首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Body Form and Locomotion in Sharks   总被引:1,自引:1,他引:0  
A revised interpretation of the mode of action of the heterocercaltail in sharks shows that the upturned tail axis tends to producea thrust directed downwards behind the centre of balance ofthe fish and thus gives a moment turning the head upwards. Thisis countered in two ways—by the rotation of the tail alongits longitudinal axis during each lateral beat, and throughthe action of the ventral hypochordal lobe. The shape of thetail and the mode of action of the tail in all sharks so farconsidered reflects a balance between these three factors, inall of them the net effect being the production of a forwardthrust from the tail that passes directly through the centreof balance of the fiish. There is normally therefore no tendencyfor the fish to turn around the centre of balance in a sagittalplane but there is a net sinking effect that is countered bythe planning effect of the pectoral fins and the ventral surfaceof the head. A study of 56 species of sharks shows that the tail is constructedaccording to a remarkably consistent common plan, the extremesbeing the high angled rather symmetrical tail of pelagic sharkssuch as hums, Lamna and Rhincodon and the straight tails ofbenthic sharks such as Ginglymostoma in which a ventral hypochordallobe is absent. When the general body shape of sharks, includingthe position of insertion of the median and paired fins andthe pattern of growth of fin surface areas is considered, theuniformity of the shark body plan and locomolor function isfurther emphasised. Four patterns of body form in sharks are recognised: 1) Thefast swimming pelagic sharks and the whale sharks have a tailwith a high aspect ratio, a conical head, a lateral fluke onthe caudal peduncle. 2) The generalised sharks typified by theCarcharhinidae, have lower heterocercal angles, a flattenedventral surface on the head and lack the caudal fluke. 3) Thedemersal sharks typified by the catsharks (Scyliorhinidae) havea very low, almost straight tail. The ventral hypochordal lobeis absent and the first dorsal fin is posterior in position.4) The squalomorph sharks are distinct in the absence of theanal fin, presence of a marked epicaudal lobe in the tail andoften an elevated insertion of the pectorals. The anal and second dorsal fins are always the smallest finsand the pectorals grow at the fastest rate. In general thereis an inverse relationship between size and rale of growth ofall fins and the ventral surface of the head. In hammerheadsthe growth data confirms that the head has a significant planingaction in swimming. The pectoral, second dorsal and anal finsshow an extreme constancy of position of insertion in all sharksstudied. The locomotor mechanism of sharks is adapted for anefficient cruising swimming but at the same time, the potentialinstability in the sagittal plan allows for the production ofturning moments that are used in attack and feeding.  相似文献   

2.
The caudal peduncle and caudal fin of Carcharodon carcharias together form a dynamic locomotory structure. The caudal peduncle is a highly modified, dorsoventrally compressed and rigid structure that facilitates the oscillations of the caudal fin. Its stiffness appears to be principally achieved by a thick layer of adipose tissue ranging from 28-37% of its cross-sectional area, reinforced by cross-woven collagen fibers. Numerous overlying layers of collagen fibers of the stratum compactum, oriented in steep left- and right-handed helices (approximately 65 degrees to the shark's long axis), prevent bowstringing of the perimysial fibers, which lie just below the dermal layer. Perimysial fibers, muscles, and the notochord are restricted to the dorsal lobe of the caudal fin and comprise the bulk of its mass. Adipose tissue reinforces the leading edge of the dorsal lobe of the caudal fin and contributes to maintaining the ideal cross-sectional geometry required of an advanced hydrofoil. Most of the mass of the ventral lobe consists of the ceratotrichia or fin rays separated by thin partitions of connective tissue. Dermal fibers of the stratum compactum of the dorsal lobe occur in numerous distinct layers. The layers are more complex than in other sharks and appear to reflect a hierarchical development in C. carcharias. The fiber layer comprises a number of thick fiber bundles along the height of the layer and the layers get thicker deeper into the stratum compactum. Each of these layers alternates with a layer a single fiber-bundle deep, a formation thought to give stability to the stratum compactum and to enable freer movements of the fiber system. In tangential sections of the stratum compactum the fiber bundles in the dorsal lobe can be seen oriented with respect to the long axis of the shark at approximately 55-60 degrees in left- and right-handed helices. Because of the backward sweep of the dorsal lobe (approximately 55 degrees to the shark's long axis) the right-handed fibers also parallel the lobe's long axis. In the dorsal lobe, ceratotrichia are present only along the leading edge (embedded within connective tissue), apparently as reinforcement. Stratum compactum fiber bundles of the ventral lobe, viewed in transverse section, lack the well-ordered distinctive layers of the dorsal lobe, but rather occur as irregularly arranged masses of tightly compacted fiber bundles of various sizes. In tangential sections the fiber bundles are oriented at angles of approximately 60 degrees, generally in one direction, i.e., lacking the left- and right-handed helical pattern. Tensile load tests on the caudal fin indicate high passive resistance to bending by the skin. The shear modulus G showed that the skin's contribution to stiffness (average values from three specimens at radians 0.52 and 1.05) is 33.5% for the dorsal lobe and 41.8% for the ventral. The load tests also indicate greater bending stiffness of the ventral lobe compared to the dorsal. Overall, the anatomy and mechanics of the dorsal lobe of C. carcharias facilitate greater control of movement compared to the ventral lobe. The helical fiber architecture near the surface of the caudal fin is analogous to strengthening of a thin cylinder in engineering. High fiber angles along the span of the dorsal lobe are considered ideal for resisting the bending stresses that the lobe is subjected to during the locomotory beat cycle. They are also ideal for storing strain energy during bending of the lobe and consequently may be of value in facilitating the recovery stroke. The complex fiber architecture of the caudal fin and caudal peduncle of C. carcharias provides considerable potential for an elastic mechanism in the animal's swimming motions and consequently for energy conservation.  相似文献   

3.
It has been indicated that specification of the dorsal marginal mesoderm of the Cynops gastrula is established by vertical interactions with other layers, which occur during its extended involution. In the present study, when the prospective notochordal area of the early gastrula was almost completely removed together with the dorsal mesoderm-inducing endoderm and most of the bottle cells, the D-less gastrulas still formed the dorsal axis with a well-differentiated notochord; in half of them, where the involution occurred bi-laterally, twin axes were observed. On the other hand, when the wound of a D-less gastrula was repaired by transplanting the ventral marginal zone and ectoderm, the formation of the dorsal axis was inhibited if the involution of the lateral marginal zone was prevented by the transplanted piece. The present study suggests that: (i) cells having dorsal mesoderm-forming potency distribute farther laterally than the fate map; and (ii) the extended involution plays an essential role in the specification of the dorsal marginal mesoderm, especially in notochordal differentiation in normal Cynops embryogenesis.  相似文献   

4.
The lungs of three silvered lutongs (Presbytis cristata) were examined. The right and left lungs have the dorsal, lateral, ventral, and medial bronchiole systems, which arise from the corresponding sides of both bronchi, respectively. Bronchioles in the dorsal and lateral bronchiole systems are well developed, whereas those in the ventral and medial bronchiole systems are poorly developed and lack some portions. According to the fundamental structure of bronchial ramifications of the mammalian lung (Nakakuki, 1975, 1980), the right lung consists of the upper, middle, lower, and accessory lobes, whereas the left lung consists of a bilobed middle lobe and a lower lobe, in which the right upper lobe is extremely well developed. The right pulmonary artery runs across the ventral side of the right upper lobe bronchiole, and then across the dorsal side of the right middle lobe bronchiole. Initially it runs along the lateral side of the right bronchus and then gradually comes to run along the dorsal side. During its course, it gives off branches which run mainly along the dorsal or lateral side of the bronchiole. The left pulmonary artery runs across the dorsal side of the left middle lobe bronchiole, and then follows the same course as that in the right lower lobe. The pulmonary veins run medially or ventrally to the bronchioles, and finally enter the left atrium as four or five large veins.  相似文献   

5.
This dissection and sampling procedure was developed for the Network for Pancreatic Organ Donors with Diabetes (nPOD) program to standardize preparation of pancreas recovered from cadaveric organ donors. The pancreas is divided into 3 main regions (head, body, tail) followed by serial transverse sections throughout the medial to lateral axis. Alternating sections are used for fixed paraffin and fresh frozen blocks and remnant samples are minced for snap frozen sample preparations, either with or without RNAse inhibitors, for DNA, RNA, or protein isolation. The overall goal of the pancreas dissection procedure is to sample the entire pancreas while maintaining anatomical orientation. Endocrine cell heterogeneity in terms of islet composition, size, and numbers is reported for human islets compared to rodent islets. The majority of human islets from the pancreas head, body and tail regions are composed of insulin-containing β-cells followed by lower proportions of glucagon-containing α-cells and somatostatin-containing δ-cells. Pancreatic polypeptide-containing PP cells and ghrelin-containing epsilon cells are also present but in small numbers. In contrast, the uncinate region contains islets that are primarily composed of pancreatic polypeptide-containing PP cells. These regional islet variations arise from developmental differences. The pancreas develops from the ventral and dorsal pancreatic buds in the foregut and after rotation of the stomach and duodenum, the ventral lobe moves and fuses with the dorsal. The ventral lobe forms the posterior portion of the head including the uncinate process while the dorsal lobe gives rise to the rest of the organ. Regional pancreatic variation is also reported with the tail region having higher islet density compared to other regions and the dorsal lobe-derived components undergoing selective atrophy in type 1 diabetes. Additional organs and tissues are often recovered from the organ donors and include pancreatic lymph nodes, spleen and non-pancreatic lymph nodes. These samples are recovered with similar formats as for the pancreas with the addition of isolation of cryopreserved cells. When the proximal duodenum is included with the pancreas, duodenal mucosa may be collected for paraffin and frozen blocks and minced snap frozen preparations.  相似文献   

6.
Cercaria caribbea LVIII Cable, 1963 (Digenea: Cyathocotylidae) was detected from a brackish water gastropod species (Cerithideopsilla cingulata) in a coatal area of Shinan-gun, Jeollanam-do (Province), the Republic of Korea, and its surface ultrastructure was studied using a scanning electron microscope. The cercariae were found freely swimming or enveloped within daughter sporocysts when the snail host was mechanically broken. They were morphologically characterized by a linguiform and ventrally concave body, a long and bifurcated tail, and the presence of a holdfast (=tribocytic) organ posterior to the ventral sucker. On the whole ventral and dorsal surfaces, peg-like tegumental spines were densely distributed. Around the oral sucker, several sensory papillae, each with a short cilium, were distributed, and on the tail, sensory papillae, each with an extensively long cilium, were observed. This is the first record describing a cyathocotylid cercaria from a brackish water gastropod in the Republic of Korea.  相似文献   

7.
The human cortical visual system is organized into major pathways: a dorsal stream projecting to the superior parietal lobe (SPL), considered to be critical for visuospatial perception or on-line control of visually guided movements, and a ventral stream leading to the inferotemporal cortex, mediating object perception. Between these structures lies a large region, consisting of the inferior parietal lobe (IPL) and superior temporal gyrus (STG), the function of which is controversial. Lesions here can lead to spatial neglect, a condition associated with abnormal visuospatial perception as well as impaired visually guided movements, suggesting that the IPL+STG may have largely a "dorsal" role. Here, we use a nonspatial task to examine the deployment of visuotemporal attention in focal lesion patients, with or without spatial neglect. We show that, regardless of the presence of neglect, damage to the IPL+STG leads to a more prolonged deployment of visuotemporal attention compared to lesions of the SPL. Our findings suggest that the human IPL+STG makes an important contribution to nonspatial perception, and this is consistent with a role that is neither strictly "dorsal" nor "ventral". We propose instead that the IPL+STG has a top-down control role, contributing to the functions of both dorsal and ventral visual systems.  相似文献   

8.
[目的]茶小绿叶蝉Empoasca onukii是我国茶园的重要害虫,其体表覆盖网粒体,而网粒体是否具有防御功能则知之甚少.本研究旨在明确网粒体脱落是否对该害虫逃离茶园蜘蛛网起到关键作用.[方法]将茶小绿叶蝉成虫置于草间小黑蛛Hylyphantes graminicola的不规则网内,利用高清摄像机和Vegas软件对茶...  相似文献   

9.
The authors examined the lung of one Diana monkey (Cercopithecus diana). The right lung consists of upper, middle, lower, and accessory lobes, the upper and middle lobes being united dorsally. The accessory and lower lobes are separated from the other lobes by fissures. The left lung consists of a bi-lobed middle lobe and a lower lobe. These lobes are separated by an interlobular fissure. The Diana monkey has dorsal, lateral, ventral, and medial bronchiole systems on either side. The upper lobe is formed by the first bronchiole of the dorsal bronchiole system. The middle lobe is formed by the first bronchiole of the lateral bronchiole system and the accessory lobe is formed by the first bronchiole of the ventral bronchiole system. The remaining bronchioles of the four bronchiole systems constitute the lower lobe. The right pulmonary artery runs across the ventral side of the right upper lobe bronchiole, and then across the dorsal side of the right middle lobe bronchiole. Thereafter, it runs between the dorsal and lateral bronchiole systems, along the dorso-lateral side of the right bronchus. During its course, the right pulmonary artery gives off arterial branches running along the dorsal or lateral side of each bronchiole. The left pulmonary artery runs across the dorsal side of the left middle lobe bronchiole. Thereafter, it follows the same course as in the right lung, giving off arterial branches. The pulmonary veins run along the ventral or medial side of the bronchiole, and between the bronchioles.  相似文献   

10.
The distribution of the pulmonary artery and vein of the orangutan lung was examined. The right pulmonary artery runs obliquely across the ventral side of the right bronchus at the caudally to the right upper lobe bronchiole. It then runs across the dorsal side of the right middle lobe bronchiole. Thereafter it runs obliquely across the dorsal side of the right bronchus, and then along the dorso-medial side of the right bronchus. This course is different from that in other mammals. During its course, it gives off branches which run mainly along the dorsal or lateral side of each bronchiole. The left pulmonary artery runs across the dorsal side of the left middle lobe bronchiole, then along the dorso-lateral side of the left bronchus, giving off branches which run along each bronchiole. The pulmonary veins run mainly the ventral or medial side of, along or between the bronchioles. In the left lung, the left middle lobe vein has two trunks; one enters the left atrium, and the other enters the left lower lobe pulmonary venous trunk. This is also different from that found in most mammals. Finally, the pulmonary veins enter the left atrium with four large veins.  相似文献   

11.
Lungs of two chimpanzees (Pan troglodytes) were examined. The right pulmonary artery runs across the ventral side of the right upper lobe bronchiole and, then across the dorsal side of the right middle lobe bronchiole. Thereafter, it runs between the dorsal bronchiole system and the lateral bronchiole system, along the right bronchus. During its course, it gives off arterial branches which run along each bronchiole. The left pulmonary artery runs across the dorsal side of the left middle lobe bronchiole and then between the dorsal bronchiole system and the lateral bronchiole system. The branches of the pulmonary artery run mainly along the dorsal or lateral side of the bronchiole. The pulmonary veins run mainly along the ventral or medial side of the bronchioles, and between them. Finally, they enter the left atrium with four large veins, i.e. the common trunk of the right upper lobe vein and the right middle lobe vein, right lower lobe pulmonary venous trunk, left middle lobe vein, and left lower lobe pulmonary venous trunk.  相似文献   

12.
The esophageal glands in the genus Pratylenchus occur in a large, single ventral lobe except for four populations in which a few specimens had the glands located dorsally. Apratylenchoides belli n. gen. n. sp. in the subfamily Radopholinae is proposed for a species having two esophageal glands in a large dorsal lobe and one gland in a smaller, shorter ventral lobe.  相似文献   

13.
The endocrine pancreas of the desert lizard (Chalcides ocellatus) was investigated histologically and immunocytochemically. The endocrine tissue was concentrated in the dorsal lobe, where it constituted about 7% of the total volume. In the ventral lobe the endocrine tissue formed approximately 1% of the total volume. Four endocrine cell types were observed in the pancreas of this species, namely insulin-, glucagon-, somatostatin- and pancreatic polypeptide (PP)-immunoreactive cells. The volume occupied by these cells was 1, 1, 0.6 and 0.3% of the total volume of the pancreas, respectively. Insulin-immunoreactive cells were located in the islet centre and comprised 3% of dorsal and 0.2% of the ventral lobe volume. Glucagon cells occurred at the islet periphery and amounted to 3 and 0.2% of the volume of the dorsal and ventral lobes, respectively. Somatostatin-immunoreactive cells were located at the islet periphery as well as in between the exocrine parenchyma. They constituted 1 and 0.2% of the volume of the dorsal and ventral lobes, respectively. PP-immunoreactive cells occurred mainly among the exocrine parenchyma as solitary cells. They formed only 0.03% of the volume of the dorsal lobe. The corresponding figure in the ventral lobe was 0.6%.  相似文献   

14.
The author injected various colored celluloid solutions into the bronchial tree and blood vessels of the lungs of five adult Japanese monkeys (Macaca fuscata) in order to prepare cast specimens. These specimens were investigated from the comparative anatomical viewpoint to determine whether the bronchial ramification theory of the mammalian lung (Nakakuki, 1975, 1980) can be applied to the Japanese monkey lung or not. The bronchioles are arranged stereotaxically like those of other mammalian lungs. The four bronchiole systems, dorsal, ventral, medial, and lateral, arise from both bronchi, respectively, although some bronchioles are lacking. In the right lung, the bronchioles form the upper, middle, accessory, and lower lobes, while in the left lung, the upper and accessory lobes are lacking and bi-lobed middle and lower lobes are formed. In the right lung, the upper lobe is formed by the first branch of the dorsal bronchiole system. The middle lobe is the first branch of the lateral bronchiole system. The accessory lobe is the first branch of the ventral bronchiole system. The lower lobe is formed by the remaining bronchioles of the four bronchiole systems. In the left lung, the middle lobe is formed by the first branch of the lateral bronchiole system. The lower lobe is formed by the remaining bronchioles. Thus, the bronchial ramification theory of the mammalian lung applied well to the Japanese monkey lung. The right pulmonary artery runs across the ventral side of the right upper lobe bronchiole. It then runs along the dorso-lateral side of the right bronchus between the dorsal bronchiole system and the lateral bronchiole system. On its way, it gives off branches of the pulmonary artery which run along the dorsal or lateral side of each bronchiole except in the ventral bronchiole system. In the ventral bronchiole system, the branches run along the ventral side of the bronchioles. The distributions of the pulmonary artery in the left lung are the same as those in the right lung. The pulmonary veins do not always run along the bronchioles. Most of them run on the medial or ventral side of the bronchioles. Some of them run between the pulmonary segments. In the right lung, these pulmonary veins finally form the right upper lobe vein, right middle lobe vein and the right lower lobe pulmonary venous trunk before entering the left atrium. However, the right accessory lobe vein runs on the dorsal side of the bronchiole and pours into the right lower lobe pulmonary venous trunk. In four cases out of the five examples, part of the right lower lobe veins pour into the right middle lobe vein, while the others enter the right lower lobe pulmonary venous trunk. In the left lung, the branches of the pulmonary veins finally form the left middle lobe vein and the left lower lobe pulmonary venous trunk.  相似文献   

15.
A new species of enteropneust, Harrimania planktophilus, lives intertidally and subtidally in mixed sediments in Barkley Sound, British Columbia, Canada. H. planktophilus has a long proboscis skeleton extending into the pharyngeal region. The collar (mesosome) has complete dorsal and ventral mesenteries. The trunk (metasome) has four distinct regions that can be recognized externally: the branchial region, esophageal region, hepatic region, and an undifferentiated intestinal region leading to the anus. The dorsal pharynx is large and has long gill slits without synapticles. Posterior to the gills is a constriction followed by a short esophageal region and a long gonadal region. The paired dorsolateral gonads extend almost to the end of the trunk. Eggs in the ovaries appear amber yellow, and the testes appear slightly paler. The trunk terminates at an anus with a well-developed sphincter muscle. H. planktophilus forms long sinuous burrows that are semipermanent and shared. Females deposit a tubular egg mass in a burrow in which the embryos develop directly into juveniles. Gastrulation appears to be by invagination, followed by a ciliated stage that has a telotrochal swimming band, suggesting that the ancestor to H. planktophilus developed via a tornaria larva. The juveniles emerge from the egg membrane with a ventral post-anal tail and assume an interstitial burrowing life habit. The post-anal tail, mode of development, small size and correlated simplification in body plan suggest that H. planktophilus is closely related to Saccoglossus, and together these worms may be sister taxa to the colonial Pterobranchia. A taxonomic key is provided to the enteropneust genera, and to the species of Harrimania:  相似文献   

16.
Summary The endocrine pancreas of the desert lizard (Chalcides ocellatus) was investigated histologically and immunocytochemically. The endocrine tissue was concentrated in the dorsal lobe, where it constituted about 7% of the total volume. In the ventral lobe the endocrine tissue formed approximately 1% of the total volume. Four endocrine cell types were observed in the pancreas of this species, namely insulin-, glucagon-, somatostain- and pancreatic polypeptide (PP)-immunoreactive cells. The volume occupied by these cells was 1, 1, 0.6 and 0.3% of the total volume of the pancreas, respectively. Insulin-immunoreactive cells were located in the islet centre and comprised 3% of dorsal and 0.2% of the ventral lobe volume. Glucagon cells occurred at the islet periphery and amounted to 3 and 0.2% of the volume of the dorsal and ventral lobes, respectively. Somatostatin-immunoreactive cells were located at the islet periphery as well as in between the exocrine parenchyma. They constituted 1 and 0.2% of the volume of the dorsal and ventral lobes, respectively. PP-immunoreactive cells occurred mainly among the exocrine parenchyma as solitary cells. They formed only 0.03% of the volume of the dorsal lobe. The corresponding figure in the ventral lobe was 0.6%.  相似文献   

17.
Although phylogenetic studies have shown covariation between the properties of spider major ampullate (MA) silk and web building, both spider webs and silks are highly plastic so we cannot be sure whether these traits functionally covary or just vary across environments that the spiders occupy. As MaSp2‐like proteins provide MA silk with greater extensibility, their presence is considered necessary for spider webs to effectively capture prey. Wolf spiders (Lycosidae) are predominantly non‐web building, but a select few species build webs. We accordingly collected MA silk from two web‐building and six non‐web‐building species found in semirural ecosystems in Uruguay to test whether the presence of MaSp2‐like proteins (indicated by amino acid composition, silk mechanical properties and silk nanostructures) was associated with web building across the group. The web‐building and non‐web‐building species were from disparate subfamilies so we estimated a genetic phylogeny to perform appropriate comparisons. For all of the properties measured, we found differences between web‐building and non‐web‐building species. A phylogenetic regression model confirmed that web building and not phylogenetic inertia influences silk properties. Our study definitively showed an ecological influence over spider silk properties. We expect that the presence of the MaSp2‐like proteins and the subsequent nanostructures improves the mechanical performance of silks within the webs. Our study furthers our understanding of spider web and silk co‐evolution and the ecological implications of spider silk properties.  相似文献   

18.
Koichi Tanaka 《Oecologia》1989,81(4):459-464
Summary Although spider webs may be effective in trapping prey, they require energy for construction. The design of webs varies in complexity from species to species. I assume that the energetic cost of web construction is significantly different among web types or species. This cost may constrain foraging tactics, particularly web relocation, because web relocation also requires energy to make a new web. To clarify the effect of the cost of web construction on web relocation, the energy cost of web construction and the rate of web relocation were estimated for the spider Agelena limbata. This spider constructs a sheet-funnel web consisting of a tight mesh of silk threads. This web was costly in terms of the energy needed for construction, which ranged from 9 to 19 times the daily maintenance energy. The daily rate of web relocation was below 1%, indicating high web-site tenacity. Relocation rates of species which built different types of web were compared in relation to cost of web construction. Orbweavers, which produce less costly webs than sheet-funnel weavers, relocate webs more frequently. Sheetweavers, which make webs of intermediate cost, appear to relocate webs more frequently than sheetfunnel weavers but less frequently than orbweavers. These results suggest that the energy cost of web construction is important in determining the frequency of web relocation.  相似文献   

19.
I conducted computer simulations of food web evolution and investigated the relationship between the duration of food web evolution and the vulnerability to biological invasion. Model food webs without evolution consisted of animal species with a limited number of prey species and producer species with small intrinsic growth rates. Because these species were not resistant to predation pressure, model food webs without evolution were vulnerable to invasion of powerful omnivores, which had a wide range of feeding preference and a high ecological efficiency. In model food webs without evolution, the number of animal species depending on producer species was small. Therefore, if a producer species invaded and disturbed the base of such food webs, few animal species became extinct. However, model food webs with a long time evolution had a structure that a small number of producer species supported a large number of animal species. When a producer species invaded and disturbed the base of such food webs in this state, many species became extinct by an indirect effect. The mean number of prey species of animal species and the mean intrinsic growth rate of producer species increased rapidly in the early stage of evolution. Therefore, in the early stage of food web evolution, food webs were temporarily resistant to invasion of powerful omnivores. However, this resistibility was not maintained for a long time. The result of this study strongly suggests that food webs change with time, and consequently the vulnerability to invasion changes with time.  相似文献   

20.
报道了中国蛩螽亚科新纪录属和新纪录种,即三岛螽属Tamdaora Gorochov,1998和大三岛螽Tamdaora magnifica Gorochov,1998,并首次描述了该种的雌性。大三岛螽雄性肛上板分为左、右两叶,每叶具1短的上突和1较长的下突,左、右上突基部愈合。雌性产卵瓣背、腹缘光滑,腹瓣稍长于背瓣,端部尖;下生殖板长卵圆形,基缘弧形凹入,侧缘向腹面卷,后缘微凹。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号