首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pancreatic β-cells have a well-developed endoplasmic reticulum (ER) and express large amounts of chaperones and protein disulfide isomerases (PDI) to meet the high demand for synthesis of proteins. We have observed an unexpected decrease in chaperone protein level in the β-cell model INS-1E after exposure to the ER stress inducing agent thapsigargin. As these cells are a commonly used model for primary β-cells and has been shown to be vulnerable to ER stress, we hypothesize these cells are incapable of mounting a chaperone defense upon activation of ER stress. To investigate the chaperone expression during an ER stress response, induced by thapsigargin in INS-1E cells, we used quantitative mass spectrometry based proteomics. The results displayed a decrease of GRP78/BiP, PDIA3 and PDIA6. Decrease of GRP78/BiP was verified by Western blot and occurred in parallel with enhanced levels of p-eIF2α and CHOP. In contrast to INS-1E cells, GRP78/BiP was not decreased in MIN6 cell or rat and mouse islets after thapsigargin exposure. Investigation of the decreased protein levels of GRP78/BiP indicates that this is not a consequence of reduced mRNA expression. Rather the reduction results from the combined effect of reduced protein synthesis and enhanced proteosomal degradation and possibly also degradation via autophagy. Induction of ER stress with thapsigargin leads to lower protein levels of GRP78/BiP, PDIA3 and PDIA6 in INS-1E cells which may contribute to the susceptibility of ER stress in this β-cell model.  相似文献   

2.
L Chen  S Xu  L Liu  X Wen  Y Xu  J Chen  J Teng 《Cell death & disease》2014,5(5):e1219
Disturbance of endoplasmic reticulum (ER) homeostasis causes ER stress and leads to activation of the unfolded protein response, which reduces the stress and promotes cell survival at the early stage of stress, or triggers cell death and apoptosis when homeostasis is not restored under prolonged ER stress. Here, we report that Cab45S, a member of the CREC family, inhibits ER stress-induced apoptosis. Depletion of Cab45S increases inositol-requiring kinase 1 (IRE1) activity, thus producing more spliced forms of X-box-binding protein 1 mRNA at the early stage of stress and leads to phosphorylation of c-Jun N-terminal kinase, which finally induces apoptosis. Furthermore, we find that Cab45S specifically interacts with 78-kDa glucose-regulated protein/immunoglobulin heavy chain binding protein (GRP78/BiP) on its nucleotide-binding domain. Cab45S enhances GRP78/BiP protein level and stabilizes the interaction of GRP78/BiP with IRE1 to inhibit ER stress-induced IRE1 activation and apoptosis. Together, Cab45S, a novel regulator of GRP78/BiP, suppresses ER stress-induced IRE1 activation and apoptosis by binding to and elevating GRP78/BiP, and has a role in the inhibition of ER stress-induced apoptosis.  相似文献   

3.
4.
Previous studies have demonstrated that overexpression of GRP78/BiP, an endoplasmic reticulum (ER)-resident molecular chaperone, in mammalian cells inhibits the secretion of specific coagulation factors. However, the effects of GRP78/BiP on activation of the coagulation cascade leading to thrombin generation are not known. In this study, we examined whether GRP78/BiP overexpression mediates cell surface thrombin generation in a human bladder cancer cell line T24/83 having prothrombotic characteristics. We report here that cells overexpressing GRP78/BiP exhibited significant decreases in cell surface-mediated thrombin generation, prothrombin consumption and the formation of thrombin-inhibitor complexes, compared with wild-type or vector-transfected cells. This effect was attributed to the ability of GRP78/BiP to inhibit cell surface tissue factor (TF) procoagulant activity (PCA) because conversion of factor X to Xa and factor VII to VIIa were significantly lower on the surface of GRP78/BiP-overexpressing cells. The additional findings that (i) cell surface factor Xa generation was inhibited in the absence of factor VIIa and (ii) TF PCA was inhibited by a neutralizing antibody to human TF suggests that thrombin generation is mediated exclusively by TF. GRP78/BiP overexpression did not decrease cell surface levels of TF, suggesting that the inhibition in TF PCA does not result from retention of TF in the ER by GRP78/BiP. The additional observations that both adenovirus-mediated and stable GRP78/BiP overexpression attenuated TF PCA stimulated by ionomycin or hydrogen peroxide suggest that GRP78/BiP indirectly alters TF PCA through a mechanism involving cellular Ca(2+) and/or oxidative stress. Similar results were also observed in human aortic smooth muscle cells transfected with the GRP78/BiP adenovirus. Taken together, these findings demonstrate that overexpression of GRP78/BiP decreases thrombin generation by inhibiting cell surface TF PCA, thereby suppressing the prothrombotic potential of cells.  相似文献   

5.
Two major chaperones, calreticulin (CRT) and binding immunoglobulin protein (GRP78/BiP) dependent on their location, have immunoregulatory or anti-inflammatory functions respectively. CRT induces pro-inflammatory cytokines, dendritic cell (DC) maturation and activates cytotoxic T cells against tumours. By contrast, GRP78/BiP induces anti-inflammatory cytokines, inhibits DC maturation and heightens T-regulatory cell responses. These latter functions rebalance immune homeostasis in inflammatory diseases, such as rheumatoid arthritis. Both chaperones are therapeutically relevant agents acting primarily on monocytes/DCs. Endogenous exposure of CRT on cancer cell surfaces acts as an ‘eat-me’ signal and facilitates improved elimination of stressed and dying tumour cells by DCs. Therefore, therapeutics that promote endogenous CRT translocation to the cell surface can improve the removal of cancer cells. However, infused recombinant CRT dampens this cancer cell eradication by binding directly to the DCs. Low levels of endogenous BiP appear as a surface biomarker of endoplasmic reticulum (ER) stress in some types of tumour cells, a reflection of cells undergoing proliferation, in which resulting hypoxia and nutrient deprivation perturb ER homeostasis triggering the unfolded protein response, leading to increased expression of GRP78/BiP and altered cellular location. Conversely, infusion of an analogue of GRP78/BiP (IRL201805) can lead to long-term immune resetting and restoration of immune homeostasis. The therapeutic potential of both chaperones relies on them being relocated from their intracellular ER environment. Ongoing clinical trials are employing therapeutic interventions to either enhance endogenous cell surface CRT or infuse IRL201805, thereby triggering several disease-relevant immune responses leading to a beneficial clinical outcome.  相似文献   

6.
Direct interaction of Chlamydiae with the endoplasmic reticulum (ER) is essential in intracellular productive infection. However, little is known about the interplay between Chlamydiae and the ER under cellular stress conditions that are observed in interferon gamma (IFN‐γ) induced chlamydial persistent infection. ER stress responses are centrally regulated by the unfolded protein response (UPR) under the control of the ER chaperone BiP/GRP78 to maintain cellular homeostasis. In this study, we could show that the ER directly contacted with productive and IFN‐γ‐induced persistent inclusions of Chlamydia pneumoniae (Cpn). BiP/GRP78 induction was observed in the early phase but not in the late phase of IFN‐γ‐induced persistent infection. Enhanced BiP/GRP78 expression in the early phase of IFN‐γ‐induced persistent Cpn infection was accompanied by phosphorylation of the eukaryotic initiation factor‐2α (eIF2α) and down‐regulation of the vesicle‐associated membrane protein‐associated protein B. Loss of BiP/GRP78 function resulted in enhanced phosphorylation of eIF2α and increased host cell apoptosis. In contrast, enhanced BiP/GRP78 expression in IFN‐γ‐induced persistent Cpn infection attenuated phosphorylation of eIF2α upon an exogenous ER stress inducer. In conclusion, ER‐related BiP/GRP78 plays a key role to restore cells from stress conditions that are observed in the early phase of IFN‐γ‐induced persistent infection.  相似文献   

7.
8.
9.
10.
The endoplasmic reticulum (ER) chaperone BiP/GRP78 regulates ER function and the unfolded protein response (UPR). Human cytomegalovirus infection of human fibroblasts induces the UPR but modifies it to benefit viral replication. BiP/GRP78 protein levels are tightly regulated during infection, rising after 36 h postinfection (hpi), peaking at 60 hpi, and decreasing thereafter. To determine the effects of this regulation on viral replication, BiP/GRP78 was depleted using the SubAB subtilase cytotoxin, which rapidly and specifically cleaves BiP/GRP78. Toxin treatment of infected cells for 12-h periods beginning at 36, 48, 60, and 84 hpi caused complete loss of BiP but had little effect on viral protein synthesis. However, progeny virion formation was significantly inhibited, suggesting that BiP/GRP78 is important for virion formation. Electron microscopic analysis showed that infected cells were resistant to the toxin and showed none of the cytotoxic effects seen in uninfected cells. However, all viral activity in the cytoplasm ceased, with nucleocapsids remaining in the nucleus or concentrated in the cytoplasmic space just outside of the outer nuclear membrane. These data suggest that one effect of the controlled expression of BiP/GRP78 in infected cells is to aid in cytoplasmic virion assembly and egress.  相似文献   

11.
The molecular chaperone GRP78/BiP is a key regulator of protein folding in the endoplasmic reticulum, and it plays a pivotal role in cancer cell survival and chemoresistance. Inhibition of its function has therefore been an important strategy for inhibiting tumor cell growth in cancer therapy. Previous efforts to achieve this goal have used peptides that bind to GRP78/BiP conjugated to pro-drugs or cell-death-inducing sequences. Here, we describe a peptide that induces prostate tumor cell death without the need of any conjugating sequences. This peptide is a sequence derived from the cochaperone Bag-1. We have shown that this sequence interacts with and inhibits the refolding activity of GRP78/BiP. Furthermore, we have demonstrated that it modulates the unfolded protein response in ER stress resulting in PARP and caspase-4 cleavage. Prostate cancer cells stably expressing this peptide showed reduced growth and increased apoptosis in in vivo xenograft tumor models. Amino acid substitutions that destroyed binding of the Bag-1 peptide to GRP78/BiP or downregulation of the expression of GRP78 compromised the inhibitory effect of this peptide. This sequence therefore represents a candidate lead peptide for anti-tumor therapy.  相似文献   

12.
Recent reports have shown that the endoplasmic reticulum (ER) stress is relevant to the pathogenesis of Alzheimer disease. Following the amyloid cascade hypothesis, we therefore attempted to investigate the effects of ER stress on amyloid-beta peptide (Abeta) generation. In this study, we found that ER stress altered the localization of amyloid precursor protein (APP) from late compartments to early compartments of the secretory pathway, and decreased the level of Abeta 40 and Abeta 42 release by beta- and gamma-cutting. Transient transfection with BiP/GRP78 also caused a shift of APP and a reduction in Abeta secretion. It was revealed that the ER stress response facilitated binding of BiP/GRP78 to APP, thereby causing it to be retained in the early compartments apart from a location suitable for the cleavages of Abeta. These findings suggest that induction of BiP/GRP78 during ER stress may be one of the regulatory mechanisms of Abeta generation.  相似文献   

13.
Amyloidogenic human lysozyme variants deposit in cells and cause systemic amyloidosis. We recently observed that such lysozymes accumulate in the endoplasmic reticulum (ER) with the ER chaperone GRP78/BiP, accompanying the ER stress response. Here we investigated the region of lysozyme that is critical to its association with GRP78/BiP. In addition to the above-mentioned variants of lysozyme, we constructed lysozyme truncation or substitution mutants. These were co-expressed with GRP78/BiP (tagged with FLAG) in cultured human embryonic kidney cells, which were analyzed by western blotting and immunocytochemistry using anti-lysozyme and anti-FLAG antibodies. The amyloidogenic variants were confirmed to be strongly associated with GRP78/BiP as revealed by the co-immunoprecipitation assay, whereas N-terminal mutants pruned of 1-41 or 1-51 residues were found not to be associated with the chaperone. Single amino acid substitutions for the leucine array along the α-helices in the N-terminal region resulted in wild-type lysozyme remaining attached to GRP78/BiP. These mutations also tended to show lowered secretion ability. We conclude that the N-terminal α-helices region of the lysozyme is pivotal for its strong adhesion to GRP78/BiP. We suspect that wild-type lysozyme interacts with the GRP at this region as a step in the proper folding monitored by the ER chaperone.  相似文献   

14.
15.
16.
The relationship between selenium (Se) deficiency-induced cardiac malfunction and endoplasmic reticulum (ER) stress is poorly understood. In the present study, 18 weaning Sprague Dawley rats were randomly fed with three different Se diets, and myocardial glutathione peroxidase (GPx) activity was measured by an enzyme activity assay. Cardiac function was evaluated by hemodynamic parameters. ER stress markers immunoglobulin-binding protein (BiP)/glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP) were detected by western blotting. Our data showed that myocardial GPx activity and cardiac function were conspicuously impaired in Se-deficient rats. Expression of GRP78 and CHOP was significantly upregulated by treatment of Se deficiency. Improvements in myocardial GPx activity and cardiac function, as well as decreases in expression of GRP78 and CHOP, were observed after Se supplementation. Consequently, our data show that ER stress was involved in Se deficiency-induced cardiac dysfunction.  相似文献   

17.
Ca(2+) transfer from endoplasmic reticulum (ER) to mitochondria at contact sites between the organelles can induce mitochondrial dysfunction and programmed cell death after stress. The ER-localized chaperone glucose-regulated protein 78kDa (GRP78/BiP) protects neurons against excitotoxicity and apoptosis. Here we show that overexpressing GRP78 protects astrocytes against ischemic injury, reduces net flux of Ca(2+) from ER to mitochondria, increases Ca(2+) uptake capacity in isolated mitochondria, reduces free radical production, and preserves respiratory activity and mitochondrial membrane potential after stress. We conclude that GRP78 influences ER-mitochondrial Ca(2+) crosstalk to maintain mitochondrial function and protect astrocytes from ischemic injury.  相似文献   

18.
Hyperhomocysteinemia, a risk factor for vascular disease, injures endothelial cells through undefined mechanisms. We previously identified several homocysteine-responsive genes in cultured human vascular endothelial cells, including the endoplasmic reticulum (ER)-resident molecular chaperone GRP78/BiP. Here, we demonstrate that homocysteine induces the ER stress response and leads to the expression of a novel protein, Herp, containing a ubiquitin-like domain at the N terminus. mRNA expression of Herp was strongly up-regulated by inducers of ER stress, including mercaptoethanol, tunicamycin, A23187, and thapsigargin. The ER stress-dependent induction of Herp was also observed at the protein level. Immunochemical analyses using Herp-specific antibodies indicated that Herp is a 54-kDa, membrane-associated ER protein. Herp is the first integral membrane protein regulated by the ER stress response pathway. Both the N and C termini face the cytoplasmic side of the ER; this membrane topology makes it unlikely that Herp acts as a molecular chaperone for proteins in the ER, in contrast to GRP78 and other ER stress-responsive proteins. Herp may, therefore, play an unknown role in the cellular survival response to stress.  相似文献   

19.
Shimoke K  Kudo M  Ikeuchi T 《Life sciences》2003,73(5):581-593
Glucose-regulated protein 78 (GRP78)/Immunoglobulin binding protein (Bip) is a chaperone which functions to protect cells from endoplasmic reticulum (ER) stress. GRP78/Bip is expressed following ER stress induced by thapsigargin, tunicamycin or chemical factors. However, the mechanism of progression of ER stress against stress factors is still obscure. We examined whether reactive oxygen species (ROS) were involved in GRP78/Bip expression and caspase-3 activity was induced in PC12 cells using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to produce ROS. We report that PC12 cells lost viability in the presence of MPTP for 24 hours as a partial effect of ROS. We also show that N-acetyl-L-cysteine diminished the MPTP-induced apoptosis with expunction of ROS. Furthermore, we observed that GRP78/Bip was not up-regulated and the caspase-3 activity was increased in the presence of MPTP. These results suggest that insubstantial ROS do not contribute to the ER stress-mediated cell death while caspase-3 is involved in ROS-promoted cell death in MPTP-treated cells.  相似文献   

20.
Endoplasmic reticulum (ER) stress occurs as a result of accumulation of unfolded or misfolded proteins in the ER and is involved in the mechanisms of various diseases, such as cancer and neurodegeneration. The goal of the present study was to clarify the relationship between ER stress and pathological neovascularization in the retina. Proliferation and migration of human retinal microvascular endothelial cells (HRMEC) were assessed in the presence of ER stress inducers, such as tunicamycin and thapsigargin. The expression of ER chaperone immunoglobulin heavy-chain binding protein (BiP), known as Grp78, was evaluated by real time RT-PCR, immunostaining, and Western blotting. Tunicamycin or thapsigargin was injected into the intravitreal body of oxygen-induced retinopathy (OIR) model mice at postnatal day 14 (P14) and retinal neovascularization was quantified at P17. The expression and localization of BiP in the retina was also evaluated in the OIR model. Exposure to tunicamycin and thapsigargin increased the proliferation and migration of HRMEC. Tunicamycin enhanced the expression of BiP in HRMEC at both the mRNA level and at the protein level on the cell surface, and increased the formation of a BiP/T-cadherin immunocomplex. In OIR model mice, retinal neovascularization was accelerated by treatments with ER stress inducers. BiP was particularly observed in the pathological vasculature and retinal microvascular endothelial cells, and the increase of BiP expression was correlated with retinal neovascularization. In conclusion, ER stress may contribute to the formation of abnormal vasculature in the retina via BiP complexation with T-cadherin, which then promotes endothelial cell proliferation and migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号