首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 654 毫秒
1.
New insights into the behavior of muscle during active lengthening.   总被引:33,自引:2,他引:31       下载免费PDF全文
A muscle fiber was modeled as a series-connected string of sarcomeres, using an A. V. Hill type model for each sarcomere and allowing for some random variation in the properties of the sarcomeres. Applying stretches to this model led to the prediction that lengthening of active muscle on or beyond the plateau of the length tension curve will take place very nonuniformly, essentially by rapid, uncontrolled elongation of individual sarcomeres, one at a time, in order from the weakest toward the strongest. Such a "popped" sarcomere, at least in a single fiber, will be stretched to a length where there is no overlap between thick and thin filaments, and the tension is borne by passive components. This prediction allows modeling of many results that have previously been inexplicable, notably the permanent extra tension after stretch on the descending limb of the length tension curve, and the continued rise of tension during a continued stretch.  相似文献   

2.
In order to evaluate the effects of specific mutations on sarcomere assembly and function in vivo, we describe the course of normal development of Drosophila indirect flight muscle (IFM) in staged pupae using electron microscopy. We find that no contractile assemblies remain in larval muscle remnants invaded by imaginal myoblasts, establishing that myofibrils in IFM assemble de novo. Stress-fiber-like structures or other template structures are not prominent before or during sarcomere assembly. By 42 hr pupation (eclosion 112 hr), thick and thin filaments have appeared simultaneously in slender, interdigitated arrays between regularly spaced Z-bodies. Each tiny, uniformly striated myofibril forms within a "sleeve" of microtubules, and both microtubules and myofibrils are attached to the cell membrane at each end of the fiber from the initial stages of assembly. Later in pupation, the microtubule "sleeves" disassemble. Sarcomere number appears to remain constant. We saw no evidence that terminal sarcomeres are sites for addition of new sarcomeres or that Z-lines split transversely, producing new, very short sarcomeres. Rather, initial thick and thin filaments and sarcomeres are much shorter than adult length. Sarcomere length increases smoothly and coordinately from 1.7 to 3.2 μm, reflecting increase in filament lengths and indicating that myosin and actin molecules must be incorporated into filaments after sarcomere formation. Myofilaments are not seen scattered in the cytoplasm at any time, nor do we detect filaments that could be in the process of being "trolleyed" along myofibrils into positions of lateral register. Myofibril diameter increases uniformly from 4-thick filaments to 36-thick filaments across, by peripheral addition of myofilaments. At each successive stage, all sarcomeres in a fiber attained similar length and diameter. Initial thick filaments are solid but within several hours these and all subsequently assembled thick filaments appear hollow. Initial Z-bodies do not show any internal lattice and are more irregularly shaped than adult Z-discs.  相似文献   

3.
The musculature of the telson of Limulus polyphemus L. consists of three dorsal muscles: the medial and lateral telson levators and the telson abductor, and one large ventral muscle; the telson depressor, which has three major divisions: the dorsal, medioventral, and lateroventral heads. The telson muscles are composed of one type of striated muscle fiber, which has irregularly shaped myofibrils. The sarcomeres are long, with discrete A and I and discontinuous Z bands. M lines are not present. H zones can be identified easily, only in thick (1.0 µm) longitudinal sections or thin cross sections. In lengthened fibers, the Z bands are irregular and the A bands appear very long due to misalignment of constituent thick filaments. As the sarcomeres shorten, the Z lines straighten somewhat and the thick filaments become more aligned within the A band, leading to apparent decrease in A band length. Further A band shortening, seen at sarcomere lengths below 7.4 µm may be a function of conformational changes of the thick filaments, possibly brought about by alterations in the ordering of their paramyosin cores.  相似文献   

4.
《Biophysical journal》2020,118(8):1921-1929
It has been accepted that the force produced by a skeletal muscle myofibril depends on its cross-sectional area but not on the number of active sarcomeres because they are arranged in series. However, a previous study performed by our group showed that blocking actomyosin interactions within an activated myofibril and depleting the thick filaments in one sarcomere unexpectedly reduced force production. In this study, we examined in detail how consecutive depletion of thick filaments in individual sarcomeres within a myofibril affects force production. Myofibrils isolated from rabbit psoas were activated and relaxed using a perfusion system. An extra microperfusion needle filled with a high-ionic strength solution was used to erase thick filaments in individual sarcomeres in real time before myofibril activation. The isometric forces were measured upon activation. The force produced by myofibrils with intact sarcomeres was significantly higher than the force produced by myofibrils with one or more sarcomeres lacking thick filaments (p < 0.0001) irrespective of the number of contractions imposed on the myofibrils and their initial sarcomere length. Our results suggest that the myofibril force is affected by intersarcomere dynamics and the number of active sarcomeres in series.  相似文献   

5.
This study was undertaken to determine whether glycerol-extracted rabbit psoas muscle fibers can develop tension and shorten after being stretched to such a length that the primary and secondary filaments no longer overlap. A method was devised to measure the initial sarcomere length and the ATP-induced isotonic shortening in prestretched isolated fibers subjected to a small preload (0.02 to 0.15 P0). At all degrees of stretch, the fiber was able to shorten (60 to 75 per cent): to a sarcomere length of 0.7 µ when the initial length was 3.7 µ or less, and to an increasing length of 0.9 to 1.8 µ with increasing initial sarcomere length (3.8 to 4.4 µ). At sarcomere lengths of 3.8 to 4.5 µ, overlap of filaments was lost, as verified by electron microscopy. The variation in sarcomere length within individual fibers has been assessed by both light and electron microscopic measurements. In fibers up to 10 mm in length the stretch was evenly distributed along the fiber, and with sarcomere spacings greater than 4 µ there was only a slight chance of finding sarcomeres with filament overlap. These observations are in apparent contradiction to the assumption that an overlap of A and I filaments is necessary for tension generation and shortening.  相似文献   

6.
We have studied the structural changes within the body-wall muscle cells of Caenorhabditis elegans during postmitotic development. In wild-type, the number of sarcomeres progressively increases, and each sarcomere appears to grow in length and depth continuously during this period. In mature wild-type cells, the anterior-most body-wall muscle cells have 6–7 sarcomeres; the rest have 9–10 sarcomeres per cell. Twelve mutants in the unc-52 II gene exhibit markedly retarded sarcomere construction and progressive paralysis. Several unc-52 mutants, such as the severely paralyzed SU200, produce only 2–3 sarcomeres per body-wall muscle cell, while the other midly paralyzed unc-52 mutants, such as SU250, build 3–4 sarcomeres per muscle cell. Other structures such as the pharynx and even the noncontractile organelles of the body-wall muscle cells do not appear to be structurally or functionally altered. The unc-52 body-wall sarcomeres become moderately disorganized as they are outstripped by cell growth; sufficient order is preserved, however, so that the majority of thick and thin filaments still interdigitate.The myosin heavy chains of SU200 body-wall muscle fail to accumulate normally, while the pharyngeal myosin heavy chains do not appear to be specifically affected. This biochemical result correlates well with the specificity of morphological changes in the mutant. A model is discussed in which the biochemical and morphological deficits are explained by a simple regulatory mechanism.  相似文献   

7.
THE controversy concerning the organization of myosin in mammalian smooth muscle was reviewed (Nature New Biology, 231, 225; 1971) at a time when the studies of Rice's laboratory and our own demonstrated a regular, quasi-rectangular array of thick filaments in guinea-pig taenia coli (TC) and rabbit portal-anterior mesenteric vein (MV), and, further, that, by excessive stretch and by the use of hypertonic incubation solutions, the thick filaments in this lattice could be aggregated into ribbon-like structures1,2. These observations were made on muscles stretched to approximately 1.5 times their excised length. Both the TC3 and the rabbit MV2,4 are spontaneously active smooth muscles, which shorten to less than their in vivo length when excised from the body: stretching by approximately 1.5 times brings these muscles close to their in vivo length. Nevertheless, recent reports5,6, indicating that thick filaments were more readily visualized (but see Figs. 2 and 3 in ref. 5) in stretched smooth muscles, prompted the editorial writer of Nature (231, 423; 1971) to consider it a debatable question whether thick filaments are present in unstretched muscle. Thick filaments have been observed in relaxed muscles1,5,6 and we now show that an array of thick filaments can also be observed in completely unstretched guinea-pig and rabbit MV smooth muscle (excised and dropped into the fixative) and that such arrays are present after two different modes of fixation.  相似文献   

8.
SYNOPSIS. Electron microscopic studies are reported on glycerinatedskeletal and cardiac muscle of a benthic fish, Coryphaenoidesspecies. In white skeletal muscle, the sarcomeres have a restinglength of approximately 1.8 µ, with thick filaments 1.4µ and thin filaments 0.75 µ in length. These dimensionsare somewhat shorter than filament lengths of oilier vertebratemuscles, possibly due to the elfect of volume increase duringassembly of thick and thin filaments at high hydrostatic pressure.During ATP-induced contraction of Coryphaenoides muscle fromsarcomere lengths of 1.8 µ to 1.6 µ, there is acharacteristic interdigitation of thick and thin filaments,with decrease in I band length and no change in length of thickor thin filaments. However, in sarcomeres contracted to lengthsof 1.5 µ. to 1.2 µ, there is a slight shorteningof the A band, apparently due to shortening of thick filaments,that occurs despite the presence of residual I band in the samesarcomeres. There is no obvious crumpling or distortion of thickfilaments during contraction to sarcomere lengths as low as1.0 µ, but filament organization undergoes extensive disarrayat sarcomere lengths approaching 0.7 µ. Although effectsfrom heterogeneity of filament length cannot be excluded withcertainty, the present evidence does suggest that contractionot Coryphaenoides muscle from 1.6 µ to 1.0 µ sarcomerelengih is accompanied by shortening of thick filaments consequentto a structural change within the thick filament core.  相似文献   

9.
The sarcomeres of skeletal and cardiac muscle are highly structured protein arrays, consisting of thick and thin filaments aligned precisely to one another and to their surrounding matrix. The contractile mechanisms of sarcomeres are generally well understood, but how the patterning of sarcomeres is initiated during early skeletal muscle and cardiac development remains uncertain. Two of the most widely accepted hypotheses for this process include the “molecular ruler” model, in which the massive protein titin defines the length of the sarcomere and provides a scaffold along which the myosin thick filament is assembled, and the “premyofibril” model, which proposes that thick filament formation does not require titin, but that a “premyofibril” consisting of non-muscle myosin, α-actinin and cytoskeletal actin is used as a template. Each model posits a different order of necessity of the various components, but these have been difficult to test in vivo. Zebrafish motility mutants with developmental defects in sarcomere patterning are useful for the elucidation of such mechanisms, and here we report the analysis of the herzschlag mutant, which shows deficits in both cardiac and skeletal muscle. The herzschlag mutant produces a truncated titin protein, lacking the C-terminal rod domain that is proposed to act as a thick filament scaffold, yet muscle patterning is still initiated, with grossly normal thick and thin filament assembly. Only after embryonic muscle contraction begins is breakdown of sarcomeric myosin patterning observed, consistent with the previously noted role of titin in maintaining the contractile integrity of mature sarcomeres. This conflicts with the “molecular ruler” model of early sarcomere patterning and supports a titin-independent model of thick filament organization during sarcomerogenesis. These findings are also consistent with the symptoms of human titin myopathies that exhibit a late onset, such as tibial muscular dystrophy.  相似文献   

10.
Passive stretch, isometric contraction, and shortening were studied in electron micrographs of striated, non-glycerinated frog muscle fibers. The artifacts due to the different steps of preparation were evaluated by comparing sarcomere length and fiber diameter before, during, and after fixation and after sectioning. Tension and length were recorded in the resting and contracted fiber before and during fixation. The I filaments could be traced to enter the A band between the A filaments on both sides of the I band, creating a zone of overlap which decreased linearly with stretch and increased with shortening. This is consistent with a sliding filament model. The decrease in the length of the A and I filaments during isometric contraction and the finding that fibers stretched to a sarcomere length of 3.7 µ still developed 30 per cent of the maximum tetanic tension could not be explained in terms of the sliding filament model. Shortening of the sarcomeres near the myotendinous junctions which still have overlap could account for only one-sixth of this tension, indicating that even those sarcomeres stretched to such a degree that there is a gap between A and I filaments are activated during isometric contraction (increase in stiffness). Shortening, too, was associated with changes in filament length. The diameter of A filaments remained unaltered with stretch and with isometric contraction. Shortening of 50 per cent was associated with a 13 per cent increase in A filament diameter. The area occupied by the fibrils and by the interfibrillar space increased with shortening, indicating a 20 per cent reduction in the volume of the fibrils when shortening amounted to 40 per cent.  相似文献   

11.
Electron microscopy was used to study the positional stability of thick filaments in isometrically contracting skinned rabbit psoas muscle as a function of sarcomere length at 7 degrees C. After calcium activation at a sarcomere length of 2.6 micron, where resting stiffness is low, sarcomeres become nonuniform in length. The dispersion in sarcomere length is complete by the time maximum tension is reached. A-bands generally move from their central position and continue moving toward one of the Z-discs after tension has reached a plateau at its maximum level. The lengths of the thick and thin filaments remain constant during this movement. The extent of A-band movement during contraction depends on the final length of the individual sarcomere. After prolonged activation, all sarcomeres between 1.9 and 2.5 micron long exhibit A-bands that are adjacent to a Z-disc, with no intervening I-band. Sarcomeres 2.6 or 2.7 micron long exhibit a partial movement of A-bands. At longer sarcomere lengths, where the resting stiffness exceeds the slope of the active tension-length relation, the A-bands remain perfectly centered during contraction. Sarcomere symmetry and length uniformity are restored upon relaxation. These results indicate that the central position of the thick filaments in the resting sarcomere becomes unstable upon activation. In addition, they provide evidence that the elastic titin filaments, which join thick filaments to Z-discs, produce almost all of the resting tension in skinned rabbit psoas fibers and act to resist the movement of thick filaments away from the center of the sarcomere during contraction.  相似文献   

12.
Abstract. A light and electron immunohistochemical study was carried out on the body wall muscles of the chaetognath Sagitta friderici for the presence of a variety of contractile proteins (myosin, paramyosin, actin), regulatory proteins (tropomyosin, troponin), and structural proteins (α‐actinin, desmin, vimentin). The primary muscle (~80% of body wall volume) showed the characteristic structure of transversely striated muscles, and was comparable to that of insect asynchronous flight muscles. In addition, the body wall had a secondary muscle with a peculiar structure, displaying two sarcomere types (S1 and S2), which alternated along the myofibrils. S1 sarcomeres were similar to those in the slow striated fibers of many invertebrates. In contrast, S2 sarcomeres did not show a regular sarcomeric pattern, but instead exhibited parallel arrays of 2 filament types. The thickest filaments (~10–15 nm) were arranged to form lamellar structures, surrounded by the thinnest filaments (~6 nm). Immunoreactions to desmin and vimentin were negative in both muscle types. The primary muscle exhibited the classical distribution of muscle proteins: actin, tropomyosin, and troponin were detected along the thin filaments, whereas myosin and paramyosin were localized along the thick filaments; immunolabeling of α‐actinin was found at Z‐bands. Immunoreactions in the S1 sarcomeres of the secondary muscle were very similar to those found in the primary muscle. Interestingly, the S2 sarcomeres of this muscle were labeled with actin and tropomyosin antibodies, and presented no immunore‐actions to both myosin and paramyosin. α‐Actinin in the secondary muscle was only detected at the Z‐lines that separate S1 from S2. These findings suggest that S2 are not true sarcomeres. Although they contain actin and tropomyosin in their thinnest filaments, their thickest filaments do not show myosin or paramyosin, as the striated muscle thick myofilaments do. These peculiar S2 thick filaments might be an uncommon type of intermediate filament, which were labeled neither with desmin or vimentin antibodies.  相似文献   

13.
The structure of the femoral muscle of the cockroach, Leucophaea maderae, was investigated by light and electron microscopy. The several hundred fibers of either the extensor or flexor muscle are 20 to 40 µ in diameter in transverse sections and are subdivided into closely packed myofibrils. In glutaraldehyde-fixed and epoxy resin-embedded material of stretched fibers, the A band is about 4.5 µ long, the thin filaments are about 2.3 µ in length, the H zone and I band vary with the amount of stretch, and the M band is absent. The transverse sections of the filaments reveal in the area of a single overlap of thick and thin filaments an array of 10 to 12 thin filaments encircling each thick filament; whereas, in the area of double overlap in which the thin filaments interdigitate from opposite ends of the A band, the thin filaments show a twofold increase in number. The thick filament is approximately 205 to 185 A in diameter along most of its length, but at about 0.2 µ from the end it tapers to a point. Furthermore, some well oriented, very thin transverse sections show these filaments to have electron-transparent cores. The diameter of the thin filament is about 70 A. Transverse sections exhibit the sarcolemma invaginating clearly at regular intervals into the lateral regions of the A band. Three distinct types of mitochondria are associated with the muscle: an oval, an elongate, and a type with three processes. It is evident, in this muscle, that the sliding filament hypothesis is valid, and that perhaps the function of the extra thin filaments is to increase the tensile strength of the fiber and to create additional reactive sites between the thick and thin filaments. These sites are probably required for the functioning of the long sarcomeres.  相似文献   

14.
The fine structure of fast and slow crustacean muscles   总被引:7,自引:6,他引:1       下载免费PDF全文
Known phasic and tonic muscle fibers of the crab Cancer magister were studied by electron microscopy. Phasic fibers have sarcomeres about 4.5 µ long, small polygonal myofibrils, and a well-developed sarcoplasmic reticulum. The thick myofilaments, disposed in hexagonal array, are each surrounded by six thin filaments. The tonic fibers have a sarcomere length of about 12 µ, larger myofibrils, a poorly developed sarcoplasmic reticulum, and a disorderly array of myofilaments. Each thick myofilament is surrounded by 10–12 thin filaments. The same morphological type of slow muscle has been found in the crustaceans, Macrocyclops albidus, Cypridopsis vidua, and Balanus cariosus, in each case in an anatomical location consistent with tonic action. A search of the literature indicates that this type of muscle is found in all classes of arthropods and is confined to visceral and postural muscles or specializations of these.  相似文献   

15.
The mechanical roles of sarcomere-associated cytoskeletal lattices were investigated by studying the resting tension-sarcomere length curves of mechanically skinned rabbit psoas muscle fibers over a wide range of sarcomere strain. Correlative immunoelectron microscopy of the elastic titin filaments of the endosarcomeric lattice revealed biphasic extensibility behaviors and provided a structural interpretation of the multiphasic tension-length curves. We propose that the reversible change of contour length of the extensible segment of titin between the Z line and the end of thick filaments underlies the exponential rise of resting tension. At and beyond an elastic limit near 3.8 microns, a portion of the anchored titin segment that adheres to thick filaments is released from the distal ends of thick filament. This increase in extensible length of titin results in a net length increase in the unstrained extensible segment, thereby lowering the stiffness of the fiber, lengthening the slack sarcomere length, and shifting the yield point in postyield sarcomeres. Thus, the titin-myosin composite filament behaves as a dual-stage molecular spring, consisting of an elastic connector segment for normal response and a longer latent segment that is recruited at and beyond the elastic limit of the sarcomere. Exosarcomeric intermediate filaments contribute to resting tension only above 4.5 microns. We conclude that the interlinked endo- and exosarcomeric lattices are both viscoelastic force-bearing elements. These distinct cytoskeletal lattices appear to operate over two ranges of sarcomere strains and collectively enable myofibrils to respond viscoelastically over a broad range of sarcomere and fiber lengths.  相似文献   

16.
When relaxed striated muscle cells are stretched, a resting tension is produced which is thought to arise from stretching long, elastic filaments composed of titin (also called connectin). Here, I show that single skinned rabbit soleus muscle fibers produce resting tension that is several-fold lower than that found in rabbit psoas fibers. At sarcomere lengths where the slope of the resting tension-sarcomere length relation is low, electron microscopy of skinned fibers indicates that thick filaments move from the center to the side of the sarcomere during prolonged activation. As sarcomeres are stretched and the resting tension sarcomere length relation becomes steeper, this movement is decreased. The sarcomere length range over which thick filament movement decreases is higher in soleus than in psoas fibers, paralleling the different lengths at which the slope of the resting tension-sarcomere length relations increase. These results indicate that the large differences in resting tension between single psoas and soleus fibers are due to different tensions exerted by the elastic elements linking the end of each thick filament to the nearest Z-disc, i.e., the titin filaments. Quantitative gel electrophoresis of proteins from single muscle fibers excludes the possibility that resting tension is less in soleus than in psoas fibers simply because they have fewer titin filaments. A small difference in the electrophoretic mobility of titin between psoas and soleus fibers suggests the alternate possibility that mammalian muscle cells use at least two titin isoforms with differing elastic properties to produce variations in resting tension.  相似文献   

17.
The mechanical compliance (reciprocal of stiffness) of thin filaments was estimated from the relative compliance of single, skinned muscle fibers in rigor at sarcomere lengths between 1.8 and 2.4 micron. The compliance of the fibers was calculated as the ratio of sarcomere length change to tension change during imposition of repetitive cycles of small stretches and releases. Fiber compliance decreased as the sarcomere length was decreased below 2.4 micron. The compliance of the thin filaments could be estimated from this decrement because in this range of lengths overlap between the thick and thin filaments is complete and all of the myosin heads bind to the thin filament in rigor. Thus, the compliance of the overlap region of the sarcomere is constant as length is changed and the decrease in fiber compliance is due to decrease of the nonoverlap length of the thin filaments (the I band). The compliance value obtained for the thin filaments implies that at 2.4-microns sarcomere length, the thin filaments contribute approximately 55% of the total sarcomere compliance. Considering that the sarcomeres are approximately 1.25-fold more compliant in active isometric contractions than in rigor, the thin filaments contribute approximately 44% to sarcomere compliance during isometric contraction.  相似文献   

18.
A major component on sodium dodecyl sulfate-containing gels of solubilized isolated Z-discs, purified from honeybee flight muscle, migrates with an apparent molecular weight of 360,000. Antibodies to this high molecular weight polypeptide have been prepared by injecting rabbits with homogenized gel slices containing the protein band. With indirect immunofluorescence microscopy these antibodies are localized to a region extending from the edge of the Z-band to the A-band in shortened or stretched sarcomeres. Similarly, glycerinated flight muscle treated with antiserum and prepared for electron microscopy shows enhanced density from the ends of the thick filaments to the I-Z junction regardless of sarcomere length. Evidence indicates that antiserum is directed toward a structural protein of connecting filaments, which link thick filaments to the Z-band in insect fibrillar muscle, rather than to a thin filament component. In Ouchterlony double-diffusion experiments a single precipitin band is formed when antiserum is diffused against solubilized Z-discs; no reaction occurs between antiserum and proteins from native thin filaments prepared from honeybee flight muscle. Further, antibody stains the I-band in flight muscle fibrils from which thin filaments are removed. Finally, honeybee leg muscle myofibrils, in which connecting filaments have not been observed, are not labelled with antibody. Since antibody binds to the short projections which extend from the flat surfaces of isolated Z-discs, these projections are assumed to be remnants of connecting filaments and the source of the 360,000 Mr protein.The amino acid composition of this high molecular weight material, purified by Sepharose chromatography, is presented. The protein has been named “projectin”.  相似文献   

19.
Titin (also known as connectin) is a striated-muscle-specific protein that spans the distance between the Z- and M-lines of the sarcomere. The elastic segment of the titin molecule in the I-band is thought to be responsible for developing passive tension and for maintaining the central position of thick filaments in contracting sarcomeres. Different muscle types express isoforms of titin that differ in their molecular mass. To help to elucidate the relation between the occurrence of titin isoforms and the functional properties of different fibre types, we investigated the presence of different titin isoforms in red and white fibres of the axial muscles of carp. Gel electrophoresis of single fibres revealed that the molecular mass of titin was larger in red than in white fibres. Fibres from anterior and posterior axial muscles were also compared. For both white and red fibres the molecular mass of titin in posterior muscle fibres was larger than in anterior muscle fibres. Thus, the same fibre type can express different titin isoforms depending on its location along the body axis. The contribution of titin to passive tension and stiffness of red anterior and posterior fibres was also determined. Single fibres were skinned and the sarcomere length dependencies of passive tension and passive stiffness were determined. Measurements were made before and after extracting thin and thick filaments using relaxing solutions with 0.6 mol · l−1 KCl and 1 mol · l−1 KI. Tension and stiffness measured before extraction were assumed to result from both titin and intermediate filaments, and tension after extraction from only intermediate filaments. Compared to mammalian skeletal muscle, intermediate filaments developed high levels of tension and stiffness in both posterior and anterior fibres. The passive tension-sarcomere length curve of titin increased more steeply in red anterior fibres than in red posterior fibres and the curve reached a plateau at a shorter sarcomere length. Thus, the smaller titin isoform of anterior fibres results in more passive tension and stiffness for a given sarcomere strain. During continuous swimming, red fibres are exposed to larger changes in sarcomere strain than white fibres, and posterior fibres to larger changes in strain than anterior fibres. We propose that sarcomere strain is one of the functional parameters that modulates the expression of different titin isoforms in axial muscle fibres of carp. Accepted: 7 May 1997  相似文献   

20.
Nematodes synthesize two major classes of myosin heavy chains. These heavy chains associate to form only homodimeric myosin molecules, and these myosin homodimers are anti-genically different from one another (Schachat, Garcea and Epstein, 1978). The two myosins may be designated unc-54 myosin, since this species is altered in mutants of the unc-54 locus, and non-unc-54 myosin, since this class is not affected in unc-54 mutants. We present here experiments in which specific anti-myosin IgG and anti-unc-54 myosin IgG are used to locate the two myosins within the same body-wall muscle cells of Caenorhabditis elegans. These results are necessary for further evaluation of the possible functions of the two myosin homodimers in the thick filaments of these muscles.Myosin can be localized to all body-wall and pharyngeal muscle cells using anti-myosin antibody. In longitudinal sections of body-wall muscle, the staining with anti-myosin coincides with the birefringence of A bands that contain thick filaments. Anti-unc-54 myosin stains all body-wall A bands uniformly but does not react with the pharynx. This result demonstrates that unc-54 is located exclusively in body-wall muscle cells of the wild-type strain N2. Non-unc-54 myosin is localized with anti-myosin in all body-wall muscle cells of the unc-54 null mutant E190, as expected; however, unc-54 myosin could not be detected by anti-unc-54 myosin antibody in this mutant.Since we can localize unc-54 myosin and non-unc-54 myosin in all body-wall muscle cells of wild-type and E190, respectively, we conclude that the two myosins must be present in the same muscle cells. In addition, since unc-54 myosin is located in all body-wall A bands, at least some sarcomeres must contain both myosins. This conclusion is consistent with the observations of Garcea, Schachat and Epstein (1978) that wild-type and E190 synthesize similar amounts of non-unc-54 myosin. Within the limits of resolution of our methods, unc-54 myosin is distributed throughout body-wall A bands. We conclude, therefore, that the majority of thick filaments within these A bands must contain unc-54 myosin along their entire length. Possible roles for unc-54 and non-unc-54 myosins in the assembly and organization of thick filaments are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号