首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The p38 mitogen-activated protein (MAP) kinases function as signaling molecules essential for many cellular processes, particularly mediating stress response. The activity of p38 MAP kinases is meticulously regulated to reach the desired cellular phenotype. Several alternative activation and attenuation mechanisms have been characterized recently which include new phosphorylation sites. Here we present the crystal structure of p38α MAP kinase in complex with n-octyl-β-glucopyranoside detergent. The complex unveils a novel lipid-binding site formed by a local conformational change of the MAP kinase insert. This binding is the first attribution for a possible role of the MAP kinase insert in p38. The binding site can accommodate a large selection of lipidic molecules. In addition, we also show via biophysical methods that arachidonic acid and its derivatives bind p38α in vitro. Based on our analysis we propose that the binding of lipids could fine-tune p38α catalytic activity towards a preferred phenotype.  相似文献   

2.
Differentiation therapy for neoplastic diseases has potential for supplementing existing treatment modalities but its implementation has been slow. One of the reasons is the lack of full understanding of the complexities of cellular pathways through which signals for differentiation lead to cell maturation. This was addressed in this study using HL60 cells, a well-established model of differentiation of neoplastic cells. SB 203580 and SB 202190, specific inhibitors of a signaling protein p38 MAP kinase, were found to markedly accelerate monocytic differentiation of HL60 cells induced by low concentrations of 1,25-dihydroxyvitamin D(3) (1,25D(3)). Surprisingly, inhibition of p38 activity resulted in sustained enhancement of p38 phosphorylation and of its in vitro activity in the absence of the inhibitor, indicating up-regulation of the upstream components of the p38 pathway. In addition, SB 203580 or SB 202190 treatment of HL60 cells resulted in a prolonged activation of the JNK and, to a lesser extent, the ERK pathways. The data are consistent with the hypothesis that in HL60 cells an interruption of a negative feedback loop from a p38 target activates a common regulator of multiple MAPK pathways. The possibility also exists that JNK and/or ERK pathways amplify a differentiation signal provided by 1,25D(3).  相似文献   

3.
p38 Mitogen-activated protein (MAP) kinase is involved in the apoptosis of nucleated cells. Although platelets are anucleated cells, apoptotic proteins have been shown to regulate platelet lifespan. However, the involvement of p38 MAP kinase in platelet apoptosis is not yet clearly defined. Therefore, we investigated the role of p38 MAP kinase in apoptosis induced by a mimetic of BH3-only proteins, ABT-737, and in apoptosis-like events induced by such strong platelet agonists as thrombin in combination with convulxin (Thr/Cvx), both of which result in p38 MAP kinase phosphorylation and activation. A p38 inhibitor (SB202190) inhibited the apoptotic events induced by ABT-737 but did not influence those induced by Thr/Cvx. The inhibitor also reduced the phosphorylation of cytosolic phospholipase A2 (cPLA2), an established p38 substrate, induced by ABT-737 or Thr/Cvx. ABT-737, but not Thr/Cvx, induced the caspase 3-dependent cleavage and inactivation of cPLA2. Thus, p38 MAPK promotes ABT-737-induced apoptosis by inhibiting the cPLA2/arachidonate pathway. We also show that arachidonic acid (AA) itself and in combination with Thr/Cvx or ABT-737 at low concentrations prevented apoptotic events, whereas at high concentrations it enhanced such events. Our data support the hypothesis that the p38 MAPK-triggered arachidonate pathway serves as a defense mechanism against apoptosis under physiological conditions.  相似文献   

4.
Suramin is a well-known antitrypanosomal drug and a novel experimental agent for the treatment of several cancers. Previous study showed that suramin is an activator of extracellular signal-regulated kinase (ERK1/2) signaling in several cell lines including Chinese hamster ovary cells, although the physiological relevance of this activation remains uncertain. Here, it was shown that suramin enhances neurite outgrowth concomitant with activation of ERK1/2 in Neuro-2a cells, a neuronal cell line. These neurite outgrowth and ERK1/2 activation were significantly inhibited by PD98059, an inhibitor of mitogen-activated protein kinase kinase, as well as by activation of endogenous adenosine A2A receptors. The suramin-induced phosphorylation of ERK1/2 was also inhibited by inhibitors of Src family kinases. This attenuation of ERK1/2 activity was accompanied by a significant decrease in suramin-induced neurite outgrowth. These results suggest that suramin activates the Src/ERK1/2 signaling pathway that induces neurite outgrowth, both of which are negatively regulated by cAMP produced in response to activation of endogenous adenosine A2A receptors.  相似文献   

5.
Stimulation of the neuronal cell adhesion molecule L1 in cerebellar granule neurons (CGNs) enhances neurite outgrowth and this response is inhibited by the primary alcohol ethanol. Because primary alcohols suppress the formation of the signaling lipid phosphatidic acid (PA) by phospholipase D (PLD), this observation prompted us to investigate whether PLD plays a role in the L1-mediated neurite outgrowth in CGNs. In the cerebellum of postnatal day 8 mice, PLD2 protein was abundantly expressed, while PLD1 expression was not detected. The L1-stimulated neurite outgrowth was inhibited by primary alcohols and by overexpression of lipase-deficient PLD2. Increases in cellular PA levels by direct PA application or overexpression of wild-type PLD2 mimicked the L1-dependent stimulation of neurite outgrowth. Furthermore, it was found that L1 stimulation in CGNs increased PLD activity concomitantly with phosphorylation of extracellular signal-regulated kinase (ERK), both of which were inhibited by the MAP kinase-ERK kinase (MEK) inhibitor. These results provide evidence that PLD2 functions as a downstream signaling molecule of ERK to mediate the L1-dependent neurite outgrowth of CGNs, a mechanism that may be related to alcohol-related neurodevelopmental disorders.  相似文献   

6.
Prostaglandin F2alpha (PGF2alpha) induces cyclin D1 expression and DNA synthesis in Swiss 3T3 cells. In order to assess which signaling mechanisms are implicated in these processes, we have used both a pharmacological approach and interfering mutants. We demonstrate that PGF2alpha induces extracellular-signal-regulated kinase (ERK1-2) and p38MAPK activation, and inhibition of any of these signaling pathways completely blocks PGF2alpha-stimulated DNA synthesis. We also show that ERK1-2, but not p38MAPK activation is required to induce cyclin D1 expression, strongly suggesting that the concerted action of cyclin D1 gene expression and other events are required to induce complete phosphorylation of retinoblastoma protein and S-phase entry in response to PGF2alpha.  相似文献   

7.
Palladin was a novel binding partner of ILKAP in eukaryotic cells. Palladin’s C-terminal fragment including only its last three Ig domains (residues 710–1106) and the PP2C domain of ILKAP (residues 108–392) were necessary and sufficient for their interaction. The biological significance of the interaction between palladin and ILKAP was that palladin recruited the cytoplasmic ILKAP to initiate ILKAP-induced apoptosis. Our results suggested that palladin played a specific role in modulating the subcellular localization of the cytoplasmic ILKAP and promoting the ILKAP-induced apoptosis.  相似文献   

8.
p38 mitogen-activated protein (MAP) kinases function in numerous signaling processes and are crucial for normal functions of cells and organisms. Abnormal p38 activity is associated with inflammatory diseases and cancers making the understanding of its activation mechanisms highly important. p38s are commonly activated by phosphorylation, catalyzed by MAP kinase kinases (MKKs). Moreover, it was recently revealed that the p38alpha is also activated via alternative pathways, which are MKK independent. The structural basis of p38 activation, especially in the alternative pathways, is mostly unknown. This lack of structural data hinders the study of p38's biology as well as the development of novel strategies for p38 inhibition. We have recently discovered and optimized a novel set of intrinsically active p38 mutants whose activities are independent of any upstream activation. The high-resolution crystal structures of the intrinsically active p38alpha mutants reveal that local alterations in the L16 loop region promote kinase activation. The L16 loop can be thus regarded as a molecular switch that upon conformational changes promotes activation. We suggest that similar conformational changes in L16 loop also occur in natural activation mechanisms of p38alpha in T-cells. Our biochemical studies reveal novel mechanistic insights into the activation process of p38. In this regard, the results indicate that the activation mechanism of the mutants involves dimerization and subsequent trans autophosphorylation on Thr180 (on the phosphorylation lip). Finally, we suggest a model of in vivo p38alpha activation induced by the L16 switch with auto regulatory characteristics.  相似文献   

9.
Ochratoxin A (OTA), one of the major food-borne mycotoxins, induces apoptosis in various types of cells. Induction of apoptosis is suggested to be one of the major cellular mechanisms behind OTA-induced diverse toxic effects. However, the molecular mechanisms involved, especially the role of p53 in OTA-induced apoptosis have not been clearly elucidated. In the present study, we find that p53 activation exerts pro-survival function to inhibit apoptosis induction in MARC-145, Vero monkey kidney cells and HEK293 human kidney cells in response to ochratoxin A treatment. We further demonstrate that the pro-survival activity of p53 is attributed to its ability to suppress JNK activation that mediates apoptotic signaling through down-regulation of Bcl-xL. To our knowledge, this is first report of pro-survival role of p53 in OTA-induced apoptosis in kidney epithelial cells. Our findings provide a novel insight into the mechanisms of OTA-induced apoptosis in kidney epithelial cells.  相似文献   

10.
Wisp2/CCN5 belongs to CCN family proteins which are involved in cell proliferation, angiogenesis, tumorigenesis and wound healing. Although a number of studies on the roles of Wisp2/CCN5 in cancers have been reported, no study on the expression and function of Wisp2/CCN5 in the central nervous system has been reported. In this study, we focused on Wisp2/CCN5 that was up-regulated in nervous tissues in GM3-only mice. Over-expression of Wisp2/CCN5 enhanced neurite outgrowth potently after serum withdrawal with increased phosphorylation levels of Akt and ERKs. When cells were cultured with recombinant Wisp2/CCN5 proteins, more and longer neurites were formed than in the controls. Thus, we demonstrated for the first time that Wisp2/CCN5 facilitates neurite formation in a mouse neuroblastoma cell line, Neuro2a. Akt phosphorylation induced by recombinant Wisp2/CCN5 was suppressed after knockdown of integrin β1. Moreover, Wisp2/CCN5-over-expressing cells were resistant to apoptosis induced by H2O2. These results suggested that secreted Wisp2/CCN5 induces Akt and ERK phosphorylation via integrins, and consequently facilitates neurite formation and conferred resistance to apoptosis. Up-regulation of Wisp2/CCN5 in GM3-only mice should be, therefore, a reaction to protect nervous tissues from neurodegeneration caused by ganglioside deficiency.  相似文献   

11.
Cannabinoids have been shown to inhibit the growth of a broad spectrum of tumour cells. However, the molecular mechanisms involved in that effect have not been completely elucidated. Here, we investigated the possible involvement of mitogen-activated protein kinases (MAPKs) in CB2 receptor-induced apoptosis of human leukaemia cells. Results show that stimulation of the CB2 receptor leads to p38 MAPK activation and that inhibition of this kinase attenuates CB2 receptor-induced caspase activation and apoptosis. These findings support a role for p38 MAPK in CB2 receptor-induced apoptosis of human leukaemia cells.  相似文献   

12.
In this report, we sought to elucidate whether multiwall carbon nanotubes are involved in the modulation of the proliferation and differentiation of the skeletal muscle cell line C2C12. Skeletal muscle is a major mass peripheral tissue that accounts for 40% of total body weight and 50% of energy consumption. We focused on the differentiation pathway of myoblasts after exposure to a vapor-grown carbon fiber, HTT2800, which is one of the most highly purified carbon nanotubes. This treatment leads in parallel to the expression of a typical adipose differentiation program. We found that HTT2800 stimulated intracellular lipid accumulation in C2C12 cells. We have also shown by quantified PCR analysis that the expression of adipose-related genes was markedly upregulated during HTT2800 exposure. Taken together, these results suggest that HTT2800 specifically converts the differentiation pathway of C2C12 myoblasts to that of adipoblast-like cells.  相似文献   

13.
U46619, a thromboxane A2 mimetic, caused tyrosine phosphorylation of several proteins in rabbit platelets. Among them, 42 kDa protein was identified as a mitogen-activated protein kinase (MAPK). U46619 activated MAPK in a concentration-dependent manner, measured by incorporation of 32P to a specific substrate for MAPK. U46619 also liberated [3H)arachidonic acid in a concentration-dependent manner. The U46619-induced MAPK activation and [3H]arachidonic acid liberation were inhibited by SQ29548 and by the removal of external Ca2+ ions. This is a first demonstration that TXA2 activates MAPK accompanied with arachidonic acid liberation in rabbit platelets.  相似文献   

14.
15.
We previously reported that basic fibroblast growth factor (FGF-2) activates stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) and p44/p42 mitogen-activated protein (MAP) kinase resulting in the stimulation of vascular endothelial growth factor (VEGF) release in osteoblast-like MC3T3-E1 cells. In the present study, we investigated whether zinc affects the VEGF release by FGF-2 in MC3T3-E1 cells. The FGF-2-induced VEGF release was significantly enhanced by ZnSO(4) but not Na(2)SO(4). The enhancing effect of ZnSO(4) was dose-dependent between 1 and 100 muM. ZnSO(4) markedly enhanced the FGF-2-induced phosphorylation of p44/p42 MAP kinase while having little effect on the SAPK/JNK phosphorylation. PD98059 significantly reduced the amplification by ZnSO(4) of the FGF-2-stimulated VEGF release. Taken together, our findings strongly suggest that zinc enhances FGF-2-stimulated VEGF release resulting from up-regulating activation of p44/p42 MAP kinase in osteoblasts.  相似文献   

16.
Chen WY  Ni Y  Pan YM  Shi QX  Yuan YY  Chen AJ  Mao LZ  Yu SQ  Roldan ER 《FEBS letters》2005,579(21):4692-4700
We investigated whether GABA activates phospholipase A2 (PLA2) during acrosomal exocytosis, and if the MEK-ERK1/2 pathway modulates PLA2 activation initiated by GABA, progesterone or zona pellucida (ZP). In guinea pig spermatozoa prelabelled with [14C]arachidonic acid or [14C]choline chloride, GABA stimulated a decrease in phosphatidylcholine (PC), and release of arachidonic acid and lysoPC, during exocytosis. These lipid changes are indicative of PLA2 activation and appear essential for exocytosis since inclusion of aristolochic acid (a PLA2 inhibitor) abrogated them, along with exocytosis. GABA activation of PLA2 seems to be mediated, at least in part, by diacylglycerol (DAG) and protein kinase C since inclusion of the DAG kinase inhibitor R59022 enhanced PLA2 activity and exocytosis stimulated by GABA, whereas exposure to staurosporine decreased both. GABA-, progesterone- and ZP-induced release of arachidonic acid and exocytosis were prevented by U0126 and PD98059 (MEK inhibitors). Taken together, our results suggest that PLA2 plays a fundamental role in agonist-stimulated exocytosis and that MEK-ERK1/2 are involved in PLA2 regulation during this process.  相似文献   

17.
Defects in apoptosis are frequently the cause of cancer emergence, as well as cellular resistance to chemotherapy. These phenotypes may be due to mutations of the tumor suppressor TP53 gene. In this study, we examined the effect of various mitotic spindle poisons, including the new isocombretastatin derivative isoNH2CA-4 (a tubulin-destabilizing molecule, considered to bind to the colchicine site by analogy with combretastatin A-4), on BL (Burkitt lymphoma) cells. We found that resistance to spindle poison-induced apoptosis could be reverted in tumor protein p53 (TP53)-mutated cells by EBV (Epstein Barr virus) infection. This reversion was due to restoration of the intrinsic apoptotic pathway, as assessed by relocation of the pro-apoptotic molecule Bax to mitochondria, loss of mitochondrial integrity and activation of the caspase cascade with PARP (poly ADP ribose polymerase) cleavage. EBV sensitized TP53-mutated BL cells to all spindle poisons tested, including vincristine and taxol, an effect that was systematically downmodulated by pretreatment of cells with inhibitors of p38 and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinases. Exogenous activation of p38 and JNK pathways by dihydrosphingosine reverted resistance of TP53-mutated BL cells to spindle poisons. Dihydrosphingosine treatment of TP53-deficient Jurkat and K562 cell lines was also able to induce cell death. We conclude that activation of p38 and JNK pathways may revert resistance of TP53-mutated cells to spindle poisons. This opens new perspectives for developing alternative therapeutic strategies when the TP53 gene is inactivated.  相似文献   

18.
The stimulation of the alpha(1)-adrenergic receptor with phenylephrine results in the significant extrusion of Mg(2+) from the rat heart and cardiomyocytes. Phenylephrine-induced Mg(2+) extrusion is prevented by the removal of extracellular Ca(2+) or by the presence of Ca(2+)-channel blockers such as verapamil, nifedipine, or (+)BAY-K8644. Mg(2+) extrusion is almost completely inhibited by PD98059 (a MAP kinase inhibitor). The simultaneous addition of 5mM Ca(2+) and phenylephrine increases the extrusion of Mg(2+) from perfused hearts and cardiomyocytes. This Mg(2+) extrusion is inhibited by more than 90% when the hearts are preincubated with PD98059. ERKs are activated by perfusion with either phenylephrine or 5mM Ca(2+). This ERK activation is inhibited by PD98059. Overall, these results suggest that stimulating the cardiac alpha(1)-adrenergic receptor by phenylephrine causes the extrusion of Mg(2+) via the Ca(2+)-activated, Na(+)-dependent transport pathway, and the ERKs assists in Mg(2+) transport in the heart.  相似文献   

19.
Caspase-independent, non-apoptotic cell death in ischemic heart disease is considered to be one of the important therapeutic targets, however, the detailed mechanisms of this cell death process are not clear. In this study, we investigated the mechanisms of non-apoptotic cell death in cultured neonatal rat cardiomyocytes during ischemia, and the cardioprotection by preventing the mechanisms. We found that ischemia caused elevation of the phospholipase A2 (iPLA2) expression in the myocytes, leading to distinctive non-apoptotic nuclear shrinkage, and cell death. Moreover, we investigated whether the potent cardioprotective corticotropin-releasing hormone (CRH), urocortin, which had been less focused on non-apoptotic cell death, inhibits the ischemic myocyte death. Ischemia-augmented nuclear shrinkage of the myocytes was suppressed by the pretreatment of ∼10 nM urocortin before the cells were exposed to ischemia. Urocortin could significantly suppress the expression and activity of iPLA2, resulting in preventing the ischemia-induced cell death. The survival-promoting effect of urocortin was abrogated by the CRH receptor antagonist astressin. These findings provide the first evidence linking the targets of the urocortin-mediated cardioprotection to the suppression of the caspase-independent, non-apoptotic death in cardiac myocytes exposed to ischemia.  相似文献   

20.
Exposure of human peripheral blood monocytes to free arachidonic acid (AA) results in the rapid induction of lipid droplet (LD) formation by these cells. This effect appears specific for AA in that it is not mimicked by other fatty acids, whether saturated or unsaturated. LDs are formed by two different routes: (i) the direct entry of AA into triacylglycerol and (ii) activation of intracellular signaling, leading to increased triacylglycerol and cholesteryl ester formation utilizing fatty acids coming from the de novo biosynthetic route. Both routes can be dissociated by the arachidonyl-CoA synthetase inhibitor triacsin C, which prevents the former but not the latter. LD formation by AA-induced signaling predominates, accounting for 60–70% of total LD formation, and can be completely inhibited by selective inhibition of the group IVA cytosolic phospholipase A2α (cPLA2α), pointing out this enzyme as a key regulator of AA-induced signaling. LD formation in AA-treated monocytes can also be blocked by the combined inhibition of the mitogen-activated protein kinase family members p38 and JNK, which correlates with inhibition of cPLA2α activation by phosphorylation. Collectively, these results suggest that concomitant activation of p38 and JNK by AA cooperate to activate cPLA2α, which is in turn required for LD formation possibly by facilitating biogenesis of this organelle, not by regulating neutral lipid synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号