首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
MARCKS (Myristoylated Alanine-Rich C Kinase substrate) is a natively unfolded protein that interacts with actin, Ca2 +–Calmodulin, and some plasma membrane lipids. Such interactions occur at a highly conserved region that is specifically phosphorylated by PKC: the Effector Domain. There are two other conserved domains, MH1 (including a myristoylation site) and MH2, also located in the amino terminal region and whose structure and putative protein binding capabilities are currently unknown. MH2 sequence contains a serine that we described as being phosphorylated only in differentiating neurons (S25 in chick). Here, Circular Dichroism (CD) and Nuclear Magnetic Resonance (NMR) spectroscopy were used to characterize the phosphorylated and unphosphorylated forms of a peptide with the MARCKS sequence surrounding S25. The peptide phosphorylated at this residue is recognized by monoclonal antibody 3C3 (mAb 3C3). CD and NMR data indicated that S25 phosphorylation does not cause extensive modifications in the peptide structure. However, the sharper lines, the absence of multiple spin systems and relaxation dispersion data observed for the phosphorylated peptide suggested a more ordered structure. Surface Plasmon Resonance was employed to compare the binding properties of mAb 3C3 to MARCKS protein and peptide. SPR showed that mAb 3C3 binds to the whole protein and the peptide with a similar affinity, albeit different kinetics. The slightly ordered structure of the phosphorylated peptide might be at the origin of its ability to interact with mAb 3C3 antibody, but this binding did not noticeably modify the peptide structure.  相似文献   

2.
MARCKS (Myristoylated alanine-rich C kinase substrate) is a ubiquitous actin regulating protein, especially abundant in the nervous system. This protein may be phosphorylated by other enzymes, particularly by proline-directed kinases, at serine and threonine residues located at different sites along its chain. We demonstrate here that the phosphorylation of chick MARCKS at serine 25, which only takes place in the nervous tissue, does not impair its association with particular plasma membrane regions such as the “detergent resistant microdomains” that also contain actin. This phosphorylated form of MARCKS is able to bind actin, and the integrity of actin filaments in cells (retina neuroblasts) is a necessary condition to sustain this phosphorylation. Taken together, these results indicate the existence of a functional interaction between actin filaments and MARCKS in cells, and particularly of an action in maintaining a phosphorylation in a region of the N-terminal moiety of MARCKS.  相似文献   

3.
Myristoylated alanine-rich C kinase substrate (MARCKS) is a prominent protein kinase C (PKC) substrate that is targeted to the plasma membrane by an amino-terminal myristoyl group. In its nonphosphorylated form, MARCKS cross-links F-actin and binds calmodulin (CaM) reciprocally. However, upon phosphorylation by PKC, MARCKS releases the actin or CaM. MARCKS may therefore act as a CaM sink in resting cells and regulate CaM availability during cell activation. We have demonstrated previously that thrombin-induced myosin light chain (MLC) phosphorylation and increased monolayer permeability in bovine pulmonary artery endothelial cells (BPAEC) require both PKC- and CaM-dependent pathways. We therefore decided to investigate the phosphorylation of MARCKS in BPAEC to ascertain whether this occurs in a temporally relevant manner to participate in the thrombin-induced events. MARCKS is phosphorylated in response to thrombin with a time course similar to that seen with MLC. As expected, MARCKS is also phosphorylated by phorbol 12-myristate 13 acetate (PMA), a PKC activator, but with a slower onset and more prolonged duration. Bradykinin also enhances MARCKS phosphorylation in BPAEC, but histamine does not. MARCKS is distributed evenly between the membrane and cytosol in BPAEC, and neither thrombin nor PMA caused significant translocation of the protein. Specific PKC inhibitors attenuated MARCKS phosphorylation by either thrombin or PMA. Since thrombin-induced MLC phosphorylation is also attenuated by these inhibitors, MARCKS may be involved in MLC kinase activation and subsequent BPAEC contraction. W7, a CaM antagonist, enhances the phosphorylation of MARCKS. This was expected since CaM binding to MARCKS has been shown to decrease MARCKS phosphorylation by PKC. On the other hand, tyrosine kinase inhibitors, genistein and tyrphostin, attenuate MARCKS phosphorylation but have no effect on MLC phosphorylation, suggesting that MARCKS may be phosphorylated by kinases other than PKC. Phosphorylation of MARCKS outside the PKC phosphorylation domain would not be expected to induce the release of CaM. These data provide support for the hypothesis that MARCKS may serve as a regulator of CaM availability in BPAEC. © 1996 Wiley-Liss, Inc.  相似文献   

4.
Phosphorylation of myristoylated alanine-rich protein kinase C substrate (MARCKS) by protein kinase C eliminates actin filament cross-linking activity, but residual filament binding activity docks phosphorylated MARCKS on filamentous actin. The postulated actin-binding region of MARCKS, which includes a Ca(2+)-calmodulin-binding site, has been portrayed with alpha-helical structure, analogous to other calmodulin-binding domains. Previous speculation suggested that MARCKS may dimerize to form the two functional actin-binding sites requisite for cross-linking activity. Contrary to these hypotheses, we show that MARCKS peptide with actin-cross-linking activity has an extended structure in aqueous solution but assumes a more compact structure upon phosphorylation. We hypothesize that structural changes in the MARCKS peptide induced by phosphorylation create a dynamic structure that, on average, has only one actin-binding site. Moreover, independent of the state of phosphorylation, this peptide is monomeric rather than dimeric, implying that two distinct actin-binding sites are responsible for the actin-cross-linking activity of unphosphorylated MARCKS. These studies uniquely elucidate the mechanism by which phosphorylation of MARCKS induces structural changes and suggest how these structural changes determine biological activity.  相似文献   

5.
The large majority of chromaffin vesicles are excluded from the plasma membrane by a cortical F-actin network. Treatment of chromaffin cells with phorbol 12-myristate 13-acetate produces disassembly of cortical F-actin, increasing the number of vesicles at release sites (Vitale, M. L., Seward, E. P., and Trifaró, J. M. (1995) Neuron 14, 353-363). Here, we provide evidence for involvement of myristoylated alanine-rich protein kinase C substrate (MARCKS), a protein kinase C substrate, in chromaffin cell secretion. MARCKS binds and cross-links F-actin, the latter is inhibited by protein kinase C-induced MARCKS phosphorylation. MARCKS was found in chromaffin cells by immunoblotting. MARCKS was also detected by immunoprecipitation. In intact or permeabilized cells MARCKS phosphorylation increased upon stimulation with 10(-7) m phorbol 12-myristate 13-acetate. This was accompanied by cortical F-actin disassembly and potentiation of secretion. MARCKS phosphorylation, cortical F-actin disassembly, and potentiation of Ca(2+)-evoked secretion were inhibited by a peptide (MARCKS phosphorylation site domain sequence (MPSD)) with amino acid sequence corresponding to MARCKS phosphorylation site. MPSD was phosphorylated in the process. A similar peptide (alanine-substituted phosphorylated site domain) with four serine residues of MPSD substituted by alanines was ineffective. These results provide the first evidence for MARCKS involvement in chromaffin cell secretion and suggest that regulation of cortical F-actin cross-linking might be involved in this process.  相似文献   

6.
L A Allen  A Aderem 《The EMBO journal》1995,14(6):1109-1121
MARCKS is a protein kinase C (PKC) substrate that is phosphorylated during neurosecretion, phagocyte activation and growth factor-dependent mitogenesis. MARCKS binds calcium/calmodulin and crosslinks F-actin, and both these activities are regulated by PKC-dependent phosphorylation. We present evidence here that PKC-dependent phosphorylation also regulates the cycling of MARCKS between the plasma membrane and Lamp-1-positive lysosomes. Immuno-fluorescence and immunoelectron microscopy, and subcellular fractionation, demonstrated that MARCKS was predominantly associated with the plasma membrane of resting fibroblasts. Activation of PKC resulted in MARCKS phosphorylation and its displacement from the plasma membrane to Lamp-1-positive lysosomes. MARCKS phosphorylation is required for its translocation to lysosomes since mutating either the serine residues phosphorylated by PKC (phos-) or the PKC inhibitor staurosporine, prevented MARCKS phosphorylation, its release from the plasma membrane, and its subsequent association with lysosomes. In the presence of lysosomotropic agents or nocodazole, MARCKS accumulated on lysosomes and returned to the plasma membrane upon drug removal, further suggesting that the protein cycles between the plasma membrane and lysosomes. In contrast to wild-type MARCKS, the phos- mutant did not accumulate on lysosomes in cells treated with NH4Cl, suggesting that basal phosphorylation of MARCKS promotes its constitutive cycling between these two compartments.  相似文献   

7.
The myristoylated alanine-rich C kinase substrate, or MARCKS protein, has been implicated in several cellular processes, yet its physiological function remains unknown. We have studied the molecular basis of its membrane association in a cell-free system in order to help elucidate its regulation and function. First, we showed that the MARCKS protein incorporated [3H]myristate when its mRNA was translated in vitro in reticulocyte lysates. The myristoylated protein bound rapidly to freshly fractionated cell membranes, while a nonmyristoylated mutant associated to a much lesser extent (< 15% of wild type). To determine whether this binding was due to a specific cytoplasmic-face protein "receptor," as is seen with pp60v-src, we pretreated the membranes in several ways. Prior treatment of membranes with heat (100 degrees C for 3 min) or trypsin did not affect subsequent MARCKS binding. Binding was markedly decreased in 50 mM EDTA, 0.5 M NaCl, or 1.0% Triton X-100; it was restored to normal after removal of the NaCl and EDTA but was still decreased after removal of the Triton X-100. These findings argued against the existence of a protein receptor for the MARCKS protein on cellular membranes. Finally, MARCKS protein phosphorylated in vitro with protein kinase C bound to the cell membranes to the same extent as the nonphosphorylated protein; this binding was also unaffected by an excess of a synthetic peptide corresponding to the phosphorylation site domain of the protein. We conclude that, at least in this in vitro system, the membrane association of the MARCKS protein is primarily dependent on the amino-terminal myristate moiety and does not appear to involve a specific cytoplasmic-face protein receptor.  相似文献   

8.
MARCKS (Myristoylated Alanine-Rich C Kinase Substrate) is a peripheral membrane protein, especially abundant in the nervous system, and functionally related to actin organization and Ca-calmodulin regulation depending on its phosphorylation by PKC. However, MARCKS is susceptible to be phosphorylated by several different kinases and the possible interactions between these phosphorylations have not been fully studied in intact cells. In differentiating neuroblasts, as well as some neurons, there is at least one cell-type specific phosphorylation site: serine 25 (S25) in the chick. We demonstrate here that S25 is included in a highly conserved protein sequence which is a Cdk phosphorylatable region, located far away from the PKC phosphorylation domain. S25 phosphorylation was inhibited by olomoucine and roscovitine in neuroblasts undergoing various states of cell differentiation in vitro. These results, considered in the known context of Cdks activity in neuroblasts, suggest that Cdk5 is the enzyme responsible for this phosphorylation. We find that the phosphorylation by PKC at the effector domain does not occur in the same molecules that are phosphorylated at serine 25. The in situ analysis of the subcellular distribution of these two phosphorylated MARCKS variants revealed that they are also segregated in different protein clusters. In addition, we find that a sustained stimulation of PKC by phorbol-12-myristate-13-acetate (PMA) provokes the progressive disappearance of phosphorylation at serine 25. Cells treated with PMA, but in the presence of several Ser/Thr phosphatase (PP1, PP2A and PP2B) inhibitors indicated that this dephosphorylation is achieved via a phosphatase 2A (PP2A) form. These results provide new evidence regarding the existence of a novel consequence of PKC stimulation upon the phosphorylated state of MARCKS in neural cells, and propose a link between PKC and PP2A activity on MARCKS.  相似文献   

9.
We have evaluated the possibility that a major, abundant cellular substrate for protein kinase C might be a calmodulin-binding protein. We have recently labeled this protein, which migrates on sodium dodecyl sulfate-gel electrophoresis with an apparent Mr of 60,000 from chicken and 80,000-87,000 from bovine cells and tissues, the myristoylated alanine-rich C kinase substrate (MARCKS). The MARCKS proteins from both species could be cross-linked to 125I-calmodulin in a Ca2+-dependent manner. Phosphorylation of either protein by protein kinase C prevented 125I-calmodulin binding and cross-linking, suggesting that the calmodulin-binding domain might be located at or near the sites of protein kinase C phosphorylation. Both bovine and chicken MARCKS proteins contain an identical 25-amino acid domain that contains all 4 of the serine residues phosphorylated by protein kinase C in vitro. In addition, this domain is similar in sequence and structure to previously described calmodulin-binding domains. A synthetic peptide corresponding to this domain inhibited calmodulin binding to the MARCKS protein and also could be cross-linked to 125I-calmodulin in a calcium-dependent manner. In addition, protein kinase C-dependent phosphorylation of the synthetic peptide inhibited its binding and cross-linking to 125I-calmodulin. The peptide bound to fluorescently labeled 5-dimethylaminonaphthalene-1-sulfonyl-calmodulin with a dissociation constant of 2.8 nM, and inhibited the calmodulin-dependent activation of cyclic nucleotide phosphodiesterase with an IC50 of 4.8 nM. Thus, the peptide mimics the calmodulin-binding properties of the MARCKS protein and probably represents its calmodulin-binding domain. Phosphorylation of these abundant, high affinity calmodulin-binding proteins by protein kinase C in intact cells could cause displacement of bound calmodulin, perhaps leading to activation of Ca2+-calmodulin-dependent processes.  相似文献   

10.
We visualized the translocation of myristoylated alanine-rich protein kinase C substrate (MARCKS) in living Chinese hamster ovary-K1 cells using MARCKS tagged to green fluorescent protein (MARCKS-GFP). MARCKS-GFP was rapidly translocated from the plasma membrane to the cytoplasm after the treatment with phorbol ester, which translocates protein kinase C (PKC) to the plasma membrane. In contrast, PKC activation by hydrogen peroxide, which was not accompanied by PKC translocation, did not alter the intracellular localization of MARCKS-GFP. Non-myristoylated mutant of MARCKS-GFP was distributed throughout the cytoplasm, including the nucleoplasm, and was not translocated by phorbol ester or by hydrogen peroxide. Phosphorylation of wild-type MARCKS-GFP was observed in cells treated with phorbol ester but not with hydrogen peroxide, whereas non-myristoylated mutant of MARCKS-GFP was phosphorylated in cells treated with hydrogen peroxide but not with phorbol ester. Phosphorylation of both MARCKS-GFPs reduced the amount of F-actin. These findings revealed that PKC targeting to the plasma membrane is required for the phosphorylation of membrane-associated MARCKS and that a mutant MARCKS existing in the cytoplasm can be phosphorylated by PKC activated in the cytoplasm without translocation but not by PKC targeted to the membrane.  相似文献   

11.
A recently cloned mouse cDNA designated F52 encodes a putative protein with striking sequence similarity to the MARCKS protein, a major cellular substrate for protein kinase C (PKC). Major regions of sequence similarity include the amino-terminal myristoylation consensus sequence and the central calmodulin-binding/PKC phosphorylation site domain. The F52 protein was expressed in Escherichia coli with apparent M(r) 50,000; it was a substrate for PKC and comigrated on two-dimensional electrophoresis with a myristoylated protein whose phosphorylation was stimulated by phorbol 12-myristate 13-acetate in mouse neuroblastoma cells. The F52 protein also was myristoylated in E. coli by co-expression with N-myristoyltransferase. A 24-amino acid peptide derived from the protein's phosphorylation site domain was a good substrate for PKC; like the cognate MARCKS peptide, it was phosphorylated with high affinity (S0.5 = 173 nM) and positive cooperativity (KH = 5.4). The F52 peptide also bound calmodulin with high affinity (Kd = less than 3 nM); this binding could be disrupted by phosphorylation of the peptide with PKC, with a half-time of 8 min. The F52 protein is clearly a member of the MARCKS family as defined by primary sequence; in addition, the two proteins share several key attributes that may be functionally important.  相似文献   

12.
Basic fibroblast growth factor (bFGF) is a well-characterized peptide hormone that has mitogenic activity for various cell types and elicits a characteristic set of responses on the cell types investigated. In this report we confirmed that bFGF is a potent mitogen for rat brain-derived oligodendrocyte (OL) precursor cells as well as for differentiated OL in secondary culture. bFGF was shown to induce expression of the protooncogene c-fos in OL. The role of protein kinase C (PKC) in mediating bFGF-stimulated proliferation as well as c-fos expression in OL was investigated. The PKC activator phorbol 12-myristate 13-acetate (PMA) stimulated c-fos expression but did not trigger cell proliferation. When PKC was down-regulated by pretreatment of OL with PMA for 20 h, the bFGF-mediated stimulations of OL proliferation and c-fos mRNA expression were still observed, whereas the induction of c-fos mRNA by PMA was totally inhibited. These data demonstrate that the bFGF mitogenic signaling pathway in OLs does not require PKC. On the other hand, bFGF was found to stimulate specifically the phosphorylation of a limited number of PKC substrates in oligodendroglial cells, including the MARCKS protein. The bFGF-dependent phosphorylation of MARCKS protein was totally inhibited when PKC was first down-regulated, indicating that the phosphorylation of this protein is PKC dependent. Tryptic digestion of the phosphorylated MARCKS protein revealed that bFGF stimulated specifically the phosphorylation of the MARCKS protein on a single phosphopeptide. We provide evidence that bFGF also stimulated fatty acylation of the MARCKS protein, which might explain the observed specific bFGF-dependent phosphorylation of this protein in OL. We propose that bFGF-dependent fatty acylation and phosphorylation of the MARCKS protein are not essential for the transduction of the bFGF mitogenic signal but are probably linked to differentiation processes elicited by bFGF on OL.  相似文献   

13.
Abstract: Expression of the protein kinase C substrate MARCKS and other heat-stable myristoylated proteins have been studied in four cultured neural cell lines. Amounts of MARCKS protein, measured by [3H]myristate labeling and western blotting, were severalfold higher in rat C6 glioma and human HTB-11 (SK-N-SH) neuroblastoma cells than in HTB-10 (SK-N-MC) or mouse N1E-115 neuroblastoma cells. Higher levels of MARCKS mRNA were also detected in the former cell lines by S1 nuclease protection assay. At least two additional 3H-myristoylated proteins of 50 and 40–45 kDa were observed in cell extracts heated to >80°C or treated with perchloric acid. The 50-kDa protein, which bound to calmodulin in the presence of Ca2+, was more prominent in cells (N1E-115 and HTB-10) with less MARCKS, whereas neuromodulin (GAP-43) was detected in N1E-115 and HTB-11 cells only. Heating resulted in a fourfold increase in the detection of MARCKS by western blotting; this was not paralleled by a similar increase in [3H]myristate-labeled MARCKS and may be due to a conformational change affecting the C-terminal epitope or enhanced retention of the protein on nitrocellulose. Addition of β-12- O -tetradecanoylphorbol 13-acetate resulted in three- to fourfold increased phosphorylation of MARCKS in HTB-11 cells, with little increase noted in HTB-10 cells. These results indicate that MARCKS, neuromodulin, and other calmodulin-binding protein kinase C substrates exhibit distinct levels of expression in cultured neurotumor cell lines. Of these proteins, only MARCKS appears to be correlated with phorbol ester stimulation of phosphatidylcholine turnover in these cells.  相似文献   

14.
15.
Myristoylated alanine-rich C kinase substrate (MARCKS) is a calmodulin (CaM)- and actin-binding protein and prominent protein kinase C (PKC) substrate. In vitro phosphorylation of MARCKS by PKC has been shown to induce the release of both CaM and actin, leading to the suggestion that MARCKS may regulate CaM availability during agonist-induced signalling. In support of this hypothesis we previously demonstrated that thrombin-induced MARCKS phosphorylation in endothelial cells (EC) parallels activation of myosin light chain kinase, a CaM-dependent enzyme. To test this theory further, we transfected CHO cells, which normally do not express significant levels of MARCKS, with a MARCKS cDNA. The thrombin-stimulated phosphorylation of myosin light chains and the sensitivity to CaM antagonists in the MARCKS overexpressing cells was the same as that in control CHO cells. MARCKS associated with the actin cytoskeleton in EC was markedly increased upon treatment with the PKC activator, PMA, but only modestly enhanced by thrombin treatment. Similarly, colocalisation of MARCKS with actin was enhanced when the EC were challenged with PMA but not thrombin. These data may be partially explained by PKC-independent phosphorylation of MARCKS in response to thrombin stimulation.  相似文献   

16.
Diacylglycerol kinase (DGK) terminates diacylglycerol (DAG) signaling by phosphorylating DAG to produce phosphatidic acid, which also has signaling properties. Thus, precise control of DGK activity is essential for proper signal transduction. We demonstrated previously that a peptide corresponding to the myristoylated alanine-rich C kinase substrate (MARCKS) phosphorylation site domain (PSD) in DGK zeta was phosphorylated in vitro by an active fragment of protein kinase C (PKC). In the present study, we tested full-length DGK zeta and found that PKC alpha phosphorylated DGK zeta on serines within the MARCKS PSD in vitro and in vivo. DGK zeta also coimmunoprecipitated with PKC alpha, suggesting that they reside in a regulated signaling complex. We then tested whether phosphorylation affected DAG kinase activity. We found that a mutant (DGK zeta S/D) in which serines within the MARCKS PSD were altered to aspartates (to mimic phosphorylation) had lower activity compared with wild-type DGK zeta or a control mutant (DGK zeta S/N) in which the same serines were changed to asparagines. Furthermore, activation of PKC alpha by phorbol 12-myristate 13-acetate inhibited the activity of wild-type DGK zeta, but not DGK zeta S/D, in human embryonic kidney 293 cells. These results suggest that by phosphorylating the MARCKS PSD, PKC alpha attenuates DGK zeta activity. Supporting this, we found that cells expressing DGK zeta S/D had higher DAG levels and grew more rapidly compared with cells expressing DGK zeta S/N that could not be phosphorylated. Taken together, these results indicate that PKC alpha phosphorylates DGK zeta in cells, and this phosphorylation inhibits its kinase activity to remove cellular DAG, thereby affecting cell growth.  相似文献   

17.
The increased accumulation of activated microglia containing amyloid β protein (Aβ) around senile plaques is a common pathological feature in subjects with Alzheimer's disease (AD). Much less is known, however, of intracellular signal transduction pathways for microglial activation in response to Aβ. We investigated intracellular signaling in response to Aβ stimulation in primary cultured rat microglia. We found that the kinase activity of PKC-δ but not that of PKC- or - is increased by stimulation of microglia with Aβ, with a striking tyrosine phosphorylation of PKC-δ. In microglia stimulated with Aβ, tyrosine phosphorylation of PKC-δ was evident at the membrane fraction without an overt translocation of PKC-δ. PKC-δ co-immunoprecipitated with MARCKS from microglia stimulated with Aβ. Aβ induced translocation of MARCKS from the membrane fraction to the cytosolic fraction. Immunocytochemical analysis revealed that phosphorylated MARCKS accumulated in the cytoplasm, particularly at the perinuclear region in microglia treated with Aβ. Taken together with our previous observations that Aβ-induced phosphorylation of MARCKS and chemotaxis of microglia are inhibited by either tyrosine kinase or PKC inhibitors, our results provide evidence that Aβ induces phosphorylation and translocation of MARCKS through the tyrosine kinase-PKC-δ signaling pathway in microglia.  相似文献   

18.
We have previously shown that calpain promotes myoblast fusion by acting on protein kinase C-alpha and the cytosolic phosphorylated form of MARCKS. In other cell types, various isoforms of calpain, PKC alpha and MARCKS were found associated with caveolae. These vesicular invaginations of the plasma membrane are essential for myoblast fusion and differentiation. We have isolated caveolae from myoblasts and studied the presence of calpain isoforms and their possible effects on signalling mediated by caveolae-associated PKC. Our results show that milli-calpain co-localizes with myoblast caveolae. Futhermore we provide evidence, using a calcium ionophore and a specific inhibitor of calpains (calpastatin peptide), that milli-calpain reduces the PKC alpha and MARCKS content in these structures. Purified milli-calpain causes the appearance of the active catalytic fragment of PKC alpha (PKM), without having an effect on MARCKS. Addition of phorbol myristate acetate, an activator of PKC, induces tranlocation of PKC alpha towards caveolae and results in a significant reduction of MARCKS associated with caveolae. This phenomenon is not observed when a PKC alpha inhibitor is added at the same time. We conclude that the presence of biologically active milli-calpain within myoblast caveolae induces, in a PKC alpha-dependent manner, MARCKS translocation towards the cytosol. Such a localised signalling event may be essential for myoblast fusion and differentiation.  相似文献   

19.
The myristoylated alanine-rich C kinase substrate (MARCKS) is a prominent PKC-substrate in the brain, which has been implicated in brain development, cytoskeletal remodeling, calcium/calmodulin signaling, and neuroplasticity. The sequence of the Macs gene codes for a protein that has three highly conserved domains including a 5' myristoylation region and a 25-amino-acid phosphorylation site domain (PSD), which are involved in anchoring MARCKS to the cellular membrane. In this study, we examined the role of the myristoylation signal in the regulation of MARCKS in transfected rat hippocampal cells (H19-7) following retinoic acid (RA) treatment. A mutant MARCKS lacking the myristoylation signal was engineered by substitution of alanine for glycine at position 2 of the Macs gene and was found to be exclusively expressed in the cytosol fraction of transfected cells. Exposure of the wild-type MARCKS-transfected cells to RA resulted in an apparent shift of MARCKS from the membrane to the cytosol, while the total protein of wild-type MARCKS was not significantly changed. In contrast, RA-exposed cells transfected with the mutant MARCKS revealed a dramatic reduction of expression of MARCKS protein in both cytosol and total protein fractions. These data suggest that the absence of the myristoyl moiety may not only alter the anchoring of the protein to the membrane but also play a novel role in modulating cellular levels of MARCKS protein in response to RA.  相似文献   

20.
Myristoylated alanine-rich C kinase substrate (MARCKS) has been suggested to be involved in various aspects of neuronal cell differentiation, including neurite outgrowth. However, the precise mechanisms by which MARCKS phosphorylation is regulated, and how MARCKS contributes to neurite outgrowth, are poorly understood. Here, we found that treatment of SH-SY5Y cells with insulin-like growth factor-I (IGF-I) induced a rapid and transient decrease in the level of phosphorylated MARCKS (P-MARCKS) to below the basal level. The decrease in P-MARCKS induced by IGF-I was blocked by pretreatment of cells with phosphoinositide 3-kinase (PI3K) inhibitors, LY294002 and wortmannin. A decrease in P-MARCKS was also observed in cells treated with a Rho-dependent kinase (ROCK) inhibitor, Y27632. Furthermore, IGF-I induced transient inactivation of RhoA, an upstream effector of ROCK. We showed that MARCKS was translocated to the membrane and colocalized with F-actin at the lamellipodia and the tips of neurites in the cells stimulated with IGF-I. Finally, overexpression of wild-type MARCKS or an unphosphorylatable mutant of MARCKS enhanced the number of neurite-bearing cells relative to vector-transfected cells. Taken together, these findings suggest that unphosphorylated MARCKS is involved in neurite initiation, and highlight the important role played by MARCKS in organization of the actin cytoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号