首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Small GTP-binding proteins in vesicular transport   总被引:57,自引:0,他引:57  
Recent recognition of the abundance of small GTP-binding proteins in eukaryotic cells has sparked off a search for the possible function of these proteins. Evidence is accumulating that SAR1, ARF, SEC4 and YPT1 in yeast and the rab and arf family in mammalian cells play a central role in the regulation of vesicle transport and organelle function.  相似文献   

2.
3.
Phosphatidylinositol transfer proteins (PITP) are abundant cytosolic proteins found in all mammalian cells. Two cytosolic isoforms of 35 and 36 kDa (PITP alpha and PITP beta) have been identified which share 77% identity. These proteins are characterized by having a single phospholipid binding site which exhibits dual headgroup specificity. The preferred lipid that can occupy the site can be either phosphatidylinositol (PI) or phosphatidylcholine (PC). In addition, PITP beta can also bind sphingomyelin. A second characteristic of these proteins is the ability to transfer PI and PC (or SM) from one membrane compartment to another in vitro. The function of PITP in mammalian cells has been examined mainly using reconstitution studies utilizing semi-intact cells or cell-free systems. From such analyses, a requirement for PITP has been identified in phospholipase C-mediated phosphatidylinositol bisphosphate (PI(4,5)P2) hydrolysis, in phosphoinositide 3-kinase catalyzed PIP3 generation, in regulated exocytosis, in the biogenesis of secretory granules and vesicles and in intra-golgi transport. Studies aimed at elucidating the mechanism of action of PITP in each of these seemingly disparate processes have yielded a singular theme: the activity of PITP stems from its ability to transfer PI from its site of synthesis to sites of cellular activity. This function was predicted from its in vitro characteristics. The second feature of PITP that was not predicted is the ability to stimulate the local synthesis of several phosphorylated forms of PI including PI(4)P, PI(4,5)P2, PI(3)P, PI(3,4,5)P3 by presenting PI to the lipid kinases involved in phosphoinositide synthesis. We conclude that PITP contributes in multiple aspects of cell biology ranging from signal transduction to membrane trafficking events where a central role for phosphoinositides is recognized either as a substrate or as an intact lipid signalling molecule.  相似文献   

4.
In this study we describe a group of Ca2+-sensitive proteins located in the microvillar region of the human placental syncytiotrophoblast. By following the distribution of proteins between the particulate and supernatant phases of detergent-solubilized microvilli in the presence of defined concentrations of free Ca2+, we demonstrate a class of proteins of subunit molecular weights 72,000, 69,000, 38,000, 36,000, and 32,000 that associate with both the cytoskeleton and lipid at high concentrations of free Ca2+. These proteins can be released from microvilli using EGTA-containing buffers. Although they do not bind to phenyl-Sepharose, they will bind to phospholipids immobilized on phenyl-Sepharose columns in a Ca2+-dependent manner and show a marked preference for phospholipids with negatively charged headgroups. The results provide evidence for a sequence of events which may occur within the microvillus as the localized concentration of intracellular free Ca2+ rises.  相似文献   

5.
The molecular breeding of plants that have been genetically engineered for improved disease resistance and stress tolerance has been undertaken with the goal of improving food production. More recently, it has been realized that transgenic plants can serve as bioreactors for the production of proteins or compounds with industrial or clinical uses. Several different recombinant enzymes and antibodies have been produced in this manner. To maximize the potential of industrial plants as a production system for proteins, efficient expression systems utilizing promoters that optimize transgene expression, 5′-untranslated region elements for efficient translation, and appropriate post-translational modifications and localization must be developed. This review summarizes successful examples of the production of recombinant enzymes, antibodies, and vaccines using signal peptides that direct vesicular localization in transgenic plants. We further discuss the modulation of recombinant protein localization to the endoplasmic reticulum, vacuolar system, or extracellular compartments by varying the signal peptide.  相似文献   

6.
7.
A multigenic family of Ca2+-binding proteins of the EF-hand type known as S100 comprises 19 members that are differentially expressed in a large number of cell types. Members of this protein family have been implicated in the Ca2+-dependent (and, in some cases, Zn2+- or Cu2+-dependent) regulation of a variety of intracellular activities such as protein phosphorylation, enzyme activities, cell proliferation (including neoplastic transformation) and differentiation, the dynamics of cytoskeleton constituents, the structural organization of membranes, intracellular Ca2+ homeostasis, inflammation, and in protection from oxidative cell damage. Some S100 members are released or secreted into the extracellular space and exert trophic or toxic effects depending on their concentration, act as chemoattractants for leukocytes, modulate cell proliferation, or regulate macrophage activation. Structural data suggest that many S100 members exist within cells as dimers in which the two monomers are related by a two-fold axis of rotation and that Ca2+ binding induces in individual monomers the exposure of a binding surface with which S100 dimers are believed to interact with their target proteins. Thus, any S100 dimer is suggested to expose two binding surfaces on opposite sides, which renders homodimeric S100 proteins ideal for crossbridging two homologous or heterologous target proteins. Although in some cases different S100 proteins share their target proteins, in most cases a high degree of target specificity has been described, suggesting that individual S100 members might be implicated in the regulation of specific activities. On the other hand, the relatively large number of target proteins identified for a single S100 protein might depend on the specific role played by the individual regions that in an S100 molecule contribute to the formation of the binding surface. The pleiotropic roles played by S100 members, the identification of S100 target proteins, the analysis of functional correlates of S100-target protein interactions, and the elucidation of the three-dimensional structure of some S100 members have greatly increased the interest in S100 proteins and our knowledge of S100 protein biology in the last few years. S100 proteins probably are an example of calcium-modulated, regulatory proteins that intervene in the fine tuning of a relatively large number of specific intracellular and (in the case of some members) extracellular activities. Systems, including knock-out animal models, should be now used with the aim of defining the correspondence between the in vitro regulatory role(s) attributed to individual members of this protein family and the in vivo function(s) of each S100 protein.  相似文献   

8.
施梦婷  张莹  周钢桥 《遗传》2018,40(1):12-21
TBC(Tre-2/Bub2/Cdc16)是真核生物中普遍存在的一种由200个氨基酸残基组成的保守性蛋白质结构域,含有该结构域的蛋白质被称为TBC蛋白。TBC蛋白具有GTPase激活活性,可促进小G蛋白Rab-GTP水解为Rab-GDP,从而参与特异的胞内转运过程。在哺乳动物中,部分TBC蛋白具有十分重要的作用,其功能异常与人类疾病的发生发展密切相关。本文主要介绍了哺乳动物TBC蛋白的结构和功能,以及近年来TBC蛋白在人类疾病发生发展中的作用,以期为深入解析TBC蛋白的致病机制提供参考。  相似文献   

9.
We have analyzed and compared the influence of cation-pi interactions in glycoproteins (GPs), lipid-binding proteins (LBPs) and RNA-binding proteins (RBPs) in this study. We observed that all the proteins included in the study had profound cation-pi interactions. There is an average of one energetically significant cation-pi interaction for every 71 residues in GPs, for every 58 residues in LBPs and for every 64 residues in RBPs. Long-range contacts are predominant in all the three types of proteins studied. The pair-wise cation-pi interaction energy between the positively charged and aromatic residues shows that Arg-Trp pair energy was the strongest among all six possible pairs in all the three types of proteins studied. There were considerable differences in the preference of cation-pi interacting residues to different secondary structure elements and ASA and these might contribute to differences in biochemical functions of GPs, LBPs and RBPs. It was interesting to note that all the five residues involved in cation-pi interactions were found to have stabilization centers in GPs, LBPs and RBPs. Majority of the cation-pi interacting residues investigated in the present study had a conservation score of 6, the cutoff value used to identify the stabilizing residues. A small percentage of cation-pi interacting residues were also present as stabilizing residues. The cation-pi interaction-forming residues play an important role in the structural stability of in GPs, LBPs and RBPs. The results obtained in this study will be helpful in further understanding the stability, specificity and differences in the biochemical functions of GPs, LBPs and RBPs.  相似文献   

10.
11.
The ability of different lipid-binding proteins in liver cytosol to affect enzyme activities in bile-acid biosynthesis was studied in whole microsomes (microsomal fractions) and mitochondria and in purified enzyme systems. Sterol carrier protein2 stimulated the 7 alpha-hydroxylation of cholesterol and the 12 alpha-hydroxylation of 5 beta-cholestane-3 alpha, 7 alpha-diol in microsomes and the 26-hydroxylation of cholesterol in mitochondria 2-3-fold. It also stimulated the oxidation of 5-cholestene-3 beta, 7 alpha-diol into 7 alpha-hydroxy-4-cholesten-3-one in microsomes. The stimulatory effect of sterol carrier protein2 was much less with purified cholesterol 7 alpha- and 26-hydroxylase systems than with microsomes and mitochondria. No stimulatory effect of sterol carrier protein2 was observed with purified 12 alpha-hydroxylase and 3 beta-hydroxy-delta 5-C27-steroid oxidoreductase. Sterol carrier protein (fatty-acid-binding protein), 'DEAE-peak I protein' [Dempsey, McCoy, Baker, Dimitriadou-Vafiadou, Lorsbach & Howards (1981) J. Biol. Chem. 256, 1867-1873], ligandin (glutathione transferase B) and serum albumin had no marked stimulatory effects in either crude or in purified systems. The results suggest that sterol carrier protein2 facilitates the introduction of the less-polar substrates in bile-acid biosynthesis to the membrane-bound enzymes in crude systems in vitro. The broad substrate specificity appears, however, not to be consistent with a specific regulatory function for sterol carrier protein2 in bile-acid biosynthesis.  相似文献   

12.
Two 28-kDa calcium- and lipid-binding proteins were isolated from a detergent-insoluble fraction of the Physarum plasmodium. Both proteins have molecular masses of approximately 28 kDa by SDS-PAGE. The protein designated 28K-I has a slightly lower mobility than that designated 28K-II. The purified 28K-I has a dissociation constant of 1.0 microM for Ca2+ ions, while the 28K-II has two different dissociation constants: one of 0.32 microM and the other of 3.2 mM. The 28K-I binds to liposomes at Ca2+ concentrations higher than 1.0 microM and has a dissociation constant for lipid of 34 micrograms/ml at 10 microM Ca2+. The 28K-II binds to liposomes at concentrations of Ca2+ above the mM range and has a dissociation constant of 36 micrograms/ml for lipid at 2 mM Ca2+. There is no evidence of actin-binding activity by either of the 28-kDa (28K) proteins. The 28K proteins crossreacted with an antiserum against chicken brush border calpactin I. The two proteins have quite different phosphorylation levels between a fraction prepared from the cytosolic endoplasm and a fraction prepared from the whole cell. The 28K proteins may play some role in the membrane structure dynamics of the cortical gel layer.  相似文献   

13.
Low molecular weight juvenile hormone binding proteins (JHBPs) are specific carriers of juvenile hormone (JH) in the hemolymph of butterflies and moths. As hormonal signal transmitters, these proteins exert a profound effect on insect development. The crystal structure of JHBP from Galleria mellonella shows an unusual fold consisting of a long α-helix wrapped in a highly curved antiparallel β-sheet. JHBP structurally resembles the folding pattern found in tandem repeats in some mammalian lipid-binding proteins, with similar organization of one cavity and a disulfide bond between the long helix and the β-sheet. JHBP reveals, therefore, an archetypal fold used by nature for hydrophobic ligand binding. The JHBP molecule possesses two hydrophobic cavities. Several lines of experimental evidence conclusively indicate that JHBP binds JH in only one cavity, close to the N- and C-termini, and that this binding induces a structural change. The second cavity, located at the opposite end of the molecule, could bind another ligand.  相似文献   

14.
“Moonlighting protein” is a term used to define a single protein with multiple functions and different activities that are not derived from gene fusions, multiple RNA splicing, or the proteolytic activity of promiscuous enzymes. Different proteinous constituents of ribosomes have been shown to have important moonlighting extra-ribosomal functions. In this review, we introduce the impact of key moonlight ribosomal proteins and dependent signal transduction in the initiation and progression of various cancers. As a future perspective, the potential role of these moonlight ribosomal proteins in the diagnosis, prognosis, and development of novel strategies to improve the efficacy of therapies for human cancers has been suggested.  相似文献   

15.
Several cytoskeletal proteins have been shown to interact in vitro with, and in some cases are regulated by, specific membrane lipids. In some cases, evidence for in situ interactions has been provided. The molecular basis for such interactions is now being unravelled. At least five structurally distinct types of lipid-binding sites in cytoskeletal proteins have been identified. However, our understanding of the physiological role of such interactions is still limited. Precise knowledge about the binding-site structures and the actual amino acid residues involved should now enable the expression of mutant proteins that specifically lack the ability to interact with lipids. The impact of these mutations on protein location and function can then be assessed.  相似文献   

16.
Previous studies have shown that urea and acetamide traverse the erythrocyte membrane by way of facilitated diffusion. The nature of this selective pathway is unknown. The present studies investigate the effects of proteolytic enzymes and crosslinking agents on amide transport. Cleavage of the erythrocyte membrane surface by pronase or trypsin had no effect on urea and acetamide permeability or inhibition by phloretin. These findings suggest that the sialoglycopeptide segment of the sialoglycoproteins is not critical to urea and acetamide transport. In addition, extensive crosslinking of membrane proteins with glutaraldehyde had no effect on amide transport in the absence or presence of phloretin.  相似文献   

17.
Using indirect immunofluorescence we have examined the effects of reagents which inhibit the function of ras-related rab small GTP-binding proteins and heterotrimeric G alpha beta gamma proteins in ER to Golgi transport. Export from the ER was inhibited by an antibody towards rab1B and an NH2-terminal peptide which inhibits ARF function (Balch, W. E., R. A. Kahn, and R. Schwaninger. 1992. J. Biol. Chem. 267:13053-13061), suggesting that both of these small GTP-binding proteins are essential for the transport vesicle formation. Export from the ER was also potently inhibited by mastoparan, a peptide which mimics G protein binding regions of seven transmembrane spanning receptors activating and uncoupling heterotrimeric G proteins from their cognate receptors. Consistent with this result, purified beta gamma subunits inhibited the export of VSV-G from the ER suggesting an initial event in transport vesicle assembly was regulated by a heterotrimeric G protein. In contrast, incubation in the presence of GTP gamma S or AIF(3-5) resulted in the accumulation of transported protein in different populations of punctate pre-Golgi intermediates distributed throughout the cytoplasm of the cell. Finally, a peptide which is believed to antagonize the interaction of rab proteins with putative downstream effector molecules inhibited transport at a later step preceding delivery to the cis Golgi compartment, similar to the site of accumulation of transported protein in the absence of NSF or calcium (Plutner, H., H. W. Davidson, J. Saraste, and W. E. Balch. 1992. J. Cell Biol. 119:1097-1116). These results are consistent with the hypothesis that multiple GTP-binding proteins including a heterotrimeric G protein(s), ARF and rab1 differentially regulate steps in the transport of protein between early compartments of the secretory pathway. The concept that G protein-coupled receptors gate the export of protein from the ER is discussed.  相似文献   

18.
We report conditions under which Golgi membranes depleted of peripheral membrane proteins can be reconstituted for intra-cisternal vesicular transport. Analysis of the reconstitution reveals requirements for N-ethylmaleimide-sensitive fusion protein, a purified peripheral protein involved in the fusion stage of vesicular transport, as well as other peripheral protein activities which can be provided by mammalian cytosol but not yeast cytosol. The restorative activity in bovine brain cytosol is found in two broad and complementing fractions, of average native molecular masses of about 500 and 40 kDa, termed Fr1 and Fr2, respectively. This resolved transport system was used to develop a purification scheme for Fr2. Three proteins of apparent molecular masses of 35, 36, and 39 kDa (Fr2-alpha, -beta, and -gamma, respectively) were found to be responsible for Fr2 activity and were purified to homogeneity. Each Fr2 protein has activity by itself in the reconstituted in vitro Golgi transport assay, although each exhibits a different specific activity and plateau value. No synergy of the three Fr2 proteins was observed during mixing experiments. The three Fr2 proteins seem to be closely related based on size, in vitro activities, chromatographic properties, and peptide maps and may comprise a new family of proteins involved in vesicular transport.  相似文献   

19.
Proteins involved in vesicular transport and membrane fusion.   总被引:7,自引:0,他引:7  
In the past year, new information about proteins involved in vesicular transport has been plentiful. Particularly noteworthy are the complementary findings that Sec17p is required for vesicle consumption in endoplasmic reticulum-to-Golgi transport in yeast and that an analogous activity in mammalian cells, termed SNAP, is required for transport from the cis to the medial cisternae of the Golgi apparatus.  相似文献   

20.
Recently, we identified the two myeloid related protein-8 (MRP8) (S100A8) and MRP14 (S100A9) as fatty acid-binding proteins (Klempt, M., Melkonyan, H., Nacken, W., Wiesmann, D., Holtkemper, U., and Sorg, C. (1997) FEBS Lett. 408, 81-84). Here we present data that the S100A8/A9 protein complex represents the exclusive arachidonic acid-binding proteins in human neutrophils. Binding and competition studies revealed evidence that (i) fatty acid binding was dependent on the calcium concentration; (ii) fatty acid binding was specific for the protein complex formed by S100A8 and S100A9, whereas the individual components were unable to bind fatty acids; (iii) exclusively polyunsaturated fatty acids were bound by S100A8/A9, whereas saturated (palmitic acid, stearic acid) and monounsaturated fatty acids (oleic acid) as well as arachidonic acid-derived eicosanoids (15-hydroxyeicosatetraenoic acid, prostaglandin E(2), thromboxane B(2), leukotriene B(4)) were poor competitors. Stimulation of neutrophil-like HL-60 cells with phorbol 12-myristate 13-acetate led to the secretion of S100A8/A9 protein complex, which carried the released arachidonic acid. When elevation of intracellular calcium level was induced by A23187, release of arachidonic acid occurred without secretion of S100A8/A9. In view of the unusual abundance in neutrophilic cytosol (approximately 40% of cytosolic protein) our findings assign an important role for S100A8/A9 as mediator between calcium signaling and arachidonic acid effects. Further investigations have to explore the exact function of the S100A8/A9-arachidonic acid complex both inside and outside of neutrophils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号