首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The main physiological function of the lymphatic vasculature is to maintain tissue fluid homeostasis. Lymphangiogenesis or de novo lymphatic formation is closely associated with tissue inflammation in adults (i.e. wound healing, allograft rejection, tumor metastasis). Until recently, research on lymphangiogenesis focused mainly on growth factor/growth factor-receptor pathways governing this process. One of the lymphatic vessel features is the incomplete or absence of basement membrane. This close association of endothelial cells with the underlying interstitial matrix suggests that cell–matrix interactions play an important role in lymphangiogenesis and lymphatic functions. However, the exploration of interaction between extracellular matrix (ECM) components and lymphatic endothelial cells is in its infancy. Herein, we describe ECM–cell and cell–cell interactions on lymphatic system function and their modification occurring in pathologies including cancer metastasis.  相似文献   

2.
Cell’s adhesion is important to cell’s interaction and activates. In this paper, a novel method for cell–cell adhesion force measurement was proposed by using a nano-picker. The effect of the contact time on the cell–cell adhesion force was studied. The nano-picker was fabricated from an atomic force microscopy (AFM) cantilever by nano fabrication technique. The cell–cell adhesion force was measured based on the deflection of the nano-picker beam. The result suggests that the adhesion force between cells increased with the increasing of contact time at the first few minutes. After that, the force became constant. This measurement methodology was based on the nanorobotic manipulation system inside an environmental scanning electron microscope. It can realize both the observation and manipulation of a single cell at nanoscale. The quantitative and precise cell–cell adhesion force result can be obtained by this method. It would help us to understand the single cell interaction with time and would benefit the research in medical and biological fields potentially.  相似文献   

3.
Epithelial–mesenchymal transition (EMT) is a key step during embryogenesis. Accumulating evidence suggests a critical role in cancer progression, through which tissue epithelial cancers invade and metastasise. Cell characteristics are highly affected during EMT, resulting in altered cell–cell and cell–matrix interactions, cell motility and invasiveness. Nevertheless, the demonstration of this process in human cancer has been proven difficult and controversial. Besides the fact that the acquisition of mesenchymal characteristics is not a prerequisite for cell migration/invasion, it is a transient event that concerns only few cells in a tumour mass. The induction of EMT depends on the tumour type and its genetic alterations as well as on its interaction with the extracellular matrix. In parallel, trials for EMT identification in clinical samples lack of a widely accepted methodology, nomenclature and reliable markers. This review summarizes the main EMT characteristics and proposes methodologies for better analysis in vitro. It also highlights recent studies identifying cells with EMT characteristics in human cancer and proposes certain markers to identify them in tumour samples. Finally, it cites the recent literature concerning the mechanisms of drug resistance related to EMT in the context of anti-tumour therapies and proposes related new targets for therapy.  相似文献   

4.
Cell–cell junctions play crucial roles in the organization and function of epithelial and endothelial cellular sheets. Here, we have identified the protein product for KIAA1462 gene, whose single nucleotide polymorphisms (SNPs) have recently reported to be associated with coronary artery disease, as a novel component of cell–cell junctions. We propose the name of KIAA1462 protein junctional protein associated with coronary artery disease (JCAD). JCAD is a ∼145 kDa protein without any known domains but contains a proline-rich region. Immunolocalization studies revealed that JCAD is specifically localized at cell–cell junctions in endothelial cells but not in epithelial cells. The accumulation of JCAD at cell–cell junctions in cultured endothelial cells was impaired by RNAi-mediated suppression of VE-cadherin expression. In cell adhesion-deficient mouse L fibroblasts, JCAD was recruited to cell–cell contacts when cadherin-mediated cell–cell adhesion was induced. These results indicate that JCAD is a component of VE-cadherin-based cell–cell junctions in endothelial cells. This study also suggests the implication of endothelial cell–cell adhesion in coronary artery disease.  相似文献   

5.
Zyxin is an actin regulatory protein that is concentrated at sites of actin–membrane association, particularly cell junctions. Zyxin participates in actin dynamics by binding VASP, an interaction that occurs via proline-rich N-terminal ActA repeats. An intramolecular association of the N-terminal LIM domains at or near the ActA repeats can prevent VASP and other binding partners from binding full-length zyxin. Such a head–tail interaction likely accounts for how zyxin function in actin dynamics, cell adhesion, and cell migration can be regulated by the cell. Since zyxin binding to several partners, via the LIM domains, requires phosphorylation, it seems likely that zyxin phosphorylation might alter the head–tail interaction and, thus, zyxin activity. Here we show that zyxin point mutants at a known phosphorylation site, serine 142, alter the ability of a zyxin fragment to directly bind a separate zyxin LIM domains fragment protein. Further, expression of the zyxin phosphomimetic mutant results in increased localization to cell–cell contacts of MDCK cells and generates a cellular phenotype, namely inability to disassemble cell–cell contacts, precisely like that produced by expression of zyxin mutants that lack the entire regulatory LIM domain region. These data suggest that zyxin phosphorylation at serine 142 results in release of the head–tail interaction, changing zyxin activity at cell–cell contacts.  相似文献   

6.
Cell–cell junction remodeling is associated with dramatic actin reorganizations. Several actin regulatory systems have been implicated in actin remodeling events as cell–cell contacts are assembled and disassembled, including zyxin/LPP–VASP complexes. These complexes facilitate strong cell–cell adhesion by maintaining actin-membrane connections. It has been proposed that zyxin and LPP localize to cell–cell junctions via a well-defined interaction with alpha-actinin. This was recently confirmed for LPP, but zyxin localization at cell–cell contacts occurs independently of alpha-actinin binding. Here we seek to map the zyxin sequence responsible for localization to cell–cell contacts and identify the protein that docks zyxin at this cellular location. Previous results have shown that a zyxin fragment excluding the alpha-actin binding site and the LIM domains (amino acids 51–392) can independently localize to cell–cell contacts. Here, expression of smaller zyxin fragments show that zyxin localization requires amino acids 230–280. A yeast-two-hybrid screen, using the central region of zyxin as bait, resulted in the identification of the cell–cell adhesion receptor nectin-4 as a zyxin binding partner. Further demonstrating zyxin–nectin interactions, zyxin binds the intracellular domain of nectin-2 in vitro. Depletion of nectin-2 from L cells expressing E-cadherin results in a loss of zyxin localization to cell–cell contacts, demonstrating that the zyxin–nectin interaction plays a critical role in zyxin targeting to these sites.  相似文献   

7.
Numb is an endocytic adaptor protein that regulates internalization and post-endocytic trafficking of cell surface proteins. In polarized epithelial cells Numb is localized to the basolateral membrane, and recent work has implicated Numb in regulation of cell adhesion and migration, suggesting a role for Numb in epithelial–mesenchymal transition (EMT). We depleted MDCK cells of Numb and examined the effects downstream of EMT-promoting stimuli. While knockdown of Numb did not affect apicobasal polarity, we show that depletion of Numb destabilizes E-cadherin-based cell–cell adhesion and promotes loss of epithelial cell morphology. In addition, Numb knockdown in MDCK cells potentiates HGF-induced lamellipodia formation and cell dispersal. Examination of Rac1-GTP levels in Numb knockdown cells revealed hyperactivation of Rac1 following extracellular calcium depletion and HGF stimulation, which corresponds with enhanced loss of cell adhesions and lamellipodia formation. Furthermore, inhibition of Rac1 in Numb depleted cells stabilized cell–cell contacts following depletion of extracellular calcium. Together, these data indicate that Numb acts to suppress Rac1-GTP accumulation, and its loss leads to increased sensitivity toward extracellular signals that disrupt cell–cell adhesion to induce epithelial–mesenchymal transition (EMT) and cell dispersal.  相似文献   

8.
Annexin A2 (AnxA2) and S100A10 are known to form a molecular complex. Using fluorescence-based binding assays, we show that both proteins are localised on the cell surface, in a molecular form that allows mutual interaction. We hypothesized that binding between these proteins could facilitate cell–cell interactions. For cells that express surface S100A10 and surface annexin A2, cell–cell interactions can be blocked by competing with the interaction between these proteins. Thus an annexin A2-S100A10 molecular bridge participates in cell–cell interactions, revealing a hitherto unexplored function of this protein interaction.  相似文献   

9.
The interaction of annexin A6 (AnxA6) with membrane phospholipids and either specific extracellular matrix (ECM) components or F-actin suggests that it may influence cellular processes associated with rapid plasma membrane reorganization such as cell adhesion and motility. Here, we examined the putative roles of AnxA6 in adhesion-related cellular processes that contribute to breast cancer progression. We show that breast cancer cells secrete annexins via the exosomal pathway and that the secreted annexins are predominantly cell surface-associated. Depletion of AnxA6 in the invasive BT-549 breast cancer cells is accompanied by enhanced anchorage-independent cell growth but cell–cell cohesion, cell adhesion/spreading onto collagen type IV or fetuin-A, cell motility and invasiveness were strongly inhibited. To explain the loss in adhesion/motility, we show that vinculin-based focal adhesions in the AnxA6-depleted BT-549 cells are elongated and randomly distributed. These focal contacts are also functionally defective because the activation of focal adhesion kinase and the phosphoinositide-3 kinase/Akt pathway were strongly inhibited while the MAP kinase pathway remained constitutively active. Compared with normal human breast tissues, reduced AnxA6 expression in breast carcinoma tissues correlates with enhanced cell proliferation. Together this suggests that reduced AnxA6 expression contributes to breast cancer progression by promoting the loss of functional cell–cell and/or cell–ECM contacts and anchorage-independent cell proliferation.  相似文献   

10.
Epithelial scattering occurs when cells disassemble cell–cell junctions, allowing individual epithelial cells to act in a solitary manner. Epithelial scattering occurs frequently in development, where it accompanies epithelial–mesenchymal transitions and is required for individual cells to migrate and invade. While migration and invasion have received extensive research focus, how cell–cell junctions are detached remains poorly understood. An open debate has been whether disruption of cell–cell interactions occurs by remodeling of cell–cell adhesions, increased traction forces through cell substrate adhesions, or some combination of both processes. Here we seek to examine how changes in adhesion and contractility are coupled to drive detachment of individual epithelial cells during hepatocyte growth factor (HGF)/scatter factor-induced EMT. We find that HGF signaling does not alter the strength of cell–cell adhesion between cells in suspension, suggesting that changes in cell–cell adhesion strength might not accompany epithelial scattering. Instead, cell–substrate adhesion seems to play a bigger role, as cell–substrate adhesions are stronger in cells treated with HGF and since rapid scattering in cells treated with HGF and TGFβ is associated with a dramatic increase in focal adhesions. Increases in the pliability of the substratum, reducing cells ability to generate traction on the substrate, alter cells? ability to scatter. Further consistent with changes in substrate adhesion being required for cell–cell detachment during EMT, scattering is impaired in cells expressing both active and inactive RhoA mutants, though in different ways. In addition to its roles in driving assembly of both stress fibers and focal adhesions, RhoA also generates myosin-based contractility in cells. We therefore sought to examine how RhoA-dependent contractility contributes to cell–cell detachment. Inhibition of Rho kinase or myosin II induces the same effect on cells, namely an inhibition of cell scattering following HGF treatment. Interestingly, restoration of myosin-based contractility in blebbistatin-treated cells results in cell scattering, including global actin rearrangements. Scattering is reminiscent of HGF-induced epithelial scattering without a concomitant increase in cell migration or decrease in adhesion strength. This scattering is dependent on RhoA, as blebbistatin-induced scattering is reduced in cells expressing dominant-negative RhoA mutants. This suggests that induction of myosin-based cellular contractility may be sufficient for cell–cell detachment during epithelial scattering.  相似文献   

11.
The rat cell line 804G assembles an extracellular matrix which induces not only the rapid adhesion and spreading of epithelial cells but also the assembly of a cell–matrix attachment device called the hemidesmosome. The major component of this matrix is laminin-5. We have purified rat laminin-5 from medium conditioned by 804G cells. Epithelial cells which are co-incubated with medium supplemented with soluble laminin-5 adhere and spread rapidly. Furthermore, human carcinoma cells undergo a dramatic morphologic change in the presence of laminin-5 and form orderly arrays resembling epithelial sheets. Soluble rat laminin-5 is selectively incorporated into an insoluble matrix of epithelial cellsin vitro,since rat-specific laminin-5 antibodies stain cell–substrate contacts. Addition of medium containing soluble laminin-5 to explanted, human corneal rims induces assembly of hemidesmosomes, important cell–matrix attachment devices. Furthermore, rat-specific laminin-5 antibodies stain areas of contact between corneal epithelium and basement membrane, indicating that rat laminin-5 from the medium is incorporated into basement membrane. We discuss the use of laminin-5 as a medium supplement for the culture of both epithelial cells and epithelial tissue explants.  相似文献   

12.
X-linked mental retardation (XLMR) is a common cause of moderate to severe intellectual disability in males. XLMR protein related to neurite extension (Xpn, also known as KIAA2022) has been implicated as a gene responsible for XLMR in humans. Although Xpn is highly expressed in the developing brain and is involved in neurite outgrowth in PC12 cells and neurons, little is known about the functional role of Xpn. Here, we show that Xpn regulates cell–cell and cell–matrix adhesion and migration in PC12 cells. Xpn knockdown enhanced cell–cell and cell–matrix adhesion mediated by N-cadherin and β1-integrin, respectively. N-Cadherin and β1-integrin expression at the mRNA and protein levels was significantly increased in Xpn knockdown PC12 cells. Furthermore, overexpressed Xpn protein was strongly expressed in the nuclei of PC12 and 293T cells. Finally, depletion of Xpn perturbed cellular migration by enhancing N-cadherin and β1-integrin expression in a PC12 cell wound healing assay. We conclude that Xpn regulates cell–cell and cell–matrix adhesion and cellular migration by regulating the expression of adhesion molecules.  相似文献   

13.
Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three-dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell–ECM and cell–cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cell migration within collagen gels.  相似文献   

14.
Clec14a is a member of the thrombomodulin (TM) family, but its function has not yet been determined. Here, we report that Clec14a is a plasma membrane protein of endothelial cells (ECs) expressed specifically in the vasculature of mice. Deletion mutant analysis revealed that Clec14a mediates cell–cell adhesion through its C-type lectin-like domain. Knockdown of Clec14a in ECs suppressed cell migratory activity and filopodial protrusion, and delayed formation of tube-like structures. These findings demonstrate that Clec14a is a novel EC-specific protein that appears to play a role in cell–cell adhesion and angiogenesis.  相似文献   

15.
Casiopeínas® are a new generation of anticancer drugs that have shown great in vitro and in vivo antineoplastic activities. Information about interaction drug-excipient, for developing a based-nanoparticle drug delivery system, has not been investigated yet. In order to elucidate if chitosan (CS) modifies the copper complex due to its interaction with Cu2+ ion, different studies in aqueous media between CS and Casiopeina III-ia (Cas III-ia) were carried out. CS–Cas III-ia mixtures were characterized by viscosity curves, UV–vis, EPR, and in vivo activity against HeLa cell line. Rheological behavior showed a decrease of viscosity when the drug was present due to diminished electrostatic interactions of charged amine group. UV–vis results illustrate that Cas III-ia is not stable at low pH as a result of interaction with acetic acid. However, when chitosan is present at the acidic solution Cas III-ia is stable. These results are supported by EPR studies. Finally, activity of the drug against HeLa cell line was not modified. Therefore, the present work presents evidence that there is no breaking of copper complex due to interaction between CS and Cas III-ia in acidic media. In addition, Cas III-ia maintains both its stability and effectiveness against cancer cell line.  相似文献   

16.
The structure of a tissue engineering scaffold plays an important role in modulating tissue growth. A novel gelatin–chitosan (Gel–Cs) scaffold with a unique structure produced by three-dimensional printing (3DP) technology combining with vacuum freeze-drying has been developed for tissue-engineering applications. The scaffold composed of overall construction, micro-pore, surface morphology, and effective mechanical property. Such a structure meets the essential design criteria of an ideal engineered scaffold. The favorable cell–matrix interaction supports the active biocompatibility of the structure. The structure is capable of supporting cell attachment and proliferation. Cells seeded into this structure tend to maintain phenotypic shape and secreted large amounts of extracellular matrix (ECM) and the cell growth decreased the mechanical properties of scaffold. This novel biodegradable scaffold has potential applications for tissue engineering based upon its unique structure, which acts to support cell growth.  相似文献   

17.
Microbubbles first developed as ultrasound contrast agents have been used to assist ultrasound for cellular drug and gene delivery. Their oscillation behavior during ultrasound exposure leads to transient membrane permeability of surrounding cells, facilitating targeted local delivery. The increased cell uptake of extracellular compounds by ultrasound in the presence of microbubbles is attributed to a phenomenon called sonoporation. In this review, we summarize current state of the art concerning microbubble–cell interactions and cellular effects leading to sonoporation and its application for gene delivery. Optimization of sonoporation protocol and composition of microbubbles for gene delivery are discussed.  相似文献   

18.
Cadherins mediate the formation of cell–cell adherens junctions (AJ) by homophilic interactions through their extracellular domains as well as by interacting with the actin cytoskeleton via their cytoplasmic portions. Cadherin clustering initiates cytoplasmic signaling that results in the assembly of structural components into cell–cell AJ. To elucidate the function of the cytoplasmic tail of cadherins in initiating the assembly signal, we generated and characterized a chimeric cadherin tail fused to an inert transmembrane anchor. The chimera enabled us to cluster the cadherin cytoplasmic tail in the absence of extracellular portions of the molecule. The transfected cadherin tail chimera localized to cell–cell AJ of epithelial cells, indicating that the submembrane junctional plaque has the capacity to recruit additional cadherins, with no involvement of their extracellular domains. Expression of the chimera in cells of mesenchymal origin resulted in dominant negative effects on the formation of cell–cell AJ. Surface clustering of cadherin cytoplasmic tails induced the recruitment of components and structural assembly of cell–cell AJ, thereby reversing the initial dominant–negative effects. We conclude that the cadherin cytoplasmic tail contains information required to direct the molecule to cell–cell AJ. Its function as modulator of cell–cell AJ depends on cell type and on whether the tail is clustered.  相似文献   

19.
20.
The distinctive polarized morphology of neuronal cells is essential for the proper wiring of the nervous system. The rodent hippocampal neuron culture established about three decades ago has provided an amenable in vitro system to uncover the molecular mechanisms underlying neuronal polarization, a process relying on highly regulated cytoskeletal dynamics, membrane traffic and localized protein degradation. More recent research in vivo has highlighted the importance of the extracellular environment and cell–cell interactions in neuronal polarity. Here, I will review some key signaling pathways regulating neuronal polarization and provide some insights on the complexity of this process gained from in vivo studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号