首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gaseous mediators hydrogen sulphide (H2S) and nitric oxide (*NO) are synthesised in the body from L-cysteine and L-arginine, respectively. In the cardiovascular system, *NO is an important regulator of vascular tone and its over- or under-production has been linked to a variety of diseases. The physiological significance of H2S is not yet clear but, like *NO, it exhibits vasodilator activity and may play a part in septic and haemorrhagic shock, hypertension, regulation of cardiac contractility, and in inflammation. To date, there have been no reports of a chemical interaction between H2S and *NO. Here we show that incubation of the H2S donor, sodium hydrosulphide, with a range of *NO donors and *NO gas in vitro leads to the formation of a nitrosothiol molecule as determined by a combination of techniques; electron paramagnetic resonance, amperometry, and measurement of nitrite. We further show that this nitrosothiol did not induce cGMP accumulation in cultured RAW264.7 cells unless *NO was released with Cu2+. Finally, using liver homogenates from LPS treated rats we present evidence for the endogenous formation of this nitrosothiol. These findings provide the first evidence for the formation of a novel nitrosothiol generated by reaction between H2S and *NO. We propose that generation of this nitrosothiol in the body may regulate the physiological effects of both *NO and H2S.  相似文献   

2.
The heart responds to an increased demand arising due to physiological stimuli or pathological insults by hypertrophy of myocytes. Reactive oxygen species (ROS) have recently been identified as the molecular intermediates in the translation of mechanical stimuli to cellular response. Different signal transduction pathways have been implicated with cardiac hypertrophy, prominent among them being, mitogen-activated protein kinase (MAPK), protein kinase C (PKC) and calcineurin. It remains unclear whether the ROS induced hypertrophy is mediated through one or more of these pathways. This study was taken up with the objective to affirm the role of ROS in the induction of cardiomyocyte hypertrophy and examine the contribution of specific pathways in the mediation of the hypertrophic response. The cellular response to enzyme-generated reactive oxygen species was examined in cultured cells from newborn rat heart. Pathway specific inhibitors were used to identify the role of each pathway in the mediation of cellular hypertrophy. Cellular hypertrophy in response to hypoxanthine-xanthine oxidase was prevented by inhibition of any one of the pathways; leading to the inference that oxidative stress induced hypertrophy is mediated by coordinative regulation of the three major pathways.  相似文献   

3.
Cardiac hypertrophy is formed in response to hemodynamic overload. Although a variety of factors such as catecholamines, angiotensin II (AngII), and endothelin-1 (ET-1) have been reported to induce cardiac hypertrophy, little is known regarding the factors that inhibit the development of cardiac hypertrophy. Production of atrial natriuretic peptide (ANP) is increased in the hypertrophied heart and ANP has recently been reported to inhibit the growth of various cell types. We therefore examined whether ANP inhibits the development of cardiac hypertrophy. Pretreatment of cultured cardiomyocytes with ANP inhibited the AngII- or ET-1-induced increase in the cell size and the protein synthesis. ANP also inhibited the AngII- or ET-1-induced hypertrophic responses such as activation of mitogen-activated protein kinase (MAPK) and induction of immediate early response genes and fetal type genes. To determine how ANP inhibits cardiomyocyte hypertrophy, we examined the mechanism of ANP-induced suppression of the MAPK activation. ANP strongly induced expression of MAPK phosphatase-1 (MKP-1) and overexpression of MKP-1 inhibited AngII- or ET-1-induced hypertrophic responses. These growth-inhibitory actions of ANP were mimicked by a cyclic GMP analog 8-bromo-cyclic GMP. Taken together, ANP directly inhibits the growth factor-induced cardiomyocyte hypertrophy at least partly via induction of MKP-1. Our present study suggests that the formation of cardiac hypertrophy is regulated not only by positive but by negative factors in response to hemodynamic load.  相似文献   

4.
Brown adipocytes are characterized by a high number of uncoupling protein 1 (UCP1)-positive mitochondrial content and increased thermogenic capacity. As UCP1-enriched cells can consume lipids by generating heat, browning of white adipocytes is now highlighted as a promising approach for the prevention of obesity and obesity-associated metabolic diseases. Upon cold exposure or β-adrenergic stimuli, downregulation of microRNA-133 (miR-133) elevates the expression levels of PR domain containing 16 (Prdm16), which has been shown to be a brown adipose determination factor, in brown adipose tissue and subcutaneous white adipose tissues (WAT). Here, we show that treatment of reversine to white adipocytes induces browning via suppression of miR-133a. Reversine treatment promoted the expression of brown adipocyte marker genes, such as Prdm16 and UCP1, increasing the mitochondrial content, while decreasing the levels of miR-133a and white adipocyte marker genes. Ectopic expression of miR-133a mimic reversed the browning effects of the reversine treatment. Moreover, intraperitoneal administration of reversine in mice upregulated thermogenesis and resulted in resistance to high-fat diet-mediated weight gain as well as browning of subcutaneous and epididymal WAT. Taken together, we found a novel way to promote browning of white adipocytes through downregulation of miR-133a followed by activation of Prdm16, with a synthetic chemical, reversine.  相似文献   

5.
We investigated the effects of diphenyleneiodonium (DPI) on superoxide production by complex I in mitochondria isolated from rat skeletal muscle. Superoxide production was measured indirectly as hydrogen peroxide production. In a conventional medium containing chloride, DPI strongly inhibited superoxide production by complex I driven by reverse electron transport from succinate. In principle, this inhibition could be explained by an observed decrease in the mitochondrial pH gradient caused by the known chloride-hydroxide antiport activity of DPI. In a medium containing gluconate instead of chloride, DPI did not affect the pH gradient. In this gluconate medium, DPI still inhibited superoxide production driven by reverse electron transport, showing that the inhibition of superoxide production was not dependent on changes in the pH gradient. It had no effect on superoxide production during forward electron transport from NAD-linked substrates in the presence of rotenone (to maximise superoxide production from the flavin of complex I) or antimycin (to maximise superoxide production from complex III), suggesting that the effects of DPI were not through inhibition of the flavin. We conclude that DPI has the novel and potentially very useful ability to prevent superoxide production from the site in complex I that is active during reverse electron transport, without affecting superoxide production during forward electron transport.  相似文献   

6.
Hydrogen sulfide (H2S) has been recognized as a toxic gas and environment pollutant. So, it is seldom regarded as a therapeutic gas. H2S has been recognized recently as a novel gaseous messenger and serves as an important neuromodulator in the central nervous system. Many researches have been focused on the protective role of H2S in treatment of several diseases. Like nitric oxide (NO) and carbon monoxide (CO), which are considered as two gaseous transmitters, H2S has been regarded as the third one. Recent studies provided evidence that H2S exerted antioxidant and anti-apoptotic effects, which protected neurons, cardiomyocytes, pancreatic β-cells and vascular smooth muscle cells against oxidative stress by scavenging reactive oxygen species (ROS) and reactive nitrogen species (RNS). It has been known that multiple factors, including oxidative stress, free radicals and neuronal nitric oxide syntheses as well as abnormal inflammatory responses are involved in the mechanism underlying the brain injury after acute CO poisoning. Studies have shown that free radical scavengers can display neuroprotective properties. Therefore, we hypothesize that H2S might be an interesting potential strategy for curing acute CO poisoning.  相似文献   

7.
Earlier, our study demonstrated that lysophosphatidic acid (LPA) receptor mediated cardiomyocyte hypertrophy. However, the subtype-specific functions for LPA1 and LPA3 receptors in LPA-induced hypertrophy have not been distinguished. Growing evidence indicates that microRNAs (miRNAs) are involved in the pathogenesis of cardiac hypertrophy by down-regulating target molecules. The present work therefore aimed at elucidating the functions mediated by different subtypes of LPA receptors and investigating the modulatory role of miRNAs during LPA induced hypertrophy. Experiments were done with cultured neonatal rat cardiomyocytes (NRCMs) exposed to LPA and we showed that knockdown of LPA1 by small interfering RNA (siRNA) enhanced LPA-induced cardiomyocyte hypertrophy, whereas LPA3 silencing repressed hypertrophy. miR-23a, a pro-hypertrophic miRNA, was up-regulated by LPA in cardiomyocytes and its down-regulation reduced LPA-induced cardiomyocyte hypertrophy. Importantly, luciferase reporter assay confirmed LPA1 to be a target of miR-23a, indicating that miR-23a is involved in mediating the LPA-induced cardiomyocyte hypertrophy by targeting LPA1. In addition, knockdown of LPA3, but not LPA1, eliminated miR-23a elevation induced by LPA. And PI3K inhibitor, LY294002, effectively prevented LPA-induced miR-23a expression in cardiomyocytes, suggesting that LPA might induce miR-23a elevation by activating LPA3 and PI3K/AKT pathway. These findings identified opposite subtype-specific functions for LPA1 and LPA3 in mediating cardiomyocyte hypertrophy and indicated LPA1 to be a target of miR-23a, which discloses a link between miR-23a and the LPA receptor signaling in cardiomyocyte hypertrophy.  相似文献   

8.
Hydrogen sulfide (H(2)S) has been shown to act as a neuroprotectant and antioxidant. Numerous studies have demonstrated that exposure to formaldehyde (FA) causes neuronal damage and that oxidative stress is one of the most critical effects of FA exposure. Accumulation of FA is involved in the pathogenesis of Alzheimer's disease (AD). The aim of present study is to explore the inhibitory effects of H(2)S on FA-induced cytotoxicity and apoptosis and the molecular mechanisms underlying in PC12 cells. We show that sodium hydrosulfide (NaHS), a H(2)S donor, protects PC12 cells against FA-mediated cytotoxicity and apoptosis and that NaHS preserves the function of mitochondria by preventing FA-induced loss of mitochondrial membrane potential and release of cytochrome c in PC12 cells. Furthermore, NaHS blocks FA-exerted accumulation of intracellular reactive oxygen species (ROS), down-regulation of Bcl-2 expression, and up-regulation of Bax expression. These results indicate that H(2)S protects neuronal cells against neurotoxicity of FA by preserving mitochondrial function through attenuation of ROS accumulation, up-regulation of Bcl-2 level, and down-regulation of Bax expression. Our study suggests a promising future of H(2)S-based preventions and therapies for neuronal damage after FA exposure.  相似文献   

9.
10.
Hypochlorite (HOCl), the product of the activated myeloperoxidase/H2O2/chloride (MPO/H2O2/Cl) system is favored as a trigger of LDL modifications, which may play a pivotal role in early atherogenesis. As HOCl has been shown to react with thiol-containing compounds like glutathione and N-acetylcysteine protecting LDL from HOCl modification, we have tested the ability of hydrogen sulfide (H2S)—which has recently been identified as an endogenous vasorelaxant—to counteract the action of HOCl on LDL. The results show that H2S could inhibit the atherogenic modification of LDL induced by HOCl, as measured by apolipoprotein alterations. Beside its HOCl scavenging potential, H2S was found to inhibit MPO (one may speculate that this occurs via H2S/heme interaction) and destroy H2O2. Thus, H2S may interfere with the reactants and reaction products of the activated MPO/H2O2/Cl system. Our data add to the evidence of an anti-atherosclerotic action of this gasotransmitter taking the role of HOCl in the atherogenic modification of LDL into account.  相似文献   

11.
NEAT1 is an important tumor oncogenic gene in various tumors. Nevertheless, its involvement remains poorly studied in cervical cancer. Our study explored the functional mechanism of NEAT1 in cervical cancer. NEAT1 level in several cervical cancer cells was quantified and we found NEAT1 was greatly upregulated in vitro. NEAT1 knockdown inhibited cervical cancer development through repressing cell proliferation, colony formation, capacity of migration, and invasion and also inducing the apoptosis. For another, microRNA (miR)-133a was downregulated in cervical cancer cells and NEAT1 negatively modulated miR-133a expression. Subsequently, we validated that miR-133a functioned as a potential target of NEAT1. Meanwhile, SOX4 is abnormally expressed in various cancers. SOX4 was able to act as a downstream target of miR-133a and silencing of SOX4 can restrain cervical cancer progression. In addition, in vivo assays were conducted to prove the role of NEAT1/miR-133a/SOX4 axis in cervical cancer. These findings implied that NEAT1 served as a competing endogenous RNA to sponge miR-133a and regulate SOX4 in cervical cancer pathogenesis. To sum up, it was implied that NEAT1/miR-133a/SOX4 axis was involved in cervical cancer development.  相似文献   

12.
13.
Ha MK  Chung KY  Bang D  Park YK  Lee KH 《Proteomics》2005,5(6):1507-1519
Reactive oxygen species (ROS) have been traditionally regarded as toxic by-products of aerobic metabolism. However, ROS also act as intracellular signaling molecules and can mediate phenotypes in vascular endothelial cells, which may be physiological or pathological in nature. To clarify the molecular mechanisms of ROS signaling, we examined hydrogen peroxide (H(2)O(2))-responsive proteins in cultured human dermal microvascular endothelial cells (HMVEC) using proteomic tools. Protein expression in HMVEC was studied after they had been exposed to low- and high-levels of H(2)O(2) for various times, and intracellular ROS production was examined by flow cytometer and UV spectrophotometer. Proteins obtained from dose- and time-dependent series were separated by two-dimensional gel electrophoresis and tentatively identified by matrix-assisted laser desorption-time of flight mass spectrometry, by matching the tryptic mass maps obtained with entries in the NCBI and Swiss-Prot protein sequence database. At least 163 proteins were changed by H(2)O(2), and 60 proteins were identified. Oxidative stress triggered dramatic change in the expression of proteins in primary microvessel endothelial cells, and their mapping to cellular process provided a view of the ubiquitous cellular changes elicited by H(2)O(2). These results could provide a framework for the understanding of the mechanisms of cellular redox homeostasis and H(2)O(2) metabolism in microendothelium environment in various biological processes as well as pathological conditions.  相似文献   

14.
Peroxisomes and reactive oxygen species,a lasting challenge   总被引:1,自引:0,他引:1  
Oxidases generating and enzymes scavenging H2O2 predestine peroxisomes (PO) to a pivotal organelle in oxygen metabolism. Catalase, the classical marker enzyme of PO, exhibits both catalatic and peroxidatic activity. The latter is responsible for the staining with 3,3′-diamino-benzidine, which greatly facilitated the visualization of the organelle and promoted further studies on PO. d-Amino acid oxidase catalyzes with strict stereospecificity the oxidative deamination of d-amino acids. The oxidase is significantly more active in the kidney than in liver and more in periportal than pericentral rat hepatocytes. Peroxisomes in these tissues differ in their enzyme activity and protein concentration not only in adjacent cells but even within the same one. Moreover, the enzyme appears preferentially concentrated in the central region of the peroxisomal matrix compartment. Urate oxidase, a cuproprotein catalyzing the oxidation of urate to allantoin, is confined to the peroxisomal core, yet is lacking in human PO. Recent experiments revealed that cores in rat hepatocytes appear in close association with the peroxisomal membrane releasing H2O2 generated by urate oxidase to the surrounding cytoplasma. Xanthine oxidase is exclusively located to cores, oxidizes xanthine thereby generating H2O2 and O2 radicals. The latter are converted to O2 and H2O2 by CuZn superoxide dismutase, which has been shown recently to be a bona fide peroxisomal protein. Presented at the 50th Anniversary Symposium of the Society for Histochemistry, Interlaken, Switzerland, October 1-4, 2008.  相似文献   

15.
16.
Cardiac hypertrophy is positively regulated by MicroRNA miR-23a   总被引:1,自引:0,他引:1  
  相似文献   

17.
活性氧介导内皮素-1诱导的培养新生大鼠心肌细胞肥大   总被引:4,自引:0,他引:4  
Wang YZ  Luo JD 《生理学报》2004,56(3):403-406
实验在原代培养的新生大鼠心肌细胞中进行,检测内皮素-1(endothelin-1,ET-1)及其他药物对心肌细胞活性氧(reactiveoxygen species,ROS)产生和心肌细胞肥大的作用,以探讨ROS在ET-1诱导的心肌细胞肥大信号通路中的作用及ROS与蛋白激酶C(protein kinase C,PKC)活化的关系。细胞内ROS水平用ROS敏感的荧光探针2,7-dichlorofluorescin dictate(DCF-DA)反映,心肌细胞肥大通过细胞内RNA含量、细胞内蛋白质含量、细胞表面积大小来确定。实验结果如下:单独使用ET-1后,心肌细胞内反应ROS含量的DCF-DA荧光值比对照组增加77%,反应心肌肥大的PI荧光值、细胞内蛋白质含量、细胞表面积也分别比对照组增加128%、87%和151%。ET-1合用内皮素受体A亚型(ET_A)受体拮抗剂ABT-627、PKC抑制剂CC或过氧化氢酶后,DCF-DA的增加分别减弱62%、60%和51%,同时心肌细胞肥大也被抑制,单独使用PKC激动剂佛波醇脂(PMA)也能使DCF-DA的产生比对照组增加74%。因此,在ET-1诱导心肌细胞肥大的过程中,ET-1能够使心肌细胞产生ROS和诱导ROS依赖的心肌细胞肥大,这一作用依赖于ET_A受体的激活和PKC的活化,·ROS在ET-1诱导心肌细胞肥大中起信号传递的作用。  相似文献   

18.
目的:研究硫化氢(H2S)对心肌细胞肥大的负性调控作用与miRNA-133a介导Ca2+/CaN/NFATc4信号通路的关系。方法:异丙肾上腺素(ISO)诱导体外培养的大鼠心肌细胞肥大模型;Leica图像分析软件测量心肌细胞表面积;qRT-PCR检测脑钠尿肽(BNP)、β-肌球蛋白重链(β-MHC)、H2S合酶(CSE)、miRNA-133a和钙调神经磷酸酶(CaN) mRNA表达;Western blot检测CaN、活化T细胞核因子c4(NFATc4)蛋白表达;Elisa方法检测心肌细胞H2S含量;激光共聚焦显微镜检测心肌细胞钙离子浓度;细胞免疫荧光检测NFATc4核转位变化。结果:①心肌细胞肥大时,CSE/H2S水平、miRNA-133a mRNA表达均显著下降。应用NaHS预处理,能上调心肌细胞CSE/H2S水平,增加H2S含量和miRNA-133a mRNA表达,并明显抑制心肌细胞肥大。②心肌细胞肥大时,细胞内钙离子浓度明显增加,CaN表达和NFATc4胞核蛋白表达增加,NFATc4核转位明显增强;应用NaHS预处理能明显抑制ISO诱导的上述效应。③应用antagomir-133a能逆转H2S抑制心肌细胞肥大的作用,使心肌细胞内钙离子浓度、CaN表达和NFATc4胞核蛋白表达增加,NFATc4核转位增强。结论:H2S通过负性调控作用抑制心肌细胞肥大,该作用可能与H2S上调miRNA-133a的表达,抑制其下游的Ca2+/CaN/NFATc4信号通路的激活有关。  相似文献   

19.
Peroxisome proliferator‐activated receptors δ (PPARδ) is known to be expressed ubiquitously, and the predominant PPAR subtype of cardiac cells. However, relatively less is known regarding the role of PPARδ in cardiac cells except that PPARδ ligand treatment protects cardiac hypertrophy by inhibiting NF‐κB activation. Thus, in the present study, we examined the effect of selective PPARδ ligand L‐165041 on angiotensin II (AngII) induced cardiac hypertrophy and its underlying mechanism using cardiomyocyte. According to our data, L‐165041 (10 µM) inhibited AngII‐induced [3H] leucine incorporation, induction of the fetal gene atrial natriuretic factor (ANF) and increase of cardiomyocyte size. Previous studies have implicated the activation of focal adhesion kinase (FAK) in the progress of cardiomyocyte hypertrophy. L‐165041 pretreatment significantly inhibited AngII‐induced intracellular Ca2+ increase and subsequent phosphorylation of FAK. Further experiment using Ca2+ ionophore A23187 confirmed that Ca2+ induced FAK phosphorylation, and this was also blocked by L‐165041 pretreatment. In addition, overexpression of PPARδ using adenovirus significantly inhibited AngII‐induced intracellular Ca2+ increase and FAK expression, while PPARδ siRNA treatment abolished the effect of L‐165041. These data indicate that PPARδ ligand L‐165041 inhibits AngII induced cardiac hypertrophy by suppressing intracellular Ca2+/FAK/ERK signaling pathway in a PPARδ dependent mechanism. J. Cell. Biochem. 106: 823–834, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Acute lung injury (ALI) is a severe clinical condition with high morbidity and mortality. Apoptosis is a key pathologic feature of ALI, and Bcl-2 plays an important role during the pathogenesis of ALI via the regulation of apoptosis. However, the regulation of Bcl-2 during ALI, particularly through microRNAs, remains unclear. We hypothesize that certain miRNAs may play deleterious or protective roles in ALI via the regulation of Bcl-2. The LPS stimulation of A549 cells was used to mimic ALI in vitro. First, we confirmed that Bcl-2 is involved in LPS-induced apoptosis in A549 cells. Then, bioinformatic analyses and quantitative real-time polymerase chain reaction assays were performed to screen for miRNAs targeting Bcl-2. We observed that miR-135a was markedly increased in LPS-challenged A549 cells. miR-135a inhibition markedly restored Bcl-2 expression and protected A549 cells from LPS-induced apoptosis. Furthermore, bioinformatic analysis and luciferase activity assays were conducted to confirm that miR-135a binds directly to the 3′-untranslated region of Bcl-2 and suppresses its expression. Interestingly, the inhibition of miR-135a did not attenuate apoptosis under LPS-treated conditions when Bcl-2 was knocked down. Therefore, we suggest that miR-135a regulation of LPS-induced apoptosis in A549 cells may depend in part on the regulation of Bcl-2. The miR-135a/Bcl-2 signaling pathway may be a novel therapeutic target for the prevention of ALI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号