首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aphid Nasonovia ribisnigri (Mosley) is a common pest of lettuce in the United States. It hinders export of U.S. lettuce to the overseas market such as Japan where it is a quarantined pest. Ultralow oxygen treatments were studied for control of the insect on iceberg lettuce. Small-scale ultralow oxygen treatments in plastic jars were conducted at 1, 5, and 10 degrees C for different durations to determine effective treatment against nymphs and alates of N. ribisnigri. At oxygen levels of 0.015-0.025%, N. ribisnigri can be controlled in 3 d at 1 degrees C, 2 d at 5 degrees C, and 1 d at 10 degrees C. Large-scale ultralow oxygen treatments were conducted in bulk container treatment chambers with commercial iceberg lettuce heads for 2 d at 6 degrees C with oxygen levels of 0.015 and 0.025% and for 3 d at 3 degrees C with oxygen level of 0.015%. All treatments achieved complete control of N. ribisnigri. No negative impact on lettuce quality was detected after 2 wk of posttreatment storage. Therefore, the selected treatments have potential to be commercially developed for postharvest control of N. ribisnigri on iceberg lettuce.  相似文献   

2.
Early detection of Nasonovia ribisnigri (Mosley) (Hemiptera: Aphididae) on lettuce is of primary importance for its effective control. Temperature thresholds for development of this pest were estimated using developmental rates [r(T)] at different constant temperatures (8, 12, 16, 20, 24, 26, and 28 degrees C). Observed developmental rates data and temperature were fitted to two linear (Campbell and Mu?iz and Gil) and a nonlinear (Lactin) models. Lower temperature threshold estimated by the Campbell model was 3.6 degrees C for apterous, 4.1 degrees C for alates, and 3.1 degrees C for both aphid adult morphs together. Similar values of the lower temperature threshold were obtained with the Mu?iz and Gil model, for apterous (4.0 degrees C), alates (4.2 degrees C), and both adult morphs together (3.7 degrees C) of N. ribisnigri. Thermal requirements of N. ribisnigri to complete development were estimated by Campbell and Mu?iz and Gil models for apterous in 125 and 129 DD and for both adult morphs together in 143 and 139 DD, respectively. For complete development from birth to adulthood, the alate morph needed 15-18 DD more than the apterous morph. The lower temperature threshold determined by the Lactin model was 5.3 degrees C for alates, 2.3 degrees C for apterous, and 1.9 degrees C for both adult morphs together. The optimal and upper temperature thresholds were 25.2 and 33.6 degrees C, respectively, for the alate morph, 27 and 35.9 degrees C, respectively, for the apterous morph, and 26.1 and 35.3 degrees C, respectively, for the two adult morphs together. The Campbell model provided the best fit to the observed developmental rates data of N. ribisnigri. This information could be incorporated in forecasting models of this pest.  相似文献   

3.
Nymphs and alates of aphid Nasonovia ribisnigri (Mosley) (Homoptera: Aphididae) were tested on 10 lettuce cultivars with N. ribisnigri resistance gene Nr and 18 cultivars without the resistance gene in various bioassays. Bioassays used whole plants, leaf discs, or leaf cages to determine susceptibility of commercial lettuce cultivars to N. ribisnigri infestation and to evaluate screening methods for breeding lettuce resistance to N. ribisnigri. Resistant and susceptible plants were separated in 3 d when using whole plant bioassays. Long-term (> or =7 d) no-choice tests using leaf cages or whole plants resulted in no survival of N. ribisnigri on resistant plants, indicating great promise of the Nr gene for management of N. ribisnigri. Effective screening was achieved in both no-choice tests where resistant or susceptible intact plants were tested separately in groups or individually and in choice tests where susceptible and resistant plants were intermixed. Leaf discs bioassays were not suitable for resistance screening. All lettuce cultivars without the resistance gene were suitable hosts for N. ribisnigri, indicating the great importance of this pest to lettuce production and the urgency in developing resistant lettuce cultivars to manage N. ribisnigri.  相似文献   

4.
Laboratory studies were conducted to determine the effects of vacuum and controlled atmosphere on mortality of aphids, Nasonovia ribisnigri (Mosley) and Macrosiphum euphorbiae (Thomas), and leafminer, Liriomyza langei Frick, and on the visual quality of iceberg lettuce at three different temperatures. Vacuum at 50 mbar and controlled atmosphere with 6% CO2 were effective in controlling aphids and leafminer larvae. Complete control of N. ribisnigri and M. euphorbiae was achieved with vacuum treatments and 6% CO2 CA treatments at 5 degrees C in 4 d. Mortality was >96% when leafminer larvae were treated with vacuum and 6% CO2 CA treatments for 4 d. However, leafminer pupae were more tolerant to the treatments and highest mortality was close to 60% in 4 d with CO2 under vacuum. None of the treatments had negative effects on visual quality of iceberg lettuce. Results from this study are encouraging and warrant further and large-scale research.  相似文献   

5.
本试验通过利用5个品种蔬菜(萝卜,芥蓝,芥菜,菜芯和白菜)研究萝卜蚜(Lipaphis erysimi)在不同蔬菜上的种群动态以及对寄生于萝卜蚜的菜蚜茧蜂(Diaeretiella rapae)种群的影响。研究结果显示,在30天研究期间,有翅萝卜蚜的平均虫口(蚜虫数/苗)在萝卜、芥蓝、芥菜、菜芯和白菜苗上分别为3.918、0.831、1.149、1.743和5.23头,表明降落在萝卜苗上的有翅蚜数量显著地比在其它蔬菜苗上的高;而无翅萝卜蚜的中均虫口分别为63.421、10.041、24.928、23.323和114.308头,说明萝卜蚜无翅蚜在白菜上的种群显著地高于其它品种蔬菜上的。由于萝卜蚜在不同品种蔬菜上的种群不同,导致菜蚜茧峰种群在不同品种蔬菜上也不同,其僵蚜虫口分别为1.056、0.251、0.277、0.651和1.44头,显示了在萝卜和白菜上的僵蚜数量显著地比其它蔬菜上的高。分析结果表明,萝卜蚜的种群(x)与菜蚜茧峰的种群(y)呈显著的相关关系:y=0.1188+0.0143x(r=0.9739)。本研究还利用试验结果提出了萝卜蚜无翅蚜种群从蔬菜在田间种植后达到防治指标(50头/苗)的临界天数(c  相似文献   

6.
Low temperature regular phosphine fumigations under the normal oxygen level and oxygenated phosphine fumigations under superatmospheric oxygen levels were compared for efficacy against the aphid, Nasonovia ribisnigri (Mosley), and effects on postharvest quality of romaine and head lettuce. Low temperature regular phosphine fumigation was effective against the aphid. However, a 3 d treatment with high phosphine concentrations of > or = 2,000 ppm was needed for complete control of the aphid. Oxygen greatly increased phosphine toxicity and significantly reduced both treatment time and phosphine concentration for control of N. ribisnigri. At 1,000 ppm phosphine, 72 h regular fumigations at 6 degrees C did not achieve 100% mortality of the aphid. The 1,000 ppm phosphine fumigation under 60% O2 killed all aphids in 30 h. Both a 72 h regular fumigation with 2,200 ppm phosphine and a 48 h oxygenated fumigation with 1,000 ppm phosphine under 60% O2 were tested on romaine and head lettuce at 3 degrees C. Both treatments achieved complete control of N. ribisnigri. However, the 72 h regular fumigation resulted in significantly higher percentages of lettuce with injuries and significantly lower lettuce internal quality scores than the 48 h oxygenated phosphine fumigation. Although the oxygenated phosphine fumigation also caused injuries to some treated lettuce, lettuce quality remained very good and the treatment is not expected to have a significant impact on marketability of the lettuce. This study demonstrated that oxygenated phosphine fumigation was more effective and less phytotoxic for controlling N. ribisnigri on harvested lettuce than regular phosphine fumigation and is promising for practical use.  相似文献   

7.
Abstract The population dynamics of alates and apterous of turnip aphid (TA) Lipaphis erysimi (Kalt.) together with the incidence of parasitism by Diaeretiella rapae (M'Intosh) on five host vegetable varieties in the field were evaluated. The results showed that the average populations of TA apterous on host vegetable varieties turnip, Chinese kale, leaf mustard, flowering cabbage and Chinese cabbage were 63. 425, 10. 041, 24. 928, 23. 323 and 114. 308 aphids/plant, respectively. The 'critical day' was used to estimate the date when TA population density on host vegetable varieties reaches its economic threshold. The relationship between TA apterous population ( x ) and mummy aphids parasitized by parasitoid D. rapae was significant, and the regression formula is y = 0. 1211 + 0. 01431 (r=0. 9739**).  相似文献   

8.
The wide dispersal of Entomophthorales-caused mycoses that usually regulate aphid populations is most likely to be associated with the flight of infected alates. This hypothesis was examined via simulated flight and postflight colonization of Myzus periscae alates exposed to spore showers of Pandora neoaphidis, a common obligate aphid pathogen prevalent world wide. A total number of 407 alates were showered in different batches, then individually flown in a computer-monitoring flight mill system and reared on cabbage leaves for 14-day free reproduction and contagious infection within progeny colonies at 20-23 degrees C. On average, 80.6% of them flew 2.6 km in 1-5 h, survived 3.2 days, produced 5.3 nymphs, and transmitted their infection to progeny successfully. However, 9.8% of the flown alates left no progeny although they survived at least 1 day prior to mycosis while the rest were not mycosed, producing significantly more nymphs during the first week. The flight distances of the infected (0.01-10.2 km) or uninfected alates (0.1-8.3 km) were exponentially correlated to the flight time (r( 2) >or= 0.98). When grouped by the flight ranges of <1.0, 1.0-3.0, 3.0-5.0 and >5.0 km, the number of live aphids and the proportion of mycosed individuals per progeny colony over colonization days fit well to a complex logistic model (r( 2) = 0.984) and modified Gompertz model (r( 2) = 0.978) respectively. Both models included flight distance, postflight survival time, premycosis fecundity and primary infection rate as independent variables to affect the developmental rates. The results highlight the significant role of infected alates in the wide dispersal of P. neoaphidis-caused mycoses among aphids.  相似文献   

9.
Outbreaks of Escherichia coli O157:H7 infections have been linked increasingly to leafy greens, particularly to lettuce. We present here the first evidence that this enteric pathogen can multiply on the leaves of romaine lettuce plants. The increases in population size of E. coli O157:H7 in the phyllosphere of young lettuce plants ranged from 16- to 100-fold under conditions of warm temperature and the presence of free water on the leaves and varied significantly with leaf age. The population size was consistently ca. 10-fold higher on the young (inner) leaves than on the middle leaves. The growth rates of Salmonella enterica and of the natural bacterial microflora were similarly leaf age dependent. Both enteric pathogens also achieved higher population sizes on young leaves than on middle leaves harvested from mature lettuce heads, suggesting that leaf age affects preharvest as well as postharvest colonization. Elemental analysis of the exudates collected from the surfaces of leaves of different ages revealed that young-leaf exudates were 2.9 and 1.5 times richer in total nitrogen and carbon, respectively, than middle-leaf exudates. This trend mirrored the nitrogen and carbon content of the leaf tissue. Application of ammonium nitrate, but not glucose, to middle leaves enhanced the growth of E. coli O157:H7 significantly, suggesting that low nitrogen limits its growth on these leaves. Our results indicate that leaf age and nitrogen content contribute to shaping the bacterial communities of preharvest and postharvest lettuce and that young lettuce leaves may be associated with a greater risk of contamination with E. coli O157:H7.  相似文献   

10.
The two hop cultivars “Hallertauer Magnum” (HM) and “Spalter Select” (SE) are regarded by growers as extremely different in their susceptibility to the damson-hop aphid Phorodon humuli (Schrank). To investigate these anecdotal observations, spring migration and initial population development of P. humuli were monitored on the two cultivars in 1998 and 1999 in an experimental hop garden. Numbers of migrant aphids on SE were significantly lower, comprising 18.8 and 30.2% as compared to HM in 1998 and 1999, respectively. Population development of apterous aphids on these two cultivars differed significantly. At the end of the monitoring period numbers of aphids on SE were 7.5 and 14.2% as compared to HM in 1998 and 1999, respectively. In behavioral studies of P. humuli alates released on glasshouse plants, those on SE spent significantly more time in motile behavior patterns than aphids on HM. In the glasshouse, population development also differed significantly and the number of aphids developing on SE was 12.9% of that on HM after 28 days. It is concluded that SE exhibits a certain repellent effect on P. humuli and, compared to HM, is possibly nutritionally less suitable to the aphid.  相似文献   

11.
When crops are bred for resistance to herbivores, these herbivores are under strong selection pressure to overcome this resistance, which may result in the emergence of virulent biotypes. This is a growing problem for crop species attacked by aphids. The Nr‐gene in lettuce confers near‐complete resistance against the black currant‐lettuce aphid, Nasonovia ribisnigri (Mosely) (Hemiptera: Aphididae). Since 2007, populations of N. ribisnigri have been reported in several locations in Europe to infest resistant lettuce varieties that possess the Nr‐gene. The objective of this study was to analyse the behaviour and level of virulence of several N. ribisnigri populations observed to have colonized Nr‐locus‐containing lettuce lines. We analysed the stylet penetration and feeding behaviour, and the performance of these N. ribisnigri populations on resistant and susceptible lettuce lines. Large variation in the degree of virulence to the Nr‐locus‐containing lettuce lines was found among populations of the Nr:1 biotype. The German population was highly virulent on the Nr‐containing resistant lettuce lines, and showed similar feeding behaviour and performance on both the susceptible and resistant lettuces. The French population from Paris was the second most virulent, though reproduction on the resistant lines was reduced. The French population from Perpignan and a population from Belgium, however, showed reduced performance and feeding rate on the resistant compared to the susceptible lettuces. The lettuce background in which the Nr‐gene is expressed influences the level of resistance to the various Nr:1 aphid populations, because the performance and feeding behaviour differed between the aphids on the cultivars (romaine lettuce) compared to the near‐isogenic lines (butterhead/iceberg lettuce). This study also shows that being able to feed on a plant not automatically implies that a population can successfully develop on that plant, because aphids showed phloem ingestion during the 8‐h recording period on resistant lettuce, but were not able to survive and reproduce on the same lettuce line.  相似文献   

12.
Organic lettuce, Lactuca sativa L., growers on the Central Coast of California rely on conservation biological control to manage Nasonovia ribisnigri Mosley (Hemiptera: Aphididae) and other aphid pests of lettuce. In 2006, we carried out five replicated field trials to determine the importance of syrphid larvae in the suppression of N. ribisnigri and other aphids infesting organic romaine lettuce. We used Entrust, a spinosad-based insecticide approved for use on organic farms, to suppress syrphid larvae in aphid-infested romaine. Romaine treated with Entrust was unmarketable at harvest because of aphid infestation, whereas insecticide-free romaine was marketable. Syrphid larvae composed 85% or more of total predators in most trials, and they were the only predators consistently recovered from romaine that was infested with aphids early and largely aphid-free by harvest. The species mix of nonsyrphid predators varied from site to site. Applications of Entrust suppressed nonsyrphid predators in two trials, and so was an imperfect tool for selectively suppressing syrphid larvae. The relative importance of syrphid larvae and other predators in the conservation biological control of aphids in organic romaine is discussed. We conclude that syrphid larvae are primarily responsible for the suppression of aphids in organic romaine on California's Central Coast.  相似文献   

13.
AIMS: The objective of this study was to determine the influence of mild heat treatment, storage temperature and storage time on the survival and growth of Listeria monocytogenes inoculated onto cut iceberg lettuce leaves. METHODS AND RESULTS: Before or after inoculation with L. monocytogenes, cut iceberg lettuce leaves were dipped in water (20 or 50 degrees C) containing or not 20 mg l(-1) chlorine, for 90 s, then stored at 5 degrees C for up to 18 days or 15 degrees C for up to 7 days. The presence of 20 mg l(-1) chlorine in the treatment water did not significantly (alpha=0.05) affect populations of the pathogen, regardless of other test parameters. The population of L. monocytogenes on lettuce treated at 50 degrees C steadily increased throughout storage at 5 degrees C for up to 18 days. At day 10 and thereafter, populations were 1.7-2.3 log10 cfu g(-1) higher on lettuce treated at 50 degrees C after inoculation compared with untreated lettuce or lettuce treated at 20 degrees C, regardless of chlorine treatment. The population of L. monocytogenes increased rapidly on lettuce stored at 15 degrees C. At 2 and 4 days, significantly higher populations were detected on lettuce that had been treated at 50 degrees C, compared with respective samples that had been treated at 20 degrees C, regardless of inoculation before or after treatment, or the presence of 20 mg l(-1) chlorine in the treatment water. CONCLUSIONS: The results clearly demonstrated that mild heat treatment of cut lettuce leaves enhances the growth of L. monocytogenes during subsequent storage at 5 or 15 degrees C. SIGNIFICANCE AND IMPACT OF THE STUDY: Mild heat treatment of cut lettuce may result in a prolonged shelf life as a result of delaying the development of brown discoloration. However, heat treatment also facilitates the growth of L. monocytogenes during storage at refrigeration temperature, thereby increasing the potential risk of causing listeriosis.  相似文献   

14.
THE DISTRIBUTION OF APHID INFESTATION IN RELATION TO LEAF AGE   总被引:1,自引:0,他引:1  
Infestations of apterous Aphis fabae Scop, on potted sugar beets have been followed in detail for several weeks. The plants were somewhat stunted and their crowns presented an unusually complete series of leaf ages. Records were kept of the changing number and size of the leaves and of their stage of growth. Parallel records were kept of the changing population of aphids on every leaf, and the figures are analysed in various ways to show how suitability for the aphids varied through the life cycle of the leaves.
The leaves were very suitable when young, became unsuitable as they matured, became suitable again just after maturity and then unsuitable again as they senesced. But among leaves at any given stage, those which were growing or senescing rapidly were more suitable than those changing slowly, unless the rate of senescence was very high. The differences of population density on different-aged leaves were due largely to the preferences exercised by the apterous adults. The added effect of differences in the fecundity of these mothers while feeding on different leaves was not excluded, but could not be assessed. It is concluded that the physiological development of the plant as a whole determines, through the growth and senescence among its total complement of leaves, the progress and pattern of its aphid infestation.  相似文献   

15.
A total number of 1092 migratory alates were trapped from air in wheat grown area of Yuanyang County, Henan Province from early April through May 2002 in order to confirm the source and dissemination of entomophthoralean inocula to cause epizootics of cereal aphids. Those included 415 Sitobion avenae, 642 Rhopalosiphum padi, 22 Metopolophium dirhodum, and 13 Schizaphis graminum. The trapped alates were daily collected and individually reared for 7 days on wheat plants in laboratory. Of those 341 alates died of fungal infection, taking 31.2% in the trapped alates. These included 224 S. avenae, 106 R. padi, 8 M. dirhodum, and 3 S. graminum. Deaths of all infected alates occurred during the first 5 days and 78.9% of the deaths occurred within the first 3 days. Individual examination under microscope proved that all deaths were attributed to entomophthoralean fungi. Of those Pandora neoaphidis accounted for 84.6%, Conidiobolus obscurus for 9.9%, and Entomophthora planchoniana for 5.5%. Four alate deaths die  相似文献   

16.
An ipt gene under control of the senescence-specific SAG12 promoter from Arabidopsis (P(SAG12)-IPT) significantly delayed developmental and postharvest leaf senescence in mature heads of transgenic lettuce (Lactuca sativa L. cv Evola) homozygous for the transgene. Apart from retardation of leaf senescence, mature, 60-d-old plants exhibited normal morphology with no significant differences in head diameter or fresh weight of leaves and roots. Induction of senescence by nitrogen starvation rapidly reduced total nitrogen, nitrate, and growth of transgenic and azygous (control) plants, but chlorophyll was retained in the lower (outer) leaves of transgenic plants. Harvested P(SAG12)-IPT heads also retained chlorophyll in their lower leaves. During later development (bolting and preflowering) of transgenic plants, the decrease in chlorophyll, total protein, and Rubisco content in leaves was abolished, resulting in a uniform distribution of these components throughout the plants. Homozygous P(SAG12)-IPT lettuce plants showed a slight delay in bolting (4-6 d), a severe delay in flowering (4-8 weeks), and premature senescence of their upper leaves. These changes correlated with significantly elevated concentrations of cytokinin and hexoses in the upper leaves of transgenic plants during later stages of development, implicating a relationship between cytokinin and hexose concentrations in senescence.  相似文献   

17.
A total number of 1092 migratory alates were trapped from air in wheat grown area of Yuanyang County, Henan Province from early April through May 2002 in order to confirm the source and dissemination of entomophthoralean inocula to cause epizootics of cereal aphids. Those included 415 Sitobion avenae, 642 Rhopalosiphum padi, 22 Metopolophium dirhodum, and 13 Schizaphis graminum. The trapped alates were daily collected and individually reared for 7 days on wheat plants in laboratory. Of those 341 alates died of fungal infection, taking 31.2% in the trapped alates. These included 224 S. avenae, 106 R. padi, 8 M. dirhodum, and 3 S. graminum. Deaths of all infected alates occurred during the first 5 days and 78.9% of the deaths occurred within the first 3 days. Individual examination under microscope proved that all deaths were attributed to entomophthoralean fungi. Of those Pandora neoaphidis accounted for 84.6%, Conidiobolus obscurus for 9.9%, and Entomophthora planchoniana for 5.5%. Four alate deaths died of cross infection of P. neoaphidis and C. conidiobolus. Based on the high infection rate of the migratory alates trapped from air and the field occurrence of epizootics in populations of cereal aphids during the trapping period, Entomophthorales-caused epizootics were likely disseminated by infected alates through their flight and colonization. This makes it reasonable to interpret worldwide distribution of aphid epizootics, particularly caused by P. neoaphidis that has no resting spores discovered.  相似文献   

18.
Batches of potato plants in pots were placed in the field for limited periods among plants infected with potato virus Y and leaf roll virus. Some of the potted plants were surrounded by sticky boards which prevented apterous aphids from reaching them. Almost as many plants within the boards as without became infected, indicating that most of the spread of virus was by winged aphids.
Apterae were probably responsible for spreading the viruses throughout a hill after one or more stems were infected. They may carry infection to neighbouring plants, but most of these will have been infected already by alatae.
The number of plants contracting infection was unaffected by watering.  相似文献   

19.
Maternal treatment with 5 μg of the precocene analogue 7-ethoxy-6-methoxy-2,2-dimethylchromene influenced offspring development in the pea aphid, Acyrthosiphon pisum. Under conditions favoring the production of apterous offspring, virginoparous aphids produced a significant proportion of alates and precocious adultoids; the precocious adultoids were sterile. The effect of precocene on offspring development was temporary. Some implications of precocene treatment for aphid control are discussed.  相似文献   

20.
Nontyphoid salmonellosis caused by Salmonella enterica is the most common bacterial food-borne illness in humans, and fresh produce, including tomatoes, is a common vehicle. Accumulating data indicate that human enteric pathogenic bacteria, including S. enterica, interact actively with plants. Tomato plants were inoculated with S. enterica to evaluate plausible contamination routes and to determine if the tomato cultivar affects S. enterica colonization. S. enterica population levels on tomato leaves were cultivar dependent. S. enterica levels on Solanum pimpinellifolium (West Virginia 700 [WVa700]) were lower than on S. lycopersicum cultivars. S. enterica preferentially colonized type 1 trichomes and rarely interacted with stomata, unlike what has been reported for cut lettuce leaves. Early S. enterica leaf colonization led to contamination of all fruit, with levels as high as 10(5) CFU per fruit. Reduced bacterial speck lesion formation correlated with reduced S. enterica populations in the phyllosphere. Tomato pedicels and calyxes also harbored large S. enterica populations following inoculation via contaminated water postharvest. WVa700 green fruit harbored significantly smaller S. enterica populations than did red fruit or S. lycopersicum fruit. We found that plants irrigated with contaminated water had larger S. enterica populations than plants grown from seeds planted in infested soil. However, both routes of contamination resulted in detectable S. enterica populations in the phyllosphere. Phyllosphere S. enterica populations pose a risk of fruit contamination and subsequent human disease. Restricting S. enterica phyllosphere populations may result in reduced fruit contamination. We have identified WVa700 as a tomato cultivar that can restrict S. enterica survival in the phyllosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号