首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 935 毫秒
1.
Plasmid pSL103 was previously constructed by cloning a Trp fragment (approximately 2.3 X 10(6) daltons) from restriction endonuclease EcoRI-digested chromosome DNA of Bacillus pumilus using the neomycin-resistance plasmid pUB110 (approximately 2.8 X 10(6) daltons) as vector and B. subtilis as transformation recipient. In the present study the EcoRI Trp fragment from pSL103 was transferred in vitro to EcoRI fragments of the Bacillus plasmid pPL576 to determine the ability of the plasmid fragments to replicate in B. subtilis. Endonuclease EcoRI digestion of pPL576 (approximately 28 X 10(6) daltons) generated three fragments having molecular weights of about 13 X 13(6) (the A fragment), 9.5 X 10(6) (B fragment, and 6.5 X 10(6) (C fragment). Trp derivatives of pPL576 fragments capable of autonomous replication in B. subtilis contained the B fragment (e.g., pSL107) or both the B and C fragments (e.g., pSL108). Accordingly, the B fragment of pPL576 contains information essential for autonomous replication. pSL107 and pSL108 are compatible with pUB110. Constructed derivatives of the compatible plasmids pPL576 and pUB110, harboring genetically distinguishable EcoRI-generated Trp fragments cloned from the DNA of a B. pumilus strain, exhibited relatively high frequency recombination for a trpC marker when the plasmid pairs were present in a recombination-proficient strain of B. subtilis. No recombination was detected when the host carried the chromosome mutation recE4. Therefore, the recE4 mutation suppresses recombination between compatible plasmids that contain homologous segments.  相似文献   

2.
The plasmids pSC138 and pML31 each contain the EcoRI-generated f5 replicator fragment of the conjugative plasmid F in addition to an EcoRI fragment encoding antibiotic resistance: ampicillin resistance derived from Staphylococcus aureus in pSC138 and kanamycin resistance from Escherichia coli in pML31. We have mapped one HindIII and two BamHI restriction sites in the f5 region of these plasmids and one HindIII site in the antibiotic resistance region of each plasmid. The HindIII site in the Km region of pML31 occurs in the kan gene whereas the HindIII site in the Ap region of pSC138 appears to occur in an area important for the regulation of beta-lactamase production. By means of in vitro recombinant DNA manipulation of plasmids pML31 and pSC138, we have shown that approximately 1.9 X 10(6) daltons of the 6.0 X 10(6) dalton f5 fragment can be deleted without disrupting plasmid stability. In addition, we have used these same techniques to isolate a novel F-controlled Ap plasmid cloning vehicle which contains a single restriction site for each of the enzymes EcoRI, HindIII, and BamHI. This cloning vehicle has been linked via either its EcoRI or HindIII site to a ColE1 plasmid replicon to yield stable recombinants.  相似文献   

3.
Simian adenovirus 20 DNA was specifically cleavered by restriction endonucleases EcoRI, BamHI, XbaI and HindIII. The transformation activity of the DNA digest was investigated. BamHI, XbaI, and HindII DNA digests were able to transform the primary rat kidney cell culture (Wistar) as well as the native SV20 DNA. The transforming activity was revealed in a specific fragment of the viral DNA, obtained after the treatment of the DNA with BamHI (fragment B), with molecular weight 5.4 x 10(6) dalton. This fragment is located in the left end of the viral genome. The lack of cell transformation by the EcoRI-hydrolysate of viral DNA may serve a proof of the extremely left position of the oncogene in the viral genome, since of EcoRI-fragment chips off a fragment with molecular weight 3 x 10(5) dalton fr om the left side of DNA molecule.  相似文献   

4.
A Bacteroides fragilis strain resistant to penicillin G, tetracycline, and clindamycin was screened for the presence of plasmid deoxyribonucleic acid (DNA). Agarose gel electrophoresis of ethanol-precipitated DNA from cleared lysates of this strain revealed two plasmid DNA bands. The molecular weights of the plasmids were estimated by their relative mobility in agarose gel and compared with standard plasmids with known molecular weights. The molecular weights were 3.40 +/- 0.20 x 10(6) and 1.95 +/- 0.05 x 10(6) for plasmids pBY1 and pBY2, respectively. Plasmid DNA purified by cesium chloride-ethidium bromide gradient centrifugation was used to transform a restriction- and modification-negative strain of Escherichia coli. Penicillin G- and tetracycline-resistant transformants were screened for the presence of plasmid DNA. A plasmid band corresponding to a molecular weight of 1.95 x 10(6) was present in all transformants tested. Curing experiments demonstrated that the plasmid, referred to as pBY22 when present in transformants, was responsible for penicillin G and tetracycline resistance. Plasmid pBY22 was mobilized and transferred to other E. coli strains by plasmid R1drd-19. Stability of pBY22 was examined in different E. coli strains and was shown to be stably maintained in both restriction-negative and restriction-positive strains. Unexpectedly, pBY2 and pBY22 were resistant to digestion by 12 different restriction endonucleases.  相似文献   

5.
Covalently closed extrachromosomal deoxyribonucleic acid (DNA) was isolated from alpha-hemolytic wild-type strains of Escherichia coli. Most strains examined were able to transfer the hemolytic property with varying frequencies to nonhemolytic recipient strains. Out of eight naturally isolated alphahemolytic E. coli strains, four contained a set of three different supercoiled DNAs with sedimentation coefficients of 76S (plasmid A), 63S (plasmid B), and 55S (plasmid C). The sedimentation coefficients and the contour lengths of the isolated molecules correspond to molecular weights of 65 x 10(6), 41 x 10(6), and 32 x 10(6). Three alpha-hemolytic wild-type strains carried only one plasmid with a molecular weight of 41 x 10(6), and one strain harbored two plasmids with molecular weights of 41 x 10(6) and 32 x 10(6). Alpha-hemolytic transconjugants were obtained by conjugation of E. coli K-12 with the hemolytic wild-type strains. A detailed examination revealed that plasmids with the same sizes as plasmids B and C of the wild-type strains can be transferred separately or together to the recipients. Both plasmids possess the hemolytic determinant and transfer properties. Plasmid A appears to be, at least in one wild-type strain, an additional transfer factor without a hemolytic determinant. In one case a hemolytic factor was isolated, after conjugation, that is larger in size than plasmid A and appears to be a recombinant of both plasmids B and C.  相似文献   

6.
The ecology of gonococcal plasmids.   总被引:17,自引:0,他引:17  
Of 261 strains of Neisseria gonorrhoeae examined for plasmids, 6 were plasmid-free, 217 contained only a small multicopy 2.6 X 10(6) dalton plasmid and 38 carried a large 24.5 X 10(6) dalton plasmid. Restriction enzyme digests and DNA-DNA hybridization studies revealed that the large plasmids isolated between 1940 and 1978 share a common core of DNA sequences (70 to 100%) and represent a group of closely related molecules.  相似文献   

7.
F Bolivar 《Gene》1978,4(2):121-136
In vitro recombinant DNA techniques were used to construct two new cloning vehicles, pBR324 and pBR235. These vectors, derived from plasmid pBR322, are relaxed replicating elements. Plasmid pBR324 carries the genes from pBR322 coding for resistance to the antibiotics ampicillin (Apr) and tetracycline (Tcr) and the colicin E1 structural and immunity genes derived from plasmid pMBI. Plasmid pBR325 carries the Apr and Tcr genes from pBR322 and the cloramphenicol resistance gene (Cmr) from phage P1Cm. In these plasmids the unique EcoRI restriction site present in the DNA molecule is located either in the colicin E1 structural gene (pBR324) or in the Cmr gene (pBR325). These vectors were constructed in order to have a single EcoRI site located in the middle of a structural gene which when inactivated would allow, for the easy selection of plasmid recombinant DNA molecules. These plasmids permit the molecular cloning and easy selection of EcoRI, BamHI, HindIII, PstI, HincII, SalI, (XamI), Smal, (XmaI), BglII and DpnII restriction generated DNA molecules.  相似文献   

8.
Cloning and characterization of 4.5S and 5S RNA genes in tobacco chloroplasts   总被引:10,自引:0,他引:10  
F Takaiwa  M Sugiura 《Gene》1980,10(2):95-103
Tobacco chloroplast 4.5S and 5S RNAs were shown to hybridize with a 0.9 . 10(6) dalton EcoRI fragment of tobacco chloroplast DNA. Recombinant plasmids were constructed from fragments produced by partial digestion of the chloroplast DNA with EcoRI and the pMB9 plasmid as a vector. Five recombinants containing the 4.5S and 5S genes were selected by the colony hybridization technique. One of these plasmids contained also the 16S and 23S RNA genes and was mapped using several restriction endonucleases as well as DNA-RNA hybridization. The order of rRNA genes is 16S-23S-4.5S-5S and the four rRNA genes are coded for by the same DNA strand.  相似文献   

9.
Twelve plasmids carrying genes for streptomycin and sulfonamide resistance were studied for the number and distribution of sites on the plasmid moleucles susceptible to cleavage by the restriction endonuclease EcoRI. Ten of the twelve were found to have a single cut site, one plasmid (R678) had three such sites, and plasmid PB165, which was isolated as three supercoiled deoxyribonucleic acid species with molecular weights 7.4 x 10(6), 14.7 x 10(6), and 21.4 x 10(6) was reduced to a single (linear) species of molecular weight 7.6 x 10(6) after cutting with EcoRI. We conclude that PB165 forms oligomers in Escherichia coli and that the number of copies of these per chromosome is more consistant and that the number of copies of these per chromosome is more consistent with a negative than a positive control mechanism for plasmid replication. Compatibility testing of a positive control mechanism for plasmid replication. Compatibility testing of these plasmids showed they all belong to the same incompatibility group, which we designate IncQ, suggesting that they may have come from a common ancestor.  相似文献   

10.
Summary Amber mutants of the mini-F plasmid pML31 were isolated with the mutagen hydroxylamine. Under non-permissive conditions amber mutants segregate and show no incorporation of label into supercoiled plasmid DNA in double-label experiments. Wild-type and one mutant of mini-F were integrated by recombinant DNA techniques into the single EcoRI site of plasmid vector pBR322. Plasmid specific proteins were labeled in minicells and analysed by SDS-PAGE. A 34,000 dalton molecular weight protein was identified to be missing in the amber mutant of plasmid mini-F.  相似文献   

11.
Amplification of Bacillus subtilis DNA fragments was performed in Escherichia coli using plasmid RSF2124. The main principle of isolation and cloning hybrid plasmids was described using genes of riboflavin operon as a model. Bac. subtilis DNA was treated with restriction endonuclease EcoR; followed by the agarose gel electrophoretic separation of the resulting fragments. Gels were sliced, DNA was eluted from the corresponding slices and used to transform Bac. subtilis auxotrophs rib A72, rib S110 and rib D107. DNA fraction with the molecular weight 7 . 10(6) daltons restored prototrophy of these mutants. DNA of this fraction was ligated with EcoRI treated plasmid RSF2124 DNA and used for transformation of E. coli rk-mk+. Ampicillin resistant transformants which had lost the colicin production ability, were selected. The presence of riboflavin genes within the hybrid plasmids was detected by transformation of B. subtilis auxotrophs. Three hybrid plasmids (pPR1, pPR2 and pPR3), containing a fragment of Bac. subtilis DNA with the molecular weight 6.8 . 10(-6) daltons including riboflavin operon, were selected. The analysis of the transformation activity of Bac. subtilis DNA and plasmid pPR1 DNA revealed, that there was no restriction activity of Bac. subtilis cells against plasmid DNA amplified in E. coli. Heteroduplex analysis has shown that plasmids pPR1 and pPR2 differ in the orientation of Bac. subtilis DNA fragment. DNA of these plasmids restored prototrophy of the several studied E. coli riboflavin auxotrophs.  相似文献   

12.
苏云金芽胞杆菌拟步行甲亚种质粒复制子oril65的克隆   总被引:3,自引:1,他引:2  
魏芳  孙明 《微生物学报》2002,42(1):45-49
以苏云金芽胞杆菌拟步行甲亚种菌株(Bacillus thuringiensis subsp.tenebrionis)YBT-1765作为出发菌株,克隆了一个包含复制子的EcoRI酶切片段,大小约为11kb,称为oril65。这是国内外从此亚种中克隆到的第一个复制子,缩小到8kb左右后仍然能够复制。杂交结果显示,此复制子来源于菌株YBT-1765可以检测到的分子量最大的质粒,以此复制子构建的穿梭载体pBMB6071在不同受体菌中的稳定性差异很大,其中在以色列亚种无晶体突变株4Q7中,传40后代,稳定性100%,质粒pBMB6071与含ori1030和ori2062在库斯塔克亚种无晶体突变株BMB171中是相容的。  相似文献   

13.
Gel electrophoresis of DNA from 70 clinical strains of Salmonella revealed a heterogenous plasmid population. Plasmid DNA, ranging in molecular weight from 1.4 X 10(6) to 145 X 10(6), was demonstrated in 26 of 32 antibiotic-resistant strains. Several resistant strains carried up to six plasmids; however, of these, five strains which were multiply resistant contained a single plasmid of molecular weight 54 X 10(6) to 145 X 10(6). Only one incompatibility group H2 (IncH2) plasmid (pDT28) was detected in a strain of S. heidelberg; thus, this represents a reduction in the prevalence of these plasmids in Ontario Salmonella strains since 1974. The pDT28 plasmid resembled other IncH2 plasmids by its high molecular weight (145 X 10(6) ) and by virtue of its temperature-sensitive mode of transfer, resistance to tellurium, and inhibition of coliphage development. Of the 38 antibiotic-susceptible Salmonella strains, approximately half contained plasmids, ranging in molecular weight from 1.4 X 10(6) to 60 X 10(6). The plasmid-containing antibiotic-susceptible strains carried either a group of two to four small plasmids, with molecular weights less than 4.5 X 10(6), or a single large plasmid of molecular weight 23 X 10(6) or 60 X 10(6).  相似文献   

14.
15.
The self-transmissible plasmid pXO12 (112.5 kilobases [kb]), originally isolated from strain 4042A of Bacillus thuringiensis subsp. thuringiensis, codes for production of the insecticidal crystal protein (Cry+). The mechanism of pXO12-mediated plasmid transfer was investigated by monitoring the cotransfer of the tetracycline resistance plasmid pBC16 (4.2 kb) and the Bacillus anthracis toxin and capsule plasmids, pXO1 (168 kb) and pXO2 (85.6 kb), respectively. In matings of B. anthracis donors with B. anthracis and Bacillus cereus recipients, the number of Tcr transcipients ranged from 4.8 x 10(4) to 3.9 x 10(6)/ml (frequencies ranged from 1.6 x 10(-4) to 7.1 x 10(-2), and 0.3 to 0.4% of them simultaneously inherited pXO1 or pXO2. Physical analysis of the transferred plasmids suggested that pBC16 was transferred by the process of donation and that the large B. anthracis plasmids were transferred by the process of conduction. The transfer of pXO1 and pXO2 involved the transposition of Tn4430 from pXO12 onto these plasmids. DNA-DNA hybridization experiments demonstrated that Tn4430 was located on a 16.0-kb AvaI fragment of pXO12. Examination of Tra- and Cry- derivatives of pXO12 showed that this fragment also harbored information involved in crystal formation and was adjacent to a restriction fragment containing DNA sequences carrying information required for conjugal transfer.  相似文献   

16.
Four chloramphenicol resistance (Cm) and four tetracycline resistance (Tc) plasmids from Staphylococcus aureus were characterized by restriction endonuclease mapping. All four Tc plasmids had molecular masses of 2.9 megadaltons (Mdaltons) and indistinguishable responses to seven different restriction endonucleases. The four Cm plasmids (pCW6, pCW7, pCW8, and pC221) had molecular masses of 2.6, 2.8, 1.9, and 2.9 Mdaltons, respectively. The four Cm plasmids also differed both in the level of resistance to Cm and in susceptibility to retriction endonucleases. Single restriction endonuclease sites contained within each plasmid included the following: in pCW6 for HindIII, XbaI, HpaII, and BstEII; in pCW7 for HindIII, BstEII, BglII, HaeIII, and HpaII; in pCW8 for HindIII, HaeIII, and HpaII; in pC221 for HindIII, BstEII, and EcoRI. The molecular cloning capabilities of pCW8 and pC221 were determined. Cm and erythromycin resistance (Em) recombinant plasmids pCW12, PCW13, and pCW14 were constructed and used to transform S. aureus 8325-4. A 2.8-Mdalton HindIII fragment from plasmid pI258 was found to encode Em resistance and contain single sites for the retriction endonucleases BglII, PstI, HaeIII, and HpaII. The largest EcoRI fragment (8 Mdaltons) from pI258 contained the HindIII fragment encoding Em resistance intact. Cloning of DNA into the BglII site of pCW14 did not alter Em resistance. Cloning of DNA into the HindIII site of pCW8 and the HindIII and EcoRI sites of pC221 did not disrupt either plasmid replication of Cm resistance.  相似文献   

17.
We report the mobilization by cointegration of the gonococcal 5.2 kb beta-lactamase plasmid pSJ5.2 in an Escherichia coli background. Transfer of pSJ5.2 was measured by filter mating assays with five different conjugative plasmids from Enterobacteriaceae and the gonococcal 41 kb tet(M). Plasmid pSJ5.2 was mobilized to E. coli at frequencies of 1.7x10(-6), 9.3x10(-8) and 2.7x10(-5) by the tet(M), R64 drd-33 and N3 conjugative plasmids, respectively. Mobilization of pSJ5.2 by the 41 kb tet(M) conjugative plasmid resulted in stable Amp(R) E. coli transconjugants consisting of pSJ5.2 plasmid with an insertion located in the 2.4 kb BamHI-BamHI fragment. Mobilization of pSJ5.2 by R64drd-33 and N3 conjugative plasmids involved stable cointegrates as detected by Southern Blot with a DIG-labelled PstI-digested pSJ5.2 probe. Restriction analysis of the R64::pSJ5.2 and N3::pSJ5.2 cointegrates and Southern Blot with the pSJ5.2 probe showed that cointegrates formed by deletion of DNA regions within the 1.8 kb BamHI-HindIII fragment of pSJ5.2. The plasmid thus appears to use multiple recombination mechanisms for cointegration with different conjugative plasmids. The complete nucleotide sequence of pSJ5.2 was determined, and will be a useful tool to further investigate the molecular mechanisms leading to its cointegrative transfer.  相似文献   

18.
Summary Despite the fact that pTiC58 and pTiB6S3 functionally, have been shown to date to have only tumorigenicity and phage AP1 exclusion in common, many restriction fragments of the plasmids contain DNA sequences common to both. The bulk of this homologous DNA is concentrated in a few restriction endonuclease fragments and the remainder is organized in short discontinuous regions spread over many fragments. In pTiB6S3 the bulk of the homology is distributed throughout a 29x106 dalton segment comprising 8 Sma I fragments. This region includes those sequences which are transferred to and transcribed in tumorigenic plant cells induced by B6-806 or closely related strains. The pattern of homology within this portion of the plasmid shows a region of low sequence homology (Sma I Fragment 3 b) apparently corresponding to the gene or genes coding for octopine synthesis in the plant tumor cells, surrounded by regions of high sequence homology. The extent of inter-plasmid homology then decreases with increasing distance from fragment 3b. The remainder of the homology is distributed throughout a segment of maximum size 21.5x106 daltons comprising two Sma I fragments and cannot yet be definitely linked with any specific plasmid function.  相似文献   

19.
Pseudomonas aeruginosa strain 9169 has been reported to contain a plasmid that expresses resistance to carbenicillin (Cb), kanamycin (Km), and tetracycline (Tc) in Escherichia coli but resistance only to Cb in certain Pseudomonas recipients. The triply resistant plasmid in E. coli belonged to incompatibility (Inc) group P or P-1, whereas the singly resistant plasmid in P. aeruginosa was compatible with IncP-1 plasmids and other plasmids of established Inc specificity but incompatible with plasmid pSR1 that is here used to define a new Pseudomonas Inc group P-10. Additional physical and genetic studies showed that strain 9169 contained not one but two plasmids: IncP-1 plasmid R91a, determining the Cb Km Tc phenotype, and IncP-10 plasmid R91, determining Cb that differed in molecular weight and in EcoRI and BamHI restriction endonuclease recognition sites. Plasmid multiplicity rather than host effects on plasmid gene expression can account for differences in the phenotype of strain 9169 transconjugants to E. coli and P. aeruginosa.  相似文献   

20.
A purified fragment of deoxyribonucleic acid (DNA) that determines resistance to kanamycin and is incapable of self-replication was used to select a self-replicating fragment from an EcoRI endonuclease digest of the sex factor F'lac. This F'lac fragment, exhibiting a molecular weight of 6 X 10(6), carries the genes essential for maintenance of the F replicon in Escherichia coli cells. The constructed mini-F'km plasmid also retains the incompatibility properties of the parent F'lac plasmid. Large amounts of the kanamycin resistance fragment of a molecular weight of 4.5 X 10(6) with an EcoRI-cleaved, self-replicating derivative of colicinogenic plasmid E1 that has a molecular weight of 2.2 X 10(6), The recombinant plasmid is able to replicate extensively in E. coli in medium containing chloramphenicol, and, therefore, large quantities of this plasmid DNA can be obtained. The substantial difference in size between the two fragments in the recombinant plasmid greatly facilitates their separation by preparative agarose gel electrophoresis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号