共查询到20条相似文献,搜索用时 12 毫秒
1.
Adenylylsulfate reductase was purified from Chlorobium limicola. The most important properties of the enzyme were compared with those of APS reductases from Thiocapsa, thiobacilli and sulfate-reducing bacteria. 相似文献
2.
Proteins of Cylindrotheca fusiformis which incorporated significant 32PO4 were identified as soluble, acidic proteins, and their two-dimensions gel positions were determined. Upon addition of silicate to silicon-starved cells, at least 3 of these proteins showed a significant and rapid change in the level of phosphorylation. Under the same conditions the amount of 32PO4-labeled ATP, ADP, and GTP remained relatively constant. Thus silicon appears to affect phosphorylation and dephosphorylation of specific proteins, and these changes are sufficiently rapid to suggest that phosphorylation may have a role in mediating the silicon requirement for both DNA synthesis and the accumulation of specific mRNAs. 相似文献
3.
Levels of the cyclic nucleotides, cAMP and cGMP, were determined in four species of pennate diatoms; changes in their levels and ratios were monitored in silicon-starved and light-dark synchronized cultures of Cylindrotheca fusiformis. Content of both cAMP and cGMP changed during the cell cycles: when silicate was added to starved cultures, cAMP, cGMP and DNA levels rose rapidly; cAMP and cGMP declined before DNA synthesis was complete and continued to fall during the events leading to cell separation. In unstarved synchronies, net synthesis of DNA continued until cell separation; 1 h before cell separation cAMP levels fell while those of cGMP rose. The results support the proposal that cAMP and cGMP may play a part in the process of cell division in the diatom, possibly involving silicon. 相似文献
4.
The cytoplasmic and chloroplast ribosomes from the marine diatom Cylindrotheca fusiformis were isolated and characterized. The cytoplasmic ribosomes sedimented in sucrose at 84S and dissociated into subunits of 64S and 42S in the absence of Mg2+. It contained ribosomal RNAs with molecular weights of 1.31×106 and 0.70×106. The chloroplast ribosomes sedimented at 70S only in the presence of high Mg2+ concentrations (25–100 mM). No stable subunits were routinely observed and at very high levels of Mg2+ (>100 mM) the 70S species was converted to a form sedimenting at 55S. At 4°C ribosomal RNAs with molecular weights of 1.1×106 and 0.40×106 were detected on polyacrylamide gel electrophoresis. When the RNAs were resolved at room temperature the large molecular weight component disappeared while RNA with molecular weights of 0.65×106 and 0.53×106 were observed. Apparently the large chloroplast RNAs dissociated into two pieces of unequal molecular weight. These properties of the diatom's chloroplast ribosomes are very similar to those of the counter parts in unicellular green algae, which suggests that both types of algae have a common phylogenetic ancestor. 相似文献
5.
Peroxisomes were isolated by gradient centrifugation from two different diatoms: Nitzschia laevis (subgroup of Pennales) and Thalassiosira fluviatilis (subgroup of Centrales). In neither of these organelles could catalase or any H2O2-forming oxidase be demonstrated. The glycolate-oxidizing enzyme present in the peroxisomes is a dehydrogenase capable of oxidizing l-lactate as well. The peroxisomes also contain the glyoxysomal markers isocitrate lyase and malate synthase. However, enzymes of the fatty-acid -oxidation pathway are located exclusively in the mitochondria. The mitochondria additionally possess glutamate-glyoxylate aminotransferase and a glycolate dehydrogenase which differs from the peroxisomal glycolate dehydrogenase since it preferably utilizes d-lactate as an alternative substrate. Hydroxypyruvate reductase and glyoxylate carboligase were not found in the cells of either diatom. By culturing Nitzschia laevis it could be demonstrated that decreasing the CO2 concentration in the aeration mixture from 2% to 0.03% and increasing the irradiance from 40 to 250 mol quanta · m–2 · s–1 resulted in an increase of all peroxisomal enzyme activities. In addition, enzyme activities of the -oxidation pathway were increased. However, mitochondrial glycolate dehydrogenase and aminotransferase did not alter their activities under these conditions. Summarizing all results, it is postulated that there are two different pathways for the metabolism of glycolate in the diatoms.This work was supported by the Deutsche Forschungsgemeinschaft. 相似文献
6.
光呼吸是指植物绿色组织依赖光能吸收O2并释放CO2的过程,它被认为是一个浪费能量的过程。正常生长的C3植物光呼吸可损耗光合产物的25%~30%,在干旱、高温、高光等逆境胁迫下,该损耗可高达50%,因此,显著提高C3植物的生产力可通过减少光呼吸通量来实现。尽管光呼吸对植物生产力的负面影响明显,但它对植物一些必要生理活动可能起着重要作用,其中包括参与光保护、H2O2信号发生、氮代谢、光氧化和抗逆反应等。该文对光呼吸的改造优化需要把握好平衡点与适配度。基于Rubisco改造、CO2浓缩机制(CCM)和光呼吸支路创建的光呼吸改造研究进展进行了综述。通过了解调控光呼吸提高植物光能转化效率方面的最新进展, 可望为光呼吸代谢的分子调控及改良研究提供指导。 相似文献
7.
Jerry D. Jacobs James R. Ludwig Mark Hildebrand Allen Kukel Teng-Yung Feng Robin W. Ord Benjamin E. Volcani 《Molecular & general genetics : MGG》1992,233(1-2):302-310
Summary This paper reports the discovery and initial characterization of two small plasmids, pCfl and pCf2, in the marine diatomCylindrotheca fusiformis. Extracted diatom DNA separates into two bands in CsCI-Hoechst 33258 dye gradients. Upon agarose gel electrophoresis of a sample of the upper band of the gradient we observed, in addition to high molecular weight (genomic) chloroplast and mitochondrial DNA, pairs of lower molecular weight bands. These bands contained two species of circular plasmid DNA molecules, as shown by electron microscopy. The nucleotide composition of the plasmids, and chloroplast and mitochondrial DNAs is similar, as indicated by their co-banding in the gradients. They were cloned, and their restriction maps determined, showing that pCfl is 4.27 and pCf2 4.08 kb in size. By hybridization analysis, we showed that pCfl and pCf2 share regions of similarity, but not identity. Neither plasmid hybridizes with mitochondrial DNA. Both plasmids hybridize with chloroplast DNA, and pCf2 also hybridizes with nuclear DNA. 相似文献
8.
The formation and metabolism of glycolate in the cyanobacterium Coccochloris peniocystis was investigated and the activities of enzymes of glycolate metabolism assayed. Photosynthetic 14CO2 incorporation was O2 insensitive and no labelled glycolate could be detected in cells incubated at 2 and 21% O2. Under conditions of 100% O2 glycolate comprised less than 1% of the acid-stable products indicating ribulose 1,5 bisphosphate (RuBP) oxidation only occurs under conditions of extreme O2 stress. Metabolism of [1-14C] glycolate indicated that as much as 62% of 14C metabolized was released as 14CO2 in the dark. Metabolism of labelled glycolate, particularly incorporation of 14C into glycine, was inhibited by the amino-transferase inhibitor amino-oxyacetate. Metabolism of [2-14C] glycine was not inhibited by the serine hydroxymethyltransferase inhibitor isonicotinic acid hydrazide and little or no labelled serine was detected as a result of 14C-glycolate metabolism. These findings indicate that a significant amount of metabolized glycolate is totally oxidized to CO2 via formate. The remainder is converted to glycine or metabolized via a glyoxylate cycle. The conversion of glycine to serine contributes little to glycolate metabolism and the absence of hydroxypyruvate reductase confirms that the glycolate pathway is incomplete in this cyanobacterium.Abbreviations AAN
aminoacetonitrile
- AOA
aminooxyacetate
- DIC
dissolved inorganic carbon
- INH
isonicotinic acid hydrazide
- PEP
phosphoenolpyruvate
- PEPcase
phosphoenolpyruvate carboxylase
- PG
phosphoglycolate
- PGA
phosphoglyceric acid
- PGPase
phosphoglycolate phosphatase
- PR
photorespiration
- Rubisco
ribulose-1,5-bisphosphate carboxylase oxygenase
- TCA
trichloroacetic acid
- RuBP
ribulose-1,5-bisphosphate 相似文献
9.
Differences between clones of the diatom Cylindrotheca fusiformi were studied with respect to growth rate, total lipid content and fatty acid composition. Sixty clones were isolated and cultivated under batch conditions. All clones were grown under identical conditions (temperature 22±1°C, light intensity 100 μmol photon m−2 s−1, salinity 28, F/2 medium) and were harvested in the late exponential growth phase for lipid and fatty acid analysis. The results show a wide variation in growth, total lipid content and fatty acid profiles among clones (p<0.05). The major fatty acids in the 60 clones were 14:0 (4.6–9.1%), 16:0 (18.2–32.0%), 16:1n-7 (21.6–33.1%), 20:4n-6 (4.1–13.5%) and 20:5n-3 (6.2–17.2%), with the highest proportion of 20:4n-6 in clone CF13 (13.5%), and the highest proportion of 20:5n-3 in clone CF5 (17.2%). The results support the view that some microalgal fatty acid variation is not restricted to interspecific variation and external factors, but also varies from clone to clone within the same species. 相似文献
10.
Mark Hildebrand Patricia Hasegawa Robin W. Ord V. Samantha Thorpe Charles A. Glass Benjamin E. Volcani 《Plant molecular biology》1992,19(5):759-770
We have determined the nucleotide sequence of two small circular DNA plasmids, pCf1 and pCf2 [22], from the marine diatom Cylindrotheca fusiformis. pCf1 is 4273 bp, and pCf2 is 4079 bp in size. In each plasmid, all of the major open reading frames (ORFs) are encoded on the same DNA strand. Two ORFs are similar, comparing the two plasmids. ORF218 (pCf1) and ORF217 (pCf2) share 80% amino acid identity and ORF482 (pCf1) and ORF484 (pCf2) share 54% amino acid identity. ORF218/217 shows significant similarity (28–31% amino acid identity) to the Tn3 class of resolvases. Resolvases are most commonly found in bacterial transposons. However, two other features found in the Tn3 class of transposon are missing in the plasmids; an ORF encoding a transposase and terminal inverted repeat sequences. This, and data mapping the portions of the plasmids that hybridize to genomic chloroplast DNA, suggest that the plasmids do not contain active transposons. By analogy with the R46 plasmid from Enterobacter [5, 6], another potential role for the resolvases encoded by pCf1 and pCf2 is the conversion of multimeric forms of the plasmid to monomers. The similarity of ORF218/217 to resolvases documents the first identification of a potential coding function in an algal plasmid. 相似文献
11.
The transport of silicon is an integral part of the synthesis of the silicified cell wall of diatoms, yet knowledge of the
number, features, and regulation of silicon transporters is lacking. We report the isolation and sequence determination of
five silicon transporter (SIT) genes from Cylindrotheca fusiformis, and examine their expression patterns during cell wall synthesis. The encoded SIT amino acid sequences are highly conserved
in their putative transmembrane domains. Nine conserved cysteines in this domain may account for the sensitivity of silicon
uptake to sulfhydryl blocking agents. A less conserved C-terminal domain is predicted to form coiled-coil structures, suggesting
that the SITs interact with other proteins. We show that SIT gene expression is induced just prior to, and during, cell wall synthesis. The genes are expressed at very different levels,
and SIT1 is expressed in a different pattern from SIT 2–5. Hybridization experiments show that multiple SIT gene copies are present in all diatom species tested. From the data we infer that individual transporters play specific roles
in silicon uptake, and propose that the cell regulates uptake by controlling the amount or location of each. The identification
of all SIT genes in C. fusiformis will enhance our understanding of the mechanism and control of silicon transport in diatoms.
Received: 17 June 1998 / Accepted: 22 September 1998 相似文献
12.
Summary Several TEM and SEM techniques were applied to examine developing structures in valves of the centric diatomThalassiosira eccentrica (Ehrenb.) Cleve after cytokinesis. It was possible to confirm that in each stage of the silicification process there is a distinction between a growing zone with a loose assemblage of silica spheres and a compacting zone in an older phase of development. The spherical structure of the silica in the growing zone results from the addition of silica by small cytoplasmic vesicles of about 300 to 400 Å in diameter. The vesicle membrane fuses with the silicalemma and the vesicle content is released into the silica-deposition vesicle. The origin of these vesicles, named STV, is still unknown. 相似文献
13.
In diatoms, the siliceous cell walls are enveloped by an organic component which includes 4-hydroxyproline and 3,4-dihydroxy-L-proline. The formation of these two amino acids were studied in Nitzschia angularis in Si-starvation synchrony. Both appear to arise from peptidyl proline. Its conversion to peptidyl hydroxyproline was shown in cell-free extracts and in kinetic studies using [14C]proline. Two lines of evidence indicate that dihydroxyproline does not arise from the further hydroxylation of peptidyl hydroxyproline: First, there was a lag of several minutes between the incorporation of [14C]proline into protein and the appearance therein of [14C]hydroxyproline but no such lag for the appearance of dihydroxyproline. Second, ,-dipyridyl blocked the formation of hydroxyproline, but not of dihydroxypyroline, from peptidyl proline. Cell walls made in the presence of dipyridyl differed little in overall chemical composition from walls made in its absence and were morphologically identical. [14C]dehydroproline was rapidly metabolized in the cells, with [14C]dihydroxyproline a prominent product. Studies of the conversion of [14C]proline to [14C]hydroxyproline at various stages of wall formation showed an increased synthesis of [14C]dihydroxyproline at the end of cell separation. 相似文献
14.
Microbodies of the algaMougeotia were isolated in a linear sucrose gradient. The organelles, which moved to the density 1.24 g cm–3, contained about 70% of the glycolate oxidase (EC 1.1.3.1) found in this alga. The enzyme oxidized glycolate, utilizing either oxygen or 2,6-dichlorophenolindophenol (DCPIP) as the electron acceptor. L-Lactate was an alternate substrate; almost no D-lactate was utilized. In the presence of O2, a Km of 415 M was determined for glycolate, whereas the Km for L-lactate was about 5,000 M. In the presence of DCPIP, lower concentrations of glycolate and L-lactate were sufficient to obtain the highest rates of enzyme activity.Abbreviations DCPIP
2,6-dichlorophenolindophenol
Supported by the Deutsche Forschungsgemeinschaft 相似文献
15.
Glycolate can be measured in the supernatant fraction after incubation of butyrate-grown cells of Rhodospirillum rubrum either colorimetrically by the Calkins method or enzymatically using glycolate oxidase. Under optimal conditions, half-maximal excretion occurs at 11% O2 and the maximal rate is 6.9 nmol of glycolate min-1 mg protein-1 at 30°C. The pH and temperature optima are 7.6 and 30°C and light intensity is saturating in the range of 2–10×104 lux. Carbon dioxide inhibits glycolate excretion and exogenous butyrate stimulates. Glycolate excretion is maximal by butyrate-light grown cells harvested in the early stationary phase and under all conditions is proportional to the cellular content of ribulose 1,5-bisphosphate carboxylase/oxygenase.Non-Standard Abbreviations Bicine
(N,N-bis[2-hydroxyethyl]glycine)
- RuBP
d-ribulose-1,5-bisphosphate
- HPMS
2-pyridylhydroxymethanesulfonate 相似文献
16.
The 18O-enrichment of CO2 produced in the light or during the post-illumination burst was measured by mass spectrometry when a photoautotrophic cell suspension of Euphorbia characias L. was placed in photorespiratory conditions in the presence of molecular 18O2. The only 18O-labeled species produced was C18O16O; no C18O18O could be detected. Production of C18O16O ceased after addition of two inhibitors of the photosynthetic carbon-oxidation cycle, aminooxyacetate or aminoacetonitrile, and was inhibited by high levels of CO2. The average enrichment during the post-illumination burst was estimated to be 46 ± 15% of the enrichment of the O2 present during the preceding light period. Addition of exogenous carbonic anhydrase, by catalyzing the exchange between CO2 and H2O, drastically diminished the 18O-enrichment of the produced CO2. The very low carbonio-anhydrase level of the photoautotrophic cell suspension probably explains why the 18O labeling of photorespiratory CO2 could be observed for the first time. These data allow the establishment of a direct link between O2 consumption and CO2 production in the light, and the conclusion that CO2 produced in the light results, at least partially, from the mitochondrial decarboxylation of the glycine pool synthesized through the photosynthetic carbon-oxidation cycle. Analysis of the C18O16O and CO2 kinetics provides a direct and reliable way to assess in vivo the real contribution of photorespiratory metabolism to CO2 production in the light. 相似文献
17.
Donna L. Sutherland 《Polar Biology》2008,31(7):879-888
The diversity of diatom communities found epiphytically on red macroalgae collected under the sea ice at Cape Evans, Antarctica,
was studied microscopically. Comparison of communities along a depth profile showed that species diversity decreased as depth
below sea ice increased. Dominant taxa also changed with depth, with Cocconeis fasciolata dominant at 10 and 15 m, Porosira glacialis at 20 m and Eunotogramma marginopunctatum at 25 m. Epiphytic communities were also compared to sympagic and sediment-associated communities collected from a single
depth. Species richness was greatest for communities associated with surface sediments while the poorest was found in sympagic,
or sea-ice, communities. E. marginopunctatum, previously only described from fossil material, was found associated epiphytically on macroalgae from 20 to 25 m below sea
ice. 相似文献
18.
Intact attached leaves of wheat were illuminated at 2000 μmol m-2·s-1 in CO2-free gas for 3 hours, inhibition percentage of photosynthesis in these leaves by illumination was related lo oxygen concentration in the gas. (1) The damage to the leaves became less gradually when oxygen concentration rose from 0 to 10%. (2) Almost no damage occurred between 10%–50% O2. (3) The damage appeared again when oxygen concentration exceeded 50%. The duration of CO2 outburst of wheat leaves in CO2-free gas containing 8%–11% O2 was 0nly about 15–30 min. However, no photoinhibition could be observed under this condition. Oxygen also could prevent isolated chloroplasts from the damage by strong light. No matter what concentration of oxygen in CO2-free gas was during photoinhibition treatment, the photodamaged site was always in PSⅡ. It is concluded from the results that the way in which photoinhibition was alleviated by oxygen seems not only to be photorespiration, but also the other unknown mechanisms waich may play more important part in it. 相似文献
19.
The occurrence of glycolate oxidase in addition to glycolate dehydrogenase in Dunaliella salina and D. primolecta, as reported in the literature, could not be confirmed. Both species were demonstrated to possess only glycolate dehydrogenase. After separation of organelles by gradient centrifugation, glycolate dehydrogenase along with hydroxypyruvate reductase was found exclusively in the mitochondria. Thus the peroxisomes from Dunaliella are not of the leaf-type: because of their content of catalase, uricase and hydroxyacyl-CoA dehydrogenase they appear to be of the same type as in Eremosphaera and other chlorophycean algae. No activity of glycolate dehydrogenase was found in the chloroplast fraction when the 2,6-dichlorophenol-indophenol test was used.This work was supported by the Deutsche Forschungsgemeinschaft. 相似文献
20.
Comparison of two domoic acid-producing diatoms: a review 总被引:1,自引:1,他引:0
In the past five years, awareness of domoic acid has increased from localized problems in Canada to outbreaks along both North American coasts. The phycotoxin domoic acid causes Amnesic Shellfish Poisoning (ASP) in humans and can be fatal. The known species of phytoplankton responsible for production of domoic acid include some pennate diatom species of the genus Nitzschia, sensu latu, which form stepped chains typical of the Pseudonitzschia. These diatoms are widely distributed, but their life histories and population dynamics are poorly understood. This review addresses histories of occurrences, morphology, geographical distributions, seasonal patterns, growth requirements, domoic acid production, and trophic interactions, with emphasis on a comparison of Pseudonitzschia pungens f. multiseries (Hasle) Hasle and Pseudonitzschia australis Frenguelli. Through continued research it will become possible to provide guidelines for regulatory agencies that protect both the consumer and the seafood industry. 相似文献