首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
采用杯碟法测定绿粘帚霉(RCEF4099)菌株的发酵液对8种植物病原真菌的抗菌活性。结果表明RCEF4099菌株发酵液对5种供试病原真菌的抑菌圈直径在18mm以上。对菌株发酵液的稳定性测定结果表明菌株转接6代之前,活性稳定,从第7代开始其活性缓慢降低,第10代的抑菌圈直径仅比出发菌株减少了1.7mm。RCEF4099菌株发酵液有较好的热稳定性,发酵液加热到60%仍有较高活性。该菌株的发酵液对酸的稳定性较好,抑菌活性最强的pH值为4。  相似文献   

2.
目的报道2例伴有肺结核史的侵袭性真菌感染经伊曲康唑注射剂治疗经过,探讨伴有肺结核史患者的抗真菌治疗经验。方法例1为49岁"支气管肺囊肿合并感染,陈旧性肺结核"男性患者,诊断为侵袭性肺曲霉感染确诊病例。例2为51岁"右侧自发性气胸,慢性阻塞性肺病,陈旧性肺结核"男性患者,诊断为侵袭性肺念珠菌感染拟诊病例。均予伊曲康唑注射剂治疗2周结合抗细菌治疗,并作临床和真菌学疗效监测。结果治疗两周后两患者临床症状和体征均得到明显改善,标本真菌镜检转阴,培养仍为阳性。结论在有肺结核病史存在的侵袭性真菌感染抗真菌治疗时间可能需要延长。合理应用抗生素、激素,严格掌握用药指针、时机、剂量与疗程是控制真菌感染的重要因素。  相似文献   

3.
混合发酵提高2株海洋微生物菌株抑菌活性的研究   总被引:4,自引:0,他引:4  
2株抑菌范围不同的海洋微生物菌株,在单独培养条件优化基础上进行混合发酵,并对混合发酵条件进行了优化测试,混合发酵结果有效的提高了菌株产生代谢产物的抑菌活性,最小抑菌浓度由单独发酵的156μL/mL、125μL/mL,单独发酵后混合的250μL/mL、218μL/mL降至32μL/mL、28μL/mL,即代谢产物抑菌活性比单独发酵提高200%,比单独发酵后混合提高300%,2株菌株混合发酵的协同效应大于单独发酵混合后的累加效应,对靶标真菌的致畸作用明显。  相似文献   

4.
Nomega-Z-L-Arg-L-Phe-L-Phe was shown to be the antibiotically active compound in a peptide mixture which was obtained by treating Z3-L-Arg-L-Phe-L-Phe with hydrogen bromide/trifluoroacetic acid or 4N HBr/glacial acetic acid, respectively. Identification of this compound was achieved by thin-layer chromatography, enzymatic digestion and autobiograms with fungi. The pure Nomega-Z-L-Arg-L-Phe-L-Phe was not the only compound with antibiotic qualities; generally it could be said that all peptides with the sequence Nomega-Z-L-Arg-X-L-Phe (X might be any amino acid) are antibiotically active. All of them are antagonized by L-aspartic acid and asparagine in the crossstrip test (on fungi). The antibiotical activity of all these peptides must be due to the Nomega-Z-L-Arg-residue provided that it is coupled to a dipeptide X-L-Phe, or to an aromatic system (e.g. L-Phe or benzyl amine).  相似文献   

5.
Cell Membrane Diversity in Noncovalent Protein Transduction   总被引:1,自引:0,他引:1  
Crossing of the plasma membrane for all macromolecules without energy, receptors or any artificial methods was thought to be difficult. Our previous studies demonstrated that arginine-rich intracellular delivery (AID) peptides are able to deliver macromolecules, such as proteins, RNAs and DNAs, into either animal or plant cells. Cellular internalization could be mediated by effective and nontoxic AID peptides in either a covalent or noncovalent protein transduction (NPT) manner. AID peptides were so versatile that the procedure seemed to replace the current artificial transfection methods. However, the utilization of AID peptides has been limited to animal or plant systems so far. None has proposed that AID peptides could work in other species. Here, we select some representative organisms to screen whether NPT mediated by AID peptides works in them. They include cyanobacteria, bacteria, archaea, algae, fungi and yeasts. The results reveal that not all living beings possess this capability of protein transduction. Interestingly, all species of prokaryotes tested, which were thought to be highly diverse from the animal and plant systems, appear to be capable of NPT. The mechanism of AID-mediated NPT in cyanobacteria is in a classical endocytosis- and energy-independent pathway and may involve macropinocytosis. In contrast, green algae and multicellular fungi of the eukaryotes are impermeable to protein passage. Our results bring an interesting clue to the reexamination of the phylogeny of both algae and fungi.  相似文献   

6.
Increasing resistance to conventional antibiotics among microorganisms is one of the leading problems of medicine nowadays. Antimicrobial peptides are compounds exhibiting both antibacterial and antifungal activities. However, it is difficult to predict whether a designed new compound would exhibit any biological activity. Moreover, purification of the peptides is one of the most time-consuming and expensive steps of the synthesis that sometimes leads to unnecessary loss of solvents and reagents. In our study we have developed a thin-layer chromatography (TLC) direct bioautography technique for rapid determination of antimicrobial activity of peptides without the necessity of high-performance liquid chromatography purification. In this assay, crude peptides were applied and separated on a TLC plate. Then, pre-prepared plates were dipped into microbial suspension and incubated under optimum conditions for bacteria and fungi as well. The activity of the tested compounds was visualized by spraying the TLC plates with a cell viability reagent, resazurin (7-hydroxy-3H-phenoxazin-3-one 10-oxide). Effectiveness of this assay was compared with minimal inhibitory concentration results obtained by broth microdilution assay. Interestingly, so far such a screening method has not been applied for this group of compounds.  相似文献   

7.
An exhaustive characterization of the set of non-ribosomal peptide synthetase (NRPS) genes of the corn pathogen, Cochliobolus heterostrophus, and the small molecule peptides produced by the enzymes they encode, has been undertaken to ascertain the role of the peptide metabolites in the fungal cell. To date, the NRPS method of peptide biosynthesis has been described for filamentous ascomycete fungi (and to a limited extent, for basidiomycete fungi) and for bacteria, only. In addition to structural diversity, non-ribosomal peptides have a broad spectrum of biological activities, many are useful in medicine, agriculture, industry, and biological research. However, to suggest that inter-organismal activities is their primary function is likely incorrect; in fact, the physiological significance of these peptides to the producing fungi is largely unknown. We document that NRPS enzymes are purveyors of small molecules for both basal metabolism and for specialized environmental niches and that some are conserved, but most are not.  相似文献   

8.
Arbuscular mycorrhizal (AM) fungi form symbiotic associations with plant roots. Around 150 species have been described and it is becoming clear that many of these species have different functional properties. The species diversity of AM fungi actively growing in roots is therefore an important component of ecosystem diversity. However, it is difficult to identify AM fungi below the genus level from morphology in planta , as they possess few informative characters. We present here a molecular method for identifying infrageneric sequence types that estimate the taxonomic diversity of AM fungi present in actively growing roots. Bluebell roots were sampled from beneath two different canopy types, oak and sycamore, and DNA sequences were amplified from roots by the polymerase chain reaction with fungal-specific primers for part of the small subunit ribosomal RNA gene. Restriction fragment length polymorphism among 141 clones was assessed and 62 clones were sequenced. When aligned, discrete sequence groups emerged that cluster into the three families of AM fungi: Acaulosporaceae, Gigasporaceae and Glomaceae. The sequence variation is consistent with rRNA secondary structure. The same sequence types were found at both sampling times. Frequencies of Scutellospora increased in December, and Acaulospora increased in abundance in July. Sites with a sycamore canopy show a reduced abundance of Acaulospora , and those with oak showed a reduced abundance of Glomus . These distribution patterns are consistent with previous morphological studies carried out in this woodland. The molecular method provides an alternative method of estimating the distribution and abundance of AM fungi, and has the potential to provide greater resolution at the infrageneric level.  相似文献   

9.
Compensatory responses to herbivory by invasive weeds may foil attempts to arrest their spread with biological controls. We conducted an experiment to study the effects of defoliation and soil fungi on interactions between Centaurea melitensis , an invasive annual from Eurasia, and Nassella pulchra , a native Californian bunchgrass. Defoliation of C. melitensis reduced its final biomass in all species–fungicide treatments, except when C. melitensis was grown with both Nassella and non-treated soil fungi at the same time. In this treatment, the biomass of clipped C. melitensis plants was equal to that of unclipped plants, indicating that soil fungi and Nassella promoted a compensatory response in the weed. Overall, the biomass of C. melitensis was 44% lower when soil fungi were reduced. However, in soil not treated with fungicide, the total biomass of C. melitensis increased in the presence of Nassella , but decreased when it was grown alone. When stressed by defoliation, C. melitensis may benefit from a form of mycorrhizae-mediated parasitism through a common mycorrhizal network, or Nassella may alter the fungal community in a way that enhances the positive direct effects of soil fungi on Centaurea .  相似文献   

10.
It has been reported that it is difficult to express cationic antibacterial peptides in engineered bacteria because such peptides are highly toxic to the host bacteria cells and sensitive to intracellular proteases. Antibacterial peptide CM4 (ABP-CM4) is a small cationic peptide with broad-spectrum activities against bacteria, fungi and tumor cells, which may possibly be used as an antimicrobial agent. Here we tried to express ABP-CM4 in Escherichia coli cells using either the GST fusion system or the intein-mediated fusion expression system. In order to investigate the possible use of these two fusion partners in cationic small peptide expression and purification, a mutant ABP-CMt, which is a highly positively charged peptide with +9 charges at neutral pH, was designed. In the present study, we have shown that both ABP-CM4 and ABP-CMt peptides can be expressed and purified by the intein-mediated expression system but not by the GST fusion expression system. Thus the intein-mediated peptide expression and purification system potentially could be employed for the production of recombinant protease-sensitive and cytotoxic peptides.  相似文献   

11.
In an attempt to identify the cells and organellel containing ACTH and beta-lipotropin in the rat brain, an immunocytochemical localization of these two peptides was performed at the electron microscopic level. Both ACTH and beta-lipotropin were localized in dense core vesicles of about 60-80 nm in diameter. Using serial sections, it has been possible to demonstrate that these peptides are contained not only in the same neuronal cell bodies, but also in the same dense core vesicles.  相似文献   

12.
Cecropin A and papiliocin are novel 37-residue cecropin-like antimicrobial peptides isolated from insect. We have confirmed that papiliocin possess high bacterial cell selectivity and has an α-helical structure from Lys3 to Lys21 and from Ala25 to Val35, linked by a hinge region. In this study, we demonstrated that both peptides showed high antimicrobial activities against multi-drug resistant Gram negative bacteria as well as fungi. Interactions between these cecropin-like peptides and phospholipid membrane were studied using CD, dye leakage experiments, and NMR experiments, showing that both peptides have strong permeabilizing activities against bacterial cell membranes and fungal membranes as well as Trp2 and Phe5 at the N-terminal helix play an important role in attracting cecropin-like peptides to the negatively charged bacterial cell membrane. Cecropin-like peptides can be potent peptide antibiotics against multi-drug resistant Gram negative bacteria and fungi. [BMB Reports 2013; 46(5): 282-287]  相似文献   

13.
Human Antimicrobial Peptides: Defensins, Cathelicidins and Histatins   总被引:12,自引:0,他引:12  
Antimicrobial peptides, which have been isolated from many bacteria, fungi, plants, invertebrates and vertebrates, are an important component of the natural defenses of most living organisms. The isolated peptides are very heterogeneous in length, sequence and structure, but most of them are small, cationic and amphipathic. These peptides exhibit broad-spectrum activity against Gram-positive and Gram-negative bacteria, yeasts, fungi and enveloped viruses. A wide variety of human proteins and peptides also have antimicrobial activity and play important roles in innate immunity. In this review we discuss three important groups of human antimicrobial peptides. The defensins are cationic non-glycosylated peptides containing six cysteine residues that form three intramolecular disulfide bridges, resulting in a triple-stranded β-sheet structure. In humans, two classes of defensins can be found: α-defensins and β-defensins. The defensin-related HE2 isoforms will also be discussed. The second group is the family of histatins, which are small, cationic, histidine-rich peptides present in human saliva. Histatins adopt a random coil conformation in aqueous solvents and form α-helices in non-aqueous solvents. The third group comprises only one antimicrobial peptide, the cathelicidin LL−37. This peptide is derived proteolytically from the C-terminal end of the human CAP18 protein. Just like the histatins, it adopts a largely random coil conformation in a hydrophilic environment, and forms an α-helical structure in a hydrophobic environment.  相似文献   

14.
Multi-trophic interactions between prokaryotes, unicellular eukaryotes, and ecologically intertwined metazoans are presumably common in nature, yet rarely described. The mountain pine beetle, Dendroctonus ponderosae, is associated with two filamentous fungi, Grosmannia clavigera and Ophiostoma montium. Other microbes, including yeasts and bacteria, are also present in the phloem, but it is not known whether they interact with the symbiotic fungi or the host beetle. To test whether such interactions occur, we performed a suite of in vitro assays. Overall, relative yield of O. montium grown with microbes isolated from larval galleries was significantly greater than when the fungus was grown alone. Conversely, the yield of G. clavigera grown with these same microbes was less than or equal to when it was grown alone, suggesting that O. montium, and at least some microbes in larval galleries, have a mutualistic or commensal relationship, while G. clavigera and those same microbes have an antagonistic relationship. A bacterium isolated from phloem not colonized by beetles was found to inhibit growth of both G. clavigera and O. montium and appears to be an antagonist to both fungi. Our results suggest that bacteria and yeasts likely influence the distribution of mycangial fungi in the host tree, which, in turn, may affect the fitness of D. ponderosae.  相似文献   

15.
Designed histidine-rich amphipathic cationic peptides, such as LAH4, have enhanced membrane disruption and antibiotic properties when the peptide adopts an alignment parallel to the membrane surface. Although this was previously achieved by lowering the pH, here we have designed a new generation of histidine-rich peptides that adopt a surface alignment at neutral pH. In vitro, this new generation of peptides are powerful antibiotics in terms of the concentrations required for antibiotic activity; the spectrum of target bacteria, fungi, and parasites; and the speed with which they kill. Further modifications to the peptides, including the addition of more hydrophobic residues at the N terminus, the inclusion of a helix-breaking proline residue or using D-amino acids as building blocks, modulated the biophysical properties of the peptides and led to substantial changes in toxicity to human and parasite cells but had only a minimal effect on the antibacterial and antifungal activity. Using a range of biophysical methods, in particular solid-state NMR, we show that the peptides are highly efficient at disrupting the anionic lipid component of model membranes. However, we also show that effective pore formation in such model membranes may be related to, but is not essential for, high antimicrobial activity by cationic amphipathic helical peptides. The information in this study comprises a new layer of detail in the understanding of the action of cationic helical antimicrobial peptides and shows that rational design is capable of producing potentially therapeutic membrane active peptides with properties tailored to their function.  相似文献   

16.
With a procedure that allows the renaturation of the DNA polymerase catalytic activity in situ after SDS-polyacrylamide gel electrophoresis, we have compared the active polypeptides present in extracts from organisms covering a wide evolutionary range from prokaryotes to eukaryotes, namely: Escherichia coli, Oryza sativa, Daucus carota , Neurospora crassa, Dictyostelium discoideum, Saccharomyces cerevisiae, Ceratitis capitata, Leucophaea maderae , Xenopus laevis, rat tissues and human lymphoblastoid cells. Two main clusters of active peptides are visible in mammalian and adult insect tissues, characterized by a mol. wt. greater than 70000 and less than 50000, respectively. High mol. wt. peptides are heterogeneous in size and correspond to active fragments of DNA polymerase alpha, whereas low mol. wt. peptides show the same migration rate as purified DNA polymerase beta and are not generated by proteolysis of the high mol. wt. cluster, In the three species of fungi studied, only high mol. wt. peptides are found. The same is true in plant cells, where no DNA polymerase beta activity is detectable and the pattern of the high mol. wt. cluster is similar to that observed in E. coli extracts (which also lack low mol. wt. peptides). Also in mitochondria from higher and lower eukaryotes only high mol. wt. species are observed, and the active band(s) range from 70000 to 145000 daltons. Our results indicate that the structure of DNA polymerase has been highly conserved during evolution so that an active fragment of mol. wt. greater than or equal to 70 000 is always found in prokaryotic enzymes and in the replicative species of eukaryotic and mitochondrial DNA polymerases; at a certain stage in evolution, another species of low mol. wt. DNA polymerase (beta or beta-like) appears.  相似文献   

17.
Microsporidia are obligate intracellular parasites that were thought to be an ancient eukaryotic lineage based on molecular phylogenies using ribosomal RNA and translation elongation factors. However, this ancient origin of microsporidia has been contested recently, as several other molecular phylogenies suggest that microsporidia are closely related to fungi. Most of the protein trees that place microsporidia with fungi are not well sampled, however, and it is impossible to resolve whether microsporidia evolved from a fungus or from a protistan relative of fungi. We have sequenced beta-tubulins from 3 microsporidia, 4 chytrid fungi, and 12 zygomycete fungi, expanding the representation of beta-tubulin to include all four fungal divisions and a wide diversity of microsporidia. In phylogenetic trees including these new sequences, the overall topology of the fungal beta-tubulins generally matched the expected relationships among the four fungal divisions, although the zygomycetes were polyphyletic in some analyses. The microsporidia consistently fell within this fungal diversification, and not as a sister group to fungi. Overall, beta-tubulin phylogeny suggests that microsporidia evolved from a fungus sometime after the divergence of chytrids. We also found that chytrid alpha- and beta-tubulins are much less divergent than are tubulins from other fungi or microsporidia. In trees in which the only fungal representatives were the chytrids, microsporidia still branched with fungi (i.e., with chytrids), suggesting that the affiliation between microsporidian and fungal tubulins is not an artifact of long-branch attraction.  相似文献   

18.
The current model of immune activation in Drosophila melanogaster suggests that fungi and Gram-positive (G(+)) bacteria activate the Toll/Dif pathway and that Gram-negative (G(-)) bacteria activate the Imd/Relish pathway. To test this model, we examined the response of Relish and Dif (Dorsal-related immunity factor) mutants to challenge by various fungi and G(+) and G(-) bacteria. In Relish mutants, the Cecropin A gene was induced by the G(+) bacteria Micrococcus luteus and Staphylococcus aureus, but not by other G(+) or G(-) bacteria. This Relish-independent Cecropin A induction was blocked in Dif/Relish double mutant flies. Induction of the Cecropin A1 gene by M. luteus required Relish, whereas induction of the Cecropin A2 gene required Dif. Intact peptidoglycan (PG) was necessary for this differential induction of Cecropin A. PG extracted from M. luteus induced Cecropin A in Relish mutants, whereas PGs from the G(+) bacteria Bacillus megaterium and Bacillus subtilis did not, suggesting that the Drosophila immune system can distinguish PGs from various G(+) bacteria. Various fungi stimulated antimicrobial peptides through at least two different pathways requiring Relish and/or Dif. Induction of Attacin A by Geotrichum candidum required Relish, whereas activation by Beauvaria bassiana required Dif, suggesting that the Drosophila immune system can distinguish between at least these two fungi. We conclude that the Drosophila immune system is more complex than the current model. We propose a new model to account for this immune system complexity, incorporating distinct pattern recognition receptors of the Drosophila immune system, which can distinguish between various fungi and G(+) bacteria, thereby leading to selective induction of antimicrobial peptides via differential activation of Relish and Dif.  相似文献   

19.
An actual worldwide problem consists of an expressive increase of economic losses and health problems caused by fungi. In order to solve this problem, several studies have been concentrating on the screening of novel plant defence peptides with antifungal activities. These peptides are commonly characterized by having low molecular masses and cationic charges. This present work reports on the purification and characterization of a novel plant peptide of 5.0 kDa, Pe-AFP1, purified from the seeds of passion fruit (Passiflora edulis). Purification was achieved using a Red-Sepharose Cl-6B affinity column followed by reversed-phase chromatography on Vydac C18-TP column. In vitro assays indicated that Pe-AFP1 was able of inhibiting the development of the filamentous fungi Trichoderma harzianum, Fusarium oxysporum, and Aspergillus fumigatus with IC50 values of 32, 34, and 40 microg ml(-1), respectively, but not of Rhyzoctonia solani, Paracoccidioides brasiliensis and Candida albicans. This protein was also subjected to automated N-terminal amino acid sequence, showing high degree of similarities to storage 2S albumins, adding a new member to this protein-defence family. The discovery of Pe-AFP1 could contribute, in a near future, to the development of biotechnological products as antifungal drugs and transgenic plants with enhanced resistance to pathogenic fungi.  相似文献   

20.
Worms take the 'phyto' out of 'phytochelatins'   总被引:4,自引:0,他引:4  
Phytochelatin synthase is the enzyme responsible for the synthesis of heavy-metal-binding peptides (phytochelatins) from glutathione and related thiols. It has recently been determined that it is not only restricted to plants and some fungi, as was once thought, but also has an essential role in heavy-metal detoxification in the model nematode Caenorhabditis elegans. These findings and others that demonstrate phytochelatin synthase-coding sequences in the genomes of several other invertebrates, including pathogenic nematodes, schistosomes and roundworms, herald a new era in phytochelatin research, in which these novel post-translationally synthesized peptides will not only be investigated in the context of phytoremediation but also from a clinical parasitological standpoint.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号