNA molecule during its interaction with ions. The presence of divalent ions in solution affects the hydrodynamic properties of DNA only at low mu. At high mu the difference in the action of mono- and divalent ions disappears. The persistence length of DNA does not change during the experiment. It is shown that the Mg2+ and Ba2+ ions interact only with phosphate groups of DNA but Mn2+, Ni2+, Cu2+ ions interact also with the nitrogen bases of the macromolecule.  相似文献   

8.
9.
Electron spin lattice relaxation times (T1) and the phase memory times (Tm) were obtained for the synthetic melanin system from 3-hydroxytyrosine (dopa) by means of electron spin echo spectroscopy at 77 degrees K. Saturation behavior of the ESR spectra of melanins in melanin-containing tissue and of the synthetic melanin was also determined at the same temperature. The spin lattice relaxation time and the spectral diffusion time of the synthetic melanin are very long (4.3 ms and 101 microseconds, respectively, in the solid state), and the ESR signal saturates readily at low microwave powers. On the other hand, ESR spectra of natural melanins from the tissues chosen for this study, as well as those of synthetic melanins which contain Fe3+ of g = 4.3 and Mn2+ of g = 2, are relatively difficult to saturate compared with samples without such metal ions. These results show clearly that a large part of those two metal ions in sites responsible for the ESR spectral components with these particular g values are coordinated to melanin in melanin-containing tissue, and modify the magnetic relaxation behavior of the melanin. Accumulations of these metal ions in melanins are different from system to system, and they increase in the order: hair (black), retina and choroid (brown), malignant melanoma of eye and skin, and lentigo and nevus of skin.  相似文献   

10.
Poly(A)-specific ribonuclease (PARN) is a highly poly(A)-specific 3'-exoribonuclease that efficiently degrades mRNA poly(A) tails. PARN belongs to the DEDD family of nucleases, and four conserved residues are essential for PARN activity, i.e. Asp-28, Glu-30, Asp-292, and Asp-382. Here we have investigated how catalytically important divalent metal ions are coordinated in the active site of PARN. Each of the conserved amino acid residues was substituted with cysteines, and it was found that all four mutants were inactive in the presence of Mg2+. However, in the presence of Mn2+, Zn2+, Co2+, or Cd2+, PARN activity was rescued from the PARN(D28C), PARN(D292C), and PARN(D382C) variants, suggesting that these three amino acids interact with catalytically essential metal ions. It was found that the shortest sufficient substrate for PARN activity was adenosine trinucleotide (A3) in the presence of Mg2+ or Cd2+. Interestingly, adenosine dinucleotide (A) was efficiently hydrolyzed in the presence of Mn2+, Zn2+, or Co2+, suggesting that the substrate length requirement for PARN can be modulated by the identity of the divalent metal ion. Finally, introduction of phosphorothioate modifications into the A substrate demonstrated that the scissile bond non-bridging phosphate oxygen in the pro-R position plays an important role during cleavage, most likely by coordinating a catalytically important divalent metal ion. Based on our data we discuss binding and coordination of divalent metal ions in the active site of PARN.  相似文献   

11.
D H Nies 《Journal of bacteriology》1995,177(10):2707-2712
The function of the CzcABC protein complex, which mediates resistance to Co2+, Zn2+, and Cd2+ in Alcaligenes eutrophus by cation efflux, was investigated by using everted membrane vesicles of Escherichia coli and an acridine orange fluorescence quenching assay. Since metal cation uptake could not be measured with inside-out membrane vesicles prepared from A. eutrophus and since available E. coli strains did not express the Czc-mediated resistance to cobalt, zinc, and cadmium salts, mutants of E. coli which exhibited a Czc-dependent increase in heavy metal resistance were isolated. E. coli mutant strain EC351 constitutively accumulated Co2+, Zn2+, and Cd2+. In the presence of Czc, net uptake of these heavy metal cations was reduced to the wild-type level. Inside-out vesicles prepared from E. coli EC351 cells displayed a Czc-dependent uptake of Co2+, Zn2+, and Cd2+ and a cation-triggered acridine orange fluorescence increase. The czc-encoded protein complex CzcABC was shown to be a zinc-proton antiporter.  相似文献   

12.
Edwards TE  Sigurdsson ST 《Biochemistry》2005,44(38):12870-12878
Electron paramagnetic resonance (EPR) spectroscopy was used to examine changes in internal structure and dynamics of the hammerhead ribozyme upon metal ion induced folding, changes in pH, and the presence and absence of ribozyme inhibitors. A nitroxide spin-label was attached to nucleotide U7 of the HH16 catalytic core, and this modified ribozyme was observed to retain catalytic activity. U7 was shown by EPR spectroscopy to be more mobile in the ribozyme-product complex than in either the unfolded ribozyme or the ribozyme-substrate complex. A two-step divalent metal ion dependent folding pathway was observed for the ribozyme-substrate complex with a weak first transition observed at 0.25 mM Mg2+ and a strong second transition observed around 10 mM Mg2+, in agreement with studies using other biophysical and biochemical techniques. Previously, ribozyme activity was observed in the absence of divalent metal ions and the presence of high concentrations of monovalent metal ions, although the activity was less than that observed in the presence of divalent metal ions. Here, we observed similar dynamics for U7 in the presence of 4 M Na+ or Li+, which were distinctively different than that observed in the presence of 10 mM Mg2+, indicating that U7 of the catalytic core forms a different microenvironment under monovalent versus divalent metal ion conditions. Interestingly, the catalytically efficient microenvironment of U7 was similar to that observed in a solution containing 1 M Na+ upon addition of one divalent metal ion per ribozyme. In summary, these results demonstrate that changes in local dynamics, as detected by EPR spectroscopy, can be used to study conformational changes associated with RNA folding and function.  相似文献   

13.
Liu J  Dutta SJ  Stemmler AJ  Mitra B 《Biochemistry》2006,45(3):763-772
ZntA, a P1B-type ATPase, confers resistance specifically to Pb2+, Zn2+, and Cd2 in Escherichia coli. Inductively coupled plasma mass spectrometry measurements show that ZntA binds two metal ions with high affinity, one in the N-terminal domain and another in the transmembrane domain. Both sites can bind monovalent and divalent metal ions. Two proteins, deltaN-ZntA, in which the N-terminal domain is deleted, and C59A/C62A-ZntA, in which the N-terminal metal-binding site is disabled by site-specific mutagenesis, can only bind one metal ion. Because C59A/C62A-ZntA can bind a metal ion at the transmembrane site, the N-terminal domain does not block direct access of metal ions to it from the cytosol. A third mutant protein, C392A/C394A-ZntA, in which cysteines from the conserved CPC motif in transmembrane helix 6 are altered, binds metal ions only at the N-terminal site, indicating that both these cysteines form part of the transmembrane site. The metal affinity of the transmembrane site was determined in deltaN-ZntA and C59A/C62A-ZntA by competition titration using a metal ion indicator and by tryptophan fluorescence quenching. The binding affinity for the physiological substrates, Zn2+, Pb2+, and Cd2+, as well as for the extremely poor substrates, Cu2+, Ni2+, and Co2+, range from 10(6)-10(10) M(-1), and does not correlate with the metal selectivity shown by ZntA. Selectivity in ZntA possibly results from differences in metal-binding geometry that produce different structural responses. The affinity of the transmembrane site for metal ions is of similar magnitude to that of the N-terminal site [Liu J. et al. (2005) Biochemistry 44, 5159-5167]; thus, metal transfer between them would be facile.  相似文献   

14.
Aspartate transaminase enzyme was prepared from tobacco tissue cultures. Effect of 13 different metal ions on the enzyme activity was preliminarily studied. The enzyme activity was inhibited by five ions, namely Cd2+, Hg2+, Zn2+, Cu2+, and Ag+. None of the ions investigated enhanced the activity. Fe2+ caused an apparent activity increase in the reaction mixture. Pyridoxal-phosphate enhanced this effect of the Fe2+.  相似文献   

15.
Aldose-ketose isomerization by xylose isomerase requires bivalent cations such as Mg2+, Mn2+, or Co2+. The active site of the enzyme from Actinoplanes missouriensis contains two metal ions that are involved in substrate binding and in catalyzing a hydride shift between the C1 and C2 substrate atoms. Glu 186 is a conserved residue located near the active site but not in contact with the substrate and not with a metal ligand. The E186D and E186Q mutant enzymes were prepared. Both are active, and their metal specificity is different from that of the wild type. The E186Q enzyme is most active with Mn2+ and has a drastically shifted pH optimum. The X-ray analysis of E186Q was performed in the presence of xylose and either Mn2+ or Mg2+. The Mn2+ structure is essentially identical to that of the wild type. In the presence of Mg2+, the carboxylate group of residue Asp 255, which is part of metal site 2 and a metal ligand, turns toward Gln 186 and hydrogen bonds to its side-chain amide. Mg2+ is not bound at metal site 2, explaining the low activity of the mutant with this cation. Movements of Asp 255 also occur in the wild-type enzyme. We propose that they play a role in the O1 to O2 proton relay accompanying the hydride shift.  相似文献   

16.
Annexins belong to a family of Ca2+- and phospholipid-binding proteins that can mediate the aggregation of granules and vesicles in the presence of Ca2+. We have studied the effects of different divalent metal ions on annexin-mediated aggregation of liposomes using annexins isolated from rabbit liver and large unilamellar vesicles prepared from soybean asolectin II-S. In the course of these studies, we have found that annexin-mediated aggregation of liposomes can be driven by various earth and transition metal ions other than Ca2+. The ability of metal ions to induce annexin-mediated aggregation decreases in the order: Cd2+ > Ba2+, Sr2+ > Ca2+ > Mn2+ > Ni2+ > Co2+. Annexin-mediated aggregation of vesicles is more selective to metal ions than the binding of annexins to membranes. We speculate that not every type of divalent metal ion can induce conformational change sufficient to promote the interaction of annexins either with two opposing membranes or with opposing protein molecules. Relative concentration ratios of metal ions in the intimate environment may be crucial for the functioning of annexins within specialized tissues and after treatment with toxic metal ions.  相似文献   

17.
Binding of 125I-[Nle15]gastrin to albumin purified from porcine serum, from porcine gastric mucosal cytosol, and from bovine serum has been demonstrated by covalent cross-linking and ultracentrifugation. Binding was enhanced in the presence of Zn2+, Ni2+, Cu2+, Co2+, and Cd2+, but not Ca2+, Mg2+, or Mn2+. The best fit to the binding data for bovine serum albumin was obtained with a model assuming two nonequivalent binding sites. The affinity of both sites for gastrin was increased in the presence of 100 microM Zn2+ or Ni2+ ions. The highest association constant observed was 2.3 X 10(5) M-1 in the presence of 100 microM Zn2+ ions. The similarity of the Zn(2+)-dependence of binding for bovine and porcine serum albumins, despite the replacement of His3 by Tyr, suggested that the N-terminal metal ion-binding site was not involved. Although all gastrin affinities were reduced by 50% in the presence of 150 mM NaCl, the Zn(2+)-dependence of binding was retained. We therefore propose that the ternary complex of gastrin, Zn2+ ions, and albumin may play a physiological role in the serum transport of Zn2+ ions and in the uptake of Zn2+ ions from the lumen of the gastrointestinal tract.  相似文献   

18.
The base modified nucleoside dBP, carrying a non-hydrogen-bonding non-shape complementary base was incorporated into oligonucleotides (Brotschi, C.; H?berli, A.; Leumann C.J. Angew. Chem. Int. Ed. 2001, 40, 3012-3014). This base was designed to coordinate transition metal ions into well defined positions within a DNA double helix. Melting experiments revealed that the stability of a dBP:dBP base couple in a DNA duplex is similar to a dG:dC base pair even in the absence of transition metal ions. In the presence of transition metal ions, melting experiments revealed a decrease in duplex stability which is on a similar order for all metal ions (Mn2+, Cu2+, Zn2+, Ni2+) tested.  相似文献   

19.
Ryu J  Girigoswami K  Ha C  Ku SH  Park CB 《Biochemistry》2008,47(19):5328-5335
Recently discovered evidences suggest that precipitation of Alzheimer's beta-amyloid (Abeta) peptide and the toxicity in Alzheimer's disease (AD) are caused by abnormal interactions with neocortical metal ions, especially Zn2+, Cu2+, and Fe3+. While many studies had focused on the role of a "single" metal ion and its interaction with Abeta peptides, such studies involving "multiple" metal ions have hardly been explored. Here, to explore the nature of codeposition of different metals, two or more metal ions along with Abeta were incubated over a solid template prepared by immobilizing Abeta42 oligomers. The influence of Zn2+,Cu2+, and Fe3+ on Abeta aggregation was investigated by two approaches: co-incubation and sequential addition. Our results using ex situ AFM, ThT-induced fluorescence, and FTIR spectroscopy indicated that the co-incubation of Cu2+, Zn2+, and Fe3+ significantly altered the morphology of aggregates. A concentration dependence study with mixed metal ions suggested that Zn2+ was required at much lower concentrations than Cu2+ to yield nonfibrillar amorphous Abeta deposits. In addition, sequential addition of Zn2+ or Cu2+ on fibrillar aggregates formed by Fe3+ demonstrated that Zn2+ and Cu2+ could possibly change the conformation of the aggregates induced by Fe3+. Our findings elucidate the coexistence of multiple metal ions through their interactions with Abeta peptides or its aggregates.  相似文献   

20.
Collagenases (EC 3.4.24.3) from human skin, rat skin and rat uterus were inhibited by the chelating agents EDTA, 1,10-phenanthroline and tetraethylene pentamine in the presence of excess Ca2+, suggesting that a second metal ion participates in the activity of the enzyme. Collagenase inhibition by 1,10-phenanthroline could be both prevented and reversed by a number of transition metal ions, specifically Zn2+, Co2+, Fe2+ and Cu2+. However, Zn2+ is effective in five-fold lower molar concentrations (1-10(-4) M) than the other ions. Furthermore, Zn2+ was the only ion tested able to prevent and reverse the inhibition of collagenase by EDTA in the presence of excess Ca2+. Atomic absorption analysis of purified collagenase for Zn2+ showed that Zn2+ was present in the enzyme preparations, and that the metal co-purifies with collagenase during column chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号