首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Production of connective tissue growth factor (CCN2, also known as CTGF) is a hallmark of hepatic fibrosis. This study examined early primary cultures of hepatic stellate cells (HSC) for (i) CCN2 regulation of its cognate receptor integrin subunits; and (ii) interactions between CCN2 and integrin α5β1, heparan sulphate proteoglycans (HSPG) or fibronectin (FN) in supporting cell adhesion. HSC were isolated from healthy male Balb/c mice. mRNA levels of CCN2 or α5, β1, αv or β3 integrin subunits were measured in days 1–7 primary culture HSC, and day 3 or day 7 cells treated with recombinant CCN2 or CCN2 small interfering RNA. Interactions between CCN2 and integrin α5β1, HSPG or FN were investigated using an in vitro cell adhesion assay. Co‐incident with autonomous activation over the first 7 days, primary culture HSC increasingly expressed mRNA for CCN2 or integrin subunits. Addition of exogenous CCN2 or knockdown of endogenous CCN2 differentially regulated integrin gene expression in day 3 versus day 7 cells. Either full length CCN2 (‘CCN21–4’) or residues 247–349 containing module 4 alone (‘CCN24’) supported day 3 cell adhesion in an integrin α5β1‐ and HSPG‐dependent fashion. Adhesion of day 3 cells to FN was promoted in an integrin α5β1‐dependent manner by CCN21–4 or CCN24, whereas FN promoted HSPG‐dependent HSC adhesion to CCN21–4 or CCN24. These findings suggest CCN2 regulates integrin expression in primary culture HSC and supports HSC adhesion via its binding of cell surface integrin α5β1, a novel CCN2 receptor in primary culture HSC which interacts co‐operatively with HSPG or FN.  相似文献   

2.
α7β1 is the major integrin complex expressed in differentiated muscle cells where it functions as a laminin receptor. In this work we have expressed the α7 integrin subunit in CHO cells to investigate the functional properties of this receptor. After transfection with α7 CHO cells acquired the ability to adhere and spread on laminin 1 consistent with the laminin receptor activity of the α7β1. α7 transfectants, however, showed a 70% reduction in the ability to adhere to fibronectin and were unable to assemble a fibronectin matrix. The degree of reduction was inversely related to the level of α7 expression. To define the mechanisms underlying this adhesive defect we analyzed surface expression and functional properties of the α5β1 fibronectin receptor. Although cell surface expression of α5β1 was reduced by a factor of 20–25% in α7 transfectants compared to control untransfected cells, this slight reduction was not sufficient to explain the dramatic reduction in cell adhesion (70%) and matrix assembly (close to 100%). Binding studies showed that the affinity of125I-fibronectin for its surface receptor was decreased by 50% in α7 transfectants, indicating that the α5β1 integrin is partially inactivated in these cells. Inactivation can be reversed by Mn2+, a cation known to increase integrin affinity for their ligands. In fact, incubation of cells with Mn2+restored fibronectin binding affinity, adhesion to fibronectin, and assembly of fibronectin matrix in α7 transfectants. These data indicate that α7 expression leads to the functional down regulation of α5β1 integrin by decreasing ligand binding affinity and surface expression. In conclusion, the data reported establish the existence of anegative cooperativitybetween α7 and α5 integrins that may be important in determining functional regulation of integrins during myogenic differentiation.  相似文献   

3.
The matricellular protein CCN2 (Connective Tissue Growth Factor; CTGF) is an essential mediator of ECM composition, as revealed through analysis of Ccn2 deficient mice. These die at birth due to complications arising from impaired endochondral ossification. However, the mechanism(s) by which CCN2 mediates its effects in cartilage are unclear. We investigated these mechanisms using Ccn2 −/− chondrocytes. Expression of type II collagen and aggrecan were decreased in Ccn2 −/− chondrocytes, confirming a defect in ECM production. Ccn2 −/− chondrocytes also exhibited impaired DNA synthesis and reduced adhesion to fibronectin. This latter defect is associated with decreased expression of α5 integrin. Moreover, CCN2 can bind to integrin α5β1 in chondrocytes and can stimulate increased expression of integrin α5. Consistent with an essential role for CCN2 as a ligand for integrins, immunofluorescence and Western blot analysis revealed that levels of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK)1/2 phosphorylation were reduced in Ccn2 −/− chondrocytes. These findings argue that CCN2 exerts major effects in chondrocytes through its ability to (1) regulate ECM production and integrin α5 expression, (2) engage integrins and (3) activate integrin-mediated signaling pathways.  相似文献   

4.
The adhesiveness of control and CD18-deficient bovine neutrophils on culture plates precoated with collagen I, collagen IV, fibronectin and laminin was measured to evaluate the possible factors for adherence to extracellular matrices. The release of N-acetyl-β-D -glucosaminidase (NAGase) from control and CD18-deficient neutrophils stimulated with complement receptor type 3 (CR3) or Fc receptor dependent stimuli was also evaluated. The adhesive activities of CD18-deficient neutrophils to collagen I, collagen IV and fibronectin were significantly diminished (P < 0.05); however, similar adhesion to laminin was observed in CD18-deficient neutrophils and control neutrophils. The adhesive activity of control neutrophils on uncoated plates increased 2.5 times (P < 0.05) with the presence of PMA. The mean activities for NAGase release from CD18-deficient neutrophils stimulated with opsonized zymosan and aggregated bovine immunoglobulin G (Agg-IgG) were 46.7 and 82.7% that of the control neutrophils, respectively. The Agg-IgG-induced NAGase release from control and CD18-deficient neutrophils was eliminated by H7, a protein kinase C inhibitor. These results support that an association between CR3 and Fc receptors on neutrophils appears to play an essential role in neutrophil functions.  相似文献   

5.
Nephroblastoma overexpressed gene encodes a matricellular protein (CCN3/NOV) of the CCN family, comprising CCN1 (CYR61), CCN2 (CTGF), CCN4 (WISP-1), CCN5 (WISP-2), and CCN6 (WISP-3). CCN proteins are involved in the regulation of mitosis, adhesion, apoptosis, extracellular matrix production, growth arrest and migration in multiple cell types. Compared to CCN2/CTGF, known as a profibrotic protein, the biological role of CCN3/NOV in liver fibrosis remains obscure. In this study we showed ccn3/nov mRNA to increase dramatically following hepatic stellate cell activation, reaching peak levels in fully transdifferentiated myofibroblasts. In models of experimental hepatic fibrosis, CCN3/NOV increased significantly at the mRNA and protein levels. CCN3/NOV was found mainly in non-parenchymal cells along the areas of tissue damage and repair. In the bile-duct ligation model, CCN3/NOV was localized mainly along portal tracts, while the repeated application of carbon tetrachloride resulted in CCN3/NOV expression mainly in the centrilobular areas. In contrast to CCN2/CTGF, the profibrotic cytokines platelet-derived growth factor-B and -D as well as transforming growth factor-β suppressed CCN3/NOV expression. In vitro, CCN3/NOV siRNA attenuated migration in the cirrhotic fat storing cell line CFSC well in line with in vivo findings that various types of cells expressing CCN3/NOV migrate into the area of tissue damage and regeneration. The suppression of CCN3/NOV enhanced expression of profibrotic marker proteins, such as α-smooth muscle actin, collagen type I, fibronectin, CCN2/CTGF and TIMP-1 in primary rat hepatic stellate cells and in CFSC. We further found that adenoviral overexpression of CCN2/CTGF suppressed CCN3/NOV expression, while the overexpression of CCN3/NOV as well as the suppression of CCN3/NOV by targeting siRNAs both resulted in enhanced CCN2/CTGF expression. These results indicate the complexity of CCN actions that are far beyond the classic Yin/Yang interplay.  相似文献   

6.
The effect of growth conditions on adhesion was studied in six species belonging to Lactobacillus acidophilus homology groups. Namely, 17 strains including 6 fresh isolates of L. gasseri from human feces were assessed for their adherence to immobilized fibronectin, laminin, and type IV collagen. These extracellular matrix proteins were used as a model of damaged intestinal mucosa. When the bacteria were grown on MRS agar under anaerobic conditions, all eight L. gasseri strains and one L. johnsonii strain showed strong adhesiveness to laminin, but not when grown in static MRS broth. A similar pattern was observed in four L. gasseri strains in terms of adherence to fibronectin. No L. gasseri or L. johnsonii strains exhibited adhesion to type IV collagen under either growth condition. Adhesion of L. acidophilus, L. crispatus, L. amylovorus, and L. gallinarum was not affected by the growth conditions. Although protease treatment of L. gasseri cells abolished the adhesion, periodate oxidation of the cells increased it except in one strain. The adherence of L. gasseri cells was diminished by periodate and α-mannosidase treatments of immobilized laminin. The above results suggest that mannose-specific proteinaceous adhesion can be induced in L. gasseri by contact with a mucosal surface in the anaerobic intestinal lumen.  相似文献   

7.
The biophysical properties of the interaction between fibronectin and its membrane receptor were inferred from adhesion tests on living cells. Individual fibroblasts were maintained on fibronectin-coated glass for short time periods (1–16 s) using optical tweezers. After contact, the trap was removed quickly, leading to either adhesion or detachment of the fibroblast. Through a stochastic analysis of bond kinetics, we derived equations of adhesion probability versus time, which fit the experimental data well and were used to compute association and dissociation rates (k +=0.3–1.4 s−1 and k off=0.05–0.25 s−1, respectively). The bond distribution is binomial, with an average bond number ≤10 at these time scales. Increasing the fibronectin density (100–3000 molecules/μm2) raised k + in a diffusion-dependent manner, leaving k off relatively unchanged. Increasing the temperature (23–37 °C) raised both k + and k off, allowing calculation of the activation energy of the chemical reaction (around 20 k B T). Increasing the compressive force on the cell during contact (up to 60 pN) raised k + in a logarithmic manner, probably through an increase in the contact area, whereas k off was unaffected. Finally, by varying the pulling force to detach the cell, we could distinguish between two adhesive regimes, one corresponding to one bond, the other to at least two bonds. This transition occurred at a force around 20 pN, interpreted as the strength of a single bond. Received: 2 November 1999 / Revised version: 6 March 2000 / Accepted: 19 April 2000  相似文献   

8.
Ng-CAM is a cell adhesion molecule mediating neuron-glia and neuron-neuron adhesion via different binding mechanisms. While its binding can be homophilic as demonstrated by the self-aggregation of Ng-CAM coated beads (Covaspheres), Ng-CAM has also been shown to bind to glia by a heterophilic mechanism. In the present study, we found that the extent of Ng-CAM Covasphere aggregation was strongly diminished in the presence of the extracellular matrix glycoprotein laminin. When proteolytic fragments of laminin were tested, the P1′ fragment (obtained from the short arms by pepsin treatment) was found to inhibit aggregation of Ng-CAM-Covaspheres while the elastase fragments E3 and E8 (from the long arm) were ineffective. To provide other means of analyzing interactions between laminin and Ng-CAM, the two proteins were covalently linked to differently fluorescing Covaspheres and tested for coaggregation. Laminin-Covaspheres coaggregated with Ng-CAM-Covaspheres, and this binding was inhibited both by anti-Ng-CAM and by anti-laminin antibodies. Covaspheres coated with other proteins including BSA and fibronectin did not coaggregate with Ng-CAM-Covaspheres. Moreover, using a solid phase binding assay, we found that 125I-labeled Ng-CAM bound to laminin and to Ng-CAM but not to fibronectin. The results suggest that regions in the short arms of laminin can bind to Ng-CAM. To test whether Ng-CAM present on neurons could be involved in binding to laminin, adhesion of neurons to substrates coated with various proteins was tested in the presence of specific antibodies. Anti-Ng-CAM Fab' fragments inhibited neuronal binding to laminin but not binding to fibronectin. The combined results open the possibility that Ng-CAM on the surface of neurons may mediate binding to laminin in vivo, and that interactions with laminin can modulate homophilic Ng-CAM binding.  相似文献   

9.
In vivo, CCN2 (connective tissue growth factor) promotes angiogenesis, osteogenesis, tissue repair, and fibrosis, through largely unknown mechanisms. In vitro, CCN2 promotes cell adhesion in a variety of systems via integrins and heparin sulfate proteoglycans (HSPGs). However, the physiological relevance of CCN2-mediated cell adhesion is unknown. Here, we find that HSPGs and the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase cascade are required for adult human dermal fibroblasts to adhere to CCN2. Endogenous CCN2 directly binds fibronectin and the fibronectin receptors integrins alpha4 beta1 and alpha5 and syndecan 4. Using Ccn2-/- mouse embryonic fibroblasts, we show that loss of endogenous CCN2 results in impaired spreading on fibronectin, delayed alpha-smooth muscle actin stress fiber formation, and reduced ERK and focal adhesion kinase phosphorylation. These results suggest that a physiological role of CCN2 is to potentiate the ability of fibroblasts to spread on fibronectin, which may be important in modulating fibroblast adhesion to the provisional matrix during tissue development and wound healing. These results are consistent with the notion that a principal function of CCN2 is to modulate receptor/ligand interactions in vivo.  相似文献   

10.

Background

CCN2, (a.k.a. connective tissue growth factor and CTGF) has emerged as a regulator of cell migration. While the importance of CCN2 for the fibrotic process in wound healing has been well studied, the effect of CCN2 on keratinocyte function is not well understood. In this study, we investigated the mechanism behind CCN2-driven keratinocyte adhesion and migration.Materials and methods: Adhesion assays were performed by coating wells with 10 μg/ml fibronectin (FN) or phosphate-buffered saline (PBS). Keratinocytes were seeded in the presence or absence of 200 ng/ml CCN2, 5 mmol/l ethylenediaminetetraacetic acid, 10 mmol/l cations, 500 μl arginine–glycine–aspartic acid (RGD), 500 μM arginine–glycine–glutamate–serine (RGES), and 10 μg/ml anti-integrin blocking antibodies. Migration studies were performed using a modified Boyden chamber assay. Quantitative PCR was used to study the effect of CCN2 on integrin subunit mRNA expression. To block intracellular pathways, keratinocytes were pretreated with 20 μM PD98059 (MEK-1 inhibitor) or 20 μM PF573228 (FAK inhibitor) for 60 min prior the addition of CCN2. Western blot was used to measure CCN2, p-ERK1/2, and ERK1/2.Results: CCN2 enhanced keratinocyte adhesion to fibronectin via integrin α5β1. The addition of anti-integrin α5β1 antibodies reduced CCN2-mediated keratinocyte migration. In addition, CCN2 regulated mRNA and protein expression of integrin subunits α5 and β1. CCN2 activated the FAK-MAPK signaling pathway, and pretreatment with MEK1-specific inhibitor PD98059 markedly reduced CCN2-induced keratinocyte migration.Conclusions: Our results demonstrate that CCN2 enhances keratinocyte adhesion and migration through integrin α5β1 and activation of the FAK-MAPK signaling cascade.  相似文献   

11.
Staphylococcus aureus infection begins when bacterial cells circulating in blood adhere to components of the extracellular matrix or endothelial cells of the host and initiate colonization. S. aureus is known to exhibit extensive interactions with platelets. S. aureus is also known to bind to red blood cells (RBCs) in the presence of plasma proteins, such as fibrinogen and IgG. Herein we report a new binding mechanism of S. aureus to RBC independent of those plasma proteins. To characterize the new adhesion mechanism, we experimentally examine the binding kinetics and molecular constituents mediating the new adhesive interactions between S. aureus and RBCs under defined shear conditions. The results demonstrate that the receptors for fibrinogen (clumping factor A) and IgG (protein A) of S. aureus are not involved in the adhesion. S. aureus binds to RBCs with maximal adhesion at the shear rate 100 s–1 and decreasing adhesion with increasing shear. The heteroaggregates formed after shear are stable when subjected to the shear rate 2,000 s–1, indicating that intercellular contact time rather than shear forces controls the adhesion at high shear. S. aureus binding to RBC requires plasma, and 10% plasma is sufficient for maximal adhesion. Plasma proteins involved in the cell-cell adhesion, such as fibrinogen, fibronectin, von Willebrand factor, IgG, thrombospondin, laminin, and vitronectin are not involved in the observed adhesion. The extent of heteroaggregation is dramatically reduced on RBC treatment with trypsin, chymotrypsin, or neuraminidase, suggesting that the receptor(s) mediating the heteroaggregation process is a sialylated glycoprotein on RBC surface. Adhesion is divalent cation dependent and also blocked by heparin. This work demonstrates a new mechanism of S. aureus-RBC binding under hydrodynamic shear conditions via unknown RBC sialoglycoprotein(s). The binding requires plasma protein(s) other than fibrinogen or IgG and does not involve the S. aureus adhesins clumping factor A or protein A. adhesion; red blood cell  相似文献   

12.
Mouse primordial germ cells (PGCs) isolated from the dorsal mesentery and gonadal ridges of 10.5–12.5 days post coitum (dpc) embryos showed a progressively increasing adhesiveness to laminin and fibronectin coated substrates, whereas type I collagen and various glycosaminoglycans (hyaluronic acid, heparin and chondroitinsulphates) were poor adhesive substrates. At later stages germ cells appeared to lose their adhesiveness to fibronectin and laminin substrates; the ability to adhere to laminin decreased very rapidly in male and slowly in female germ cells. Oocytes and prospermatogonia from 15.5 dpc fetal gonads showed poor adhesiveness to all substrates tested. PGC adhesion to laminin and fibronectin substrates did not require calcium but was markedly trypsin sensitive. Antibodies against the fibronectin receptor of CHO fibroblasts and short peptides containing the Arg-Gly-Asp sequence greatly reduced PGC adhesion to fibronectin. Following adhesion to laminin or fibronectin, most PGCs did not exhibit a morphology typical of motile cells, but remained spherical. A significant proportion (about 30%) of oocytes from 13.5–14.5 dpc embryos appeared, however, able to spread and elongate following attachment to laminin. The results support the hypothesis that mouse PGCs may utilize laminin and/or fibronectin as adhesive substrates during migration and gonad colonization, but indicate that additional factors are probably required to promote PGC motility. In addition, our data provide indirect evidence that binding sites for specific components of extracellular matrix are present in PGCs, and that their expression may be developmentally regulated.  相似文献   

13.
The extracellular matrix (ECM) provides structural support to cells and tissues and is involved in the regulation of various essential physiological processes, including neurite outgrowth. Most of the adhesive interactions between cells and ECM proteins are mediated by integrins. Integrins typically recognize short linear amino acid sequences in ECM proteins, one of the most common being Arginine-Glycine-Aspartate (RGD). The present study investigated neurite outgrowth and adhesion of identified molluscan neurons on a selection of substrates in vitro. Involvement of RGD binding sites in adhesion to the different substrates was investigated using soluble synthetic RGD peptides. The cells adhered to native (i.e., nondenatured) laminin and type IV collagen, but not to native plasma fibronectin. Denaturation of fibronectin dramatically enhanced cell adhesion. Only the adhesion to denatured fibronectin was inhibited by RGD peptides, indicating that denaturation uncovers a RGD binding site in the protein. Laminin as well as denatured fibronectin, but not type IV collagen, induced neurite outgrowth from a percentage of the RPA neurons. These results demonstrate that molluscan neurons can attach to various substrates using both RGD-dependent and RGD-independent adhesion mechanisms. This suggests that at least two different cell adhesion receptors, possibly belonging to the integrin family, are expressed in these neurons. Moreover, the results show that vertebrate ECM proteins can induce outgrowth from these neurons, suggesting that the mechanisms involved in adhesion as well as outgrowth promoting are evolutionarily well conserved. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 37–52, 1998  相似文献   

14.
The interaction of β1 integrin receptors and different extracellular matrix molecules during neuronal development was investigated by comparing both migration and morphological differentiation of D3 wild-type embryonic stem (ES) cell line-derived neural precursor cells with those of the β1 integrin knockout ES cell line G201. Analysing neurosphere explants on laminin and fibronectin as major β1 integrin ligands, the maximal spreading of outward migrating neuronal cells was determined. Compared with gelatine as a standard substrate, migration was found to be significantly increased for D3-derived neurospheres on fibronectin and laminin-1. These matrix effects were found to be even enhanced for G201 preparations. In addition, also the differentiation of wild-type and β1 integrin −/− neurones – as determined by MAP-2- and HNK-1-immunoreactive processes – was found to be increased on fibronectin and laminin when compared to gelatine standards. In the respective knockout preparations on these matrices, again perturbation effects were less pronounced than on gelatine. Our observations indicate that laminin and fibronectin are involved both in β1 integrin-dependent and -independent signalling mechanisms during neurogenesis. Upregulation of compensatory mechanisms such as β1 integrin-independent receptors for laminin and fibronectin might be responsible for the much less pronounced perturbations of G201 neural precursor migration and differentiation on these two substrates than on gelatine.  相似文献   

15.
Previous studies have indicated the importance of basement membrane components both for cellular differentiation in general and for the barrier properties of cerebral microvascular endothelial cells in particular. Therefore, we have examined the expression of basement membrane proteins in primary capillary endothelial cell cultures from adult porcine brain. By indirect immunofluorescence, we could detect type IV collagen, fibronectin, and laminin both in vivo (basal lamina of cerebral capillaries) and in vitro (primary culture of cerebral capillary endothelial cells). In culture, these proteins were secreted at the subcellular matrix. Moreover, the interaction between basement membrane constituents and cerebral capillary endothelial cells was studied in adhesion assays. Type IV collagen, fibronectin, and laminin proved to be good adhesive substrata for these cells. Although the number of adherent cells did not differ significantly between the individual proteins, spreading on fibronectin was more pronounced than on type IV collagen or laminin. Our results suggest that type IV collagen, fibronectin, and laminin are not only major components of the cerebral microvascular basal lamina, but also assemble into a protein network, which resembles basement membrane, in cerebral capillary endothelial cell cultures.  相似文献   

16.
Integrins can exist in different functional states with low or high binding capacity for particular ligands. We previously provided evidence that the integrin α6β1, on mouse eggs and on α6-transfected cells, interacted with the disintegrin domain of the sperm surface protein ADAM 2 (fertilin β). In the present study we tested the hypothesis that different states of α6β1 interact with fertilin and laminin, an extracellular matrix ligand for α6β1. Using α6-transfected cells we found that treatments (e.g., with phorbol myristate acetate or MnCl2) that increased adhesion to laminin inhibited sperm binding. Conversely, treatments that inhibited laminin adhesion increased sperm binding. Next, we compared the ability of fluorescent beads coated with either fertilin β or with the laminin E8 fragment to bind to eggs. In Ca2+-containing media, fertilin β beads bound to eggs via an interaction mediated by the disintegrin loop of fertilin β and by the α6 integrin subunit. In Ca2+-containing media, laminin E8 beads did not bind to eggs. Treatment of eggs with phorbol myristate acetate or with the actin disrupting agent, latrunculin A, inhibited fertilin bead binding, but did not induce laminin E8 bead binding. Treatment of eggs with Mn2+ dramatically increased laminin E8 bead binding, and inhibited fertilin bead binding. Our results provide the first evidence that different states of an integrin (α6β1) can interact with an extracellular matrix ligand (laminin) or a membrane-anchored cell surface ligand (ADAM 2).  相似文献   

17.
The CCN family of genes constitutes six members of small secreted cysteine rich proteins, which exists only in vertebrates. The major members of CCN are CCN1 (Cyr61), CCN2 (CTGF), and CCN3 (Nov). CCN4, CCN5, and CCN6 were formerly reported to be in the Wisp family, but they are now integrated into CCN due to the resemblance of their four principal modules: insulin like growth factor binding protein, von Willebrand factor type C, thrombospondin type 1, and carboxy‐terminal domain. CCNs show a wide and highly variable expression pattern in adult and in embryonic tissues, but most studies have focused on their principal role in osteo/chondrogenesis and vasculo/angiogenesis from the aspect of migration, growth, and differentiation of mesenchymal cells. CCN proteins simultaneously integrate and modulate the signals of integrins, bone morphogenetic protein, vascular endothelial growth factor, Wnt, and Notch by direct binding. However, the priority in the use of the signals is different depending on the cell status. Even the equivalent counterparts show a difference in signal usage among species. It may be that the evolution of the CCN family continues to keep pace with vertebrate evolution itself.  相似文献   

18.
This study describes the adhesion of human osteoblasts, culturedin vitro, to proteins of the extracellular matrix, the biosynthesis of integrins, their topography and organization in focal contacts. The adhesion of osteoblasts to laminin, type I collagen, vitronectin and fibronectin was 77–100%, in 2h and at 55nm substrata concentration, and it was accompained by spreading of the cells. Adhesion to fibronectin (FN), laminin (LN) and type I collagen (COL) was inhibited by antibodies to the β1 integrin and antibodies to the α5 chain affected adhesion only to fibronectin. Using a panel of polyclonal antibodies against α2, α3, α5, αv, β1 andβ3 integrins we detected synthesis of α3β1, α5β1, αvβ3, and an αvβ1-like dimer by immunoprecipitation of metabolically labelled cell lysates. Studies of immunolocalization demonstrated the presence of the same integrins identified in lysates, plus α4, α1 and β5 subunits. In cells adhering in the presence of serum we showed organization of β3 and αv integrins in focal contacts. In cells adhering to fibronectin α5 and β1 integrins were localized in focal contacts. In cells spread on laminin or type I collagen none of the integrins investigated was localized in focal contacts.  相似文献   

19.
应用牵张刺激培养细胞的模型,观察原原、纤维连接蛋白、层粘连素对牵张刺激心肌细胞肥大的影响,探讨细胞外间质-融洽纱受体在超负荷心肌肥大的跨膜信号传导机制中的作用。发现,胶原、纤维连接蛋白、层粘连素明显有助于培养心肌细胞的贴壁、伸展。牵张刺激后,胶原、纤维连接蛋白基质组心肌细胞的^3H-亮氨酸掺入率和心肌细胞表面积均显著大于对照组,而层粘连素组无显著变化;可溶性纤维连接蛋白、RGD肽均可显著抑制牵张刺  相似文献   

20.
应用牵张刺激培养细胞的模型 ,观察胶原、纤维连接蛋白、层粘连素对牵张刺激心肌细胞肥大的影响 ,探讨细胞外间质 -整合素受体在超负荷心肌肥大的跨膜信号传导机制中的作用。结果发现 ,胶原、纤维连接蛋白、层粘连素明显有助于培养心肌细胞的贴壁、伸展。牵张刺激后 ,胶原、纤维连接蛋白基质组心肌细胞的 3H -亮氨酸掺入率和心肌细胞表面积均显著大于对照组 ,而层粘连素组无显著变化 ;可溶性纤维连接蛋白、RGD肽均可显著抑制牵张刺激诱导的培养心肌细胞 (胶原为粘附基质 )的3H -亮氨酸掺入率升高和心肌细胞表面积增大 ,而层粘连素无明显作用。结果表明 ,特异的细胞外间质 -整合素在超负荷心肌肥大机制中发挥了跨膜信号传导作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号