首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The genetic structure of nine Peromyscus maniculatus nebrascensis demes from southeastern Wyoming was determined by analyzing allozymes encoded by 23 genetic loci with polyacrylamide gel electrophoresis. Genetic variability is extremely high for two genetic parameters; the proportion of loci heterozygous per individual averaged 0.16, and the proportion of loci polymorphic per deme averaged 0.41. Previous estimates of genetic heterozygosity for species within the genus Peromyscus have a mean of 0.06. The results of the present study suggest that genetic heterozygosity is considerably higher within P. maniculatus demes than within demes of other species in the genus. Geographic range is correlated with heterozygosity among Peromyscus species, as is adaptive divergence into broad-niched species. These correlates suggest that high heterozygosity may reflect an adaptation to a variable environment.  相似文献   

2.
We describe polymerase chain reaction (PCR) primers and conditions to amplify 11 microsatellite DNA loci isolated from the oldfield mouse (Peromyscus polionotus subgriseus). These were tested for amplification using nine species and subspecies maintained at the Peromyscus Genetic Stock Center, with an average success rate of 65% and two loci amplifying in all species. Polymorphism was tested within the P. polionotus subgriseus and the recently obtained P. maniculatus sonorensis colonies. P. p. subgriseus had modest numbers of alleles per locus (1–4), whereas P. m. sonorensis had many alleles per locus (5–10) and high expected heterozygosities (0.625–0.878).  相似文献   

3.
4.
We isolated and characterized 60 novel microsatellite markers from the closely related oldfield mouse (Peromyscus polionotus) and deer mouse (Peromyscus maniculatus) for studies of conservation, ecological, quantitative and population genetics. We assessed all 60 markers in a wild population of Peromyscus polionotus rhoadsi (N = 20) from central Florida and found an average of nine alleles per marker and an observed heterozygosity (HO) of 0.66 (range = 0.00–1.00). These polymorphic markers contribute to the growing number of genomic resources for Peromyscus, an emerging model system for ecological and evolutionary research.  相似文献   

5.
Daily observations were made of the maternal and paternal behaviour of Onychomys torridus and Peromyscus leucopus in laboratory cages. In both species, the females spent more time in the nest area with the young and groomed the young more frequently than their male partners, but the males played a surprisingly active role in nest attendance. Paternal nest attendance was more frequent in O. torridus males than in P. leucopus males. Onychomys males were also more active in grooming the young than Peromyscus males. These species-specific patterns of parental care are discussed in relation to the behavioural and ecological characteristics of Onychomys and Peromyscus.  相似文献   

6.
7.
Fluorescence-labeled DNA probes constructed from three whole house mouse (Mus domesticus) chromosomes were hybridized to metaphase spreads from deer mouse (Peromyscus maniculatus) to identify homologies between the species. Mus Chr 7 probe hybridized strongly to the ad-centromeric two-thirds of Peromyscus Chr 1q. Most of Mus 3 probe hybridized principally to two disjunct segments of Peromyscus Chr 3. Mus Chr 9 probe hybridized entirely to the whole Peromyscus Chr 7. Three Peromyscus linkage groups were assigned to chromosomes, based on linkage homology with Mus. The data also are useful in interpretation of chromosomal evolutionary history in myomorphic rodents. Received: 1 December 1998 / Accepted: 17 February 1999  相似文献   

8.
The social organization of rodent species determines behavioral patterns for both affiliative and agonistic encounters. The neuropeptide oxytocin has been implicated in the mediation of social behavior; however, variability in both neuropeptide expression and social behavior within a single species indicates an additional mediating factor. The purpose of the present comparative study was to investigate social behaviors in naïve mixed-sex pairs of monogamous Peromyscus californicus and polygynous Peromyscus leucopus. We identified substantial inter- and intra-specific variability in the expression of affiliative and agonistic behaviors. Although all P. californicus tested engaged in frequent and prolonged intervals of social contact and rarely engaged in aggressive behaviors, P. leucopus exhibited significant variability in both measures of social behaviors. The naturally occurring differences in social behavior displayed by P. leucopus vary across the estrous cycle, and correspond to hypothalamic oxytocin, as well as circulating oxytocin and glucocorticoid concentrations. These results provide evidence for a rhythm in social behavior across the estrous cycle in polygynous, but not monogamous, Peromyscus species.  相似文献   

9.
Influences of inbreeding and genetics on telomere length in mice   总被引:2,自引:0,他引:2  
We measured telomere lengths of blood leukocytes in several inbred and outbred mammalian species, using a telomere-specific fluorescent probe and flow cytometry. Humans, non-human primates, and three outbred populations of Peromyscus mice (Peromyscus leucopus, Peromyscus maniculatus, and Peromyscus polionotus) have short telomeres. Two common strains of laboratory mice, C57BL/6J and DBA/2J, have telomeres several times longer than most other mammals surveyed. Moreover, the two inbred laboratory mouse strains display significantly different telomere lengths, suggesting the existence of strain-specific genetic determinants. To further examine the effects of inbreeding, we studied three Peromyscus leucopus inbred lines (GS109, GS16A1, and GS16B), all derived from the outbred P. leucopus stock. Telomeres of all three inbred lines are significantly lengthened relative to outbred P. leucopus, and the three lines display strain-specific significantly different telomere lengths, much like the C57BL/6J and DBA/2J strains of M. musculus. To further characterize the genetic inheritance of telomere length, we carried out several crosses to obtain hybrid F1 mice between parental strains displaying the phenotype of long and short telomeres. In all F1 mice assayed, peripheral blood leukocyte telomere length was intermediate to that of the parents. Additionally, we generated F2 mice from a cross of the (P. leucopus outbred × GS16B)F1. Based on the distribution of telomere length in the F2 population, we determined that more than five loci contribute to telomere length regulation in Peromyscus. We concluded that inbreeding, through unknown mechanisms, results in the elongation of telomeres, and that telomere length for a given species and/or sub-strain is genetically determined by multiple segregating loci.  相似文献   

10.
Nucleotide sequences were determined for the complete M genome segments of two distinct hantavirus genetic lineages which were detected in hantavirus antibody- and PCR-positive white-footed mice (Peromyscus leucopus) from Indiana and Oklahoma. Phylogenetic analyses indicated that although divergent from each other, the virus lineages in Indiana and Oklahoma were monophyletic and formed a newly identified unique ancestral branch within the clade of Sin Nombre-like viruses found in Peromyscus mice. Interestingly, P. leucopus-borne New York virus was found to be most closely related to the P. maniculatus-borne viruses, Sin Nombre and Monongahela, and monophyletic with Monongahela virus. In parallel, intraspecific phylogenetic relationships of P. leucopus were also determined, based on the amplification, sequencing, and analysis of the DNA fragment representing the replication control region of the rodent mitochondrial genome. P. leucopus mitochondrial DNA haplotypes were found to form four separate genetic clades, referred to here as Eastern, Central, Northwestern, and Southwestern groups. The distinct Indiana and Oklahoma virus lineages were detected in P. leucopus of the Eastern and Southwestern mitochondrial DNA haplotypes, respectively. Taken together, our current data suggests that both cospeciation of Peromyscus-borne hantaviruses with their specific rodent hosts and biogeographic factors (such as allopatric migrations, geographic separation, and isolation) have played important roles in establishment of the current genetic diversity and geographic distribution of Sin Nombre-like hantaviruses. In particular, the unusual position of New York virus on the virus phylogenetic tree is most consistent with an historically recent host-switching event.  相似文献   

11.

Background  

Deer mice (Peromyscus maniculatus) and congeneric species are the most common North American mammals. They represent an emerging system for the genetic analyses of the physiological and behavioral bases of habitat adaptation. Phylogenetic evidence suggests a much more ancient divergence of Peromyscus from laboratory mice (Mus) and rats (Rattus) than that separating latter two. Nevertheless, early karyotypic analyses of the three groups suggest Peromyscus to be exhibit greater similarities with Rattus than with Mus.  相似文献   

12.
Sperm cooperation has evolved in a variety of taxa and is often considered a response to sperm competition, yet the benefit of this form of collective movement remains unclear. Here, we use fine-scale imaging and a minimal mathematical model to study sperm aggregation in the rodent genus Peromyscus. We demonstrate that as the number of sperm cells in an aggregate increase, the group moves with more persistent linearity but without increasing speed. This benefit, however, is offset in larger aggregates as the geometry of the group forces sperm to swim against one another. The result is a non-monotonic relationship between aggregate size and average velocity with both a theoretically predicted and empirically observed optimum of six to seven sperm per aggregate. To understand the role of sexual selection in driving these sperm group dynamics, we compared two sister-species with divergent mating systems. We find that sperm of Peromyscus maniculatus (highly promiscuous), which have evolved under intense competition, form optimal-sized aggregates more often than sperm of Peromyscus polionotus (strictly monogamous), which lack competition. Our combined mathematical and experimental study of coordinated sperm movement reveals the importance of geometry, motion and group size on sperm velocity and suggests how these physical variables interact with evolutionary selective pressures to regulate cooperation in competitive environments.  相似文献   

13.
The rodent genus Peromyscus is the most numerous and species-rich mammalian group in North America. The naturally occurring diversity within this genus allows opportunities to investigate the genetic basis of adaptation, monogamy, behavioral and physiological phenotypes, growth control, genomic imprinting, and disease processes. Increased genomic resources including a high quality genetic map are needed to capitalize on these opportunities. We produced interspecific hybrids between the prairie deer mouse (P. maniculatus bairdii) and the oldfield mouse (P. polionotus) and scored meiotic recombination events in backcross progeny. A genetic map was constructed by genotyping of backcross progeny at 185 gene-based and 155 microsatellite markers representing all autosomes and the X-chromosome. Comparison of the constructed genetic map with the molecular maps of Mus and Rattus and consideration of previous results from interspecific reciprocal whole chromosome painting allowed most linkage groups to be unambiguously assigned to specific Peromyscus chromosomes. Based on genomic comparisons, this Peromyscus genetic map covers ~83 % of the Rattus genome and 79 % of the Mus genome. This map supports previous results that the Peromyscus genome is more similar to Rattus than Mus. For example, coverage of the 20 Rattus autosomes and the X-chromosome is accomplished with only 28 segments of the Peromyscus map, but coverage of the 19 Mus autosomes and the X-chromosome requires 40 chromosomal segments of the Peromyscus map. Furthermore, a single Peromyscus linkage group corresponds to about 91 % of the rat and only 76 % of the mouse X-chromosomes.  相似文献   

14.
A goal of behavioral neuroscience is to identify underlying neurobiological factors that regulate specific behaviors. Using animal models to accomplish this goal, many methodological strategies require invasive techniques to manipulate the intensity of the behavior of interest (e.g., lesion methods, pharmacological manipulations, microdialysis techniques, genetically-engineered animal models). The utilization of a comparative species approach allows researchers to take advantage of naturally occurring differences in response strategies existing in closely related species. In our lab, we use two species of the Peromyscus genus that differ in paternal responses. The male California deer mouse (Peromyscus californicus) exhibits the same parental responses as the female whereas its cousin, the common deer mouse (Peromyscus maniculatus) exhibits virtually no nurturing/parental responses in the presence of pups. Of specific interest in this article is an exploration of the neurobiological factors associated with the affiliative social responses exhibited by the paternal California deer mouse. Because the behavioral neuroscience approach is multifaceted, the following key components of the study will be briefly addressed: the identification of appropriate species for this type of research; data collection for behavioral analysis; preparation and sectioning of the brains; basic steps involved in immunocytochemistry for the quantification of vasopressin-immunoreactivity; the use of neuroimaging software to quantify the brain tissue; the use of a microsequencing video analysis to score behavior and, finally, the appropriate statistical analyses to provide the most informed interpretations of the research findings.  相似文献   

15.
Dixon  L. K.  Nelson  B. A.  Priest  R. L. 《Genetica》1984,52(1):63-68
Mice of the genus Peromyscus all have 48 chromosomes. Yet the appearance of the 48 chromosomes is highly variable from species to species (Hsu & Arrighi, 1966, 1968, 1971; Pathak et al., 1973) and even in different populations of the same species (Sparkes & Arakaki, 1966; Ohno et al., 1966; Hsu & Arrighi, 1968; Arakaki et al. 1970; Te & Dawson, 1971; Bradshaw & Hsu, 1972; Murray & Kitchin, 1976). The evolutionary significance of this variation and the mechanisms for its initiation and maintenance have been of interest for quite a few years. However, it was not until the sophisticated chromosome banding techniques became available that mammalian cytogeneticists were able to begin to study the chromosome variation of Peromyscus in some detail. The use of C-banding led Hsu & Arrighi (1971) to the finding that the short arms of chromosomes in three different species of Peromyscus contained constitutive heterochromatin. These results suggested that the variations in the number of acrocentric chromosomes in Peromyscus might be a result of different amounts of heterochromatin. Later studies (Duffey, 1972; Waterbury, 1972; and Pathak et al., 1973) were also consistent with this hypothesis.However, it was soon discovered that not all chromosomal differences among Peromyscus populations are due to heterochromatin changes. Studies by Arighi et al. (1976) and Murray & Kitchin (1976) showed that some chromosomal differences between species and subspecies of Peromyscus are due to pericentric inversions. Thus, it appears that both inversions and the addition of heterochromatin are involved in the evolution of the karyotype of Peromyscus.The purpose of our study was to investigate the chromosomes of Peromyscus maniculatus in different populations in Colorado (U.S.A.) and to test for relationships involving an altitudinal gradient. In the first part of this study, orcein stained chromosomes from three subspecies of mice sampled at nine different altitudes were examined for karyotype variability. In the second part of the study, karyotypes of two subspecies (P. m. rufinus and P. m. luteus), representing high and low altitude populations were examined with Q banding to determine the mechanisms responsible for chromosomal differences.  相似文献   

16.
John H. Harris 《Oecologia》1986,68(3):417-421
Summary I studied diet in relation to microhabitat use in two desert rodents:Microdipodops megacephalus, the dark kangaroo mouse, andPeromyscus maniculatus, the deer mouse. Contrary to expectation, both species ate primarily arthropods, which were most abundant near shrubs.Peromyscus used the area near shrubs, in contrast toMicrodipodops, which used open microhabitat. As a consequence, the diet ofPeromyscus was narrower and more concentrated on abundant prey types than that ofMicrodipodops. Thus microhabitat segregation, which is frequently reported for desert rodents, is related to a diet-breadth difference between these rodents. The use of open microhabitat and low density resources byMicrodipodops, when compared with the large bipedalDipodomys and small quadrupedalPerognatus, suggests that bipedal locomotion in desert rodents is related to use of open microhabitat, and that body size is related to density of food resources.  相似文献   

17.
Attempts to design truly universal primers to amplify chloroplast microsatellites have met with limited success due to nonconservation of repeat loci across widely divergent taxa. We have used the complete chloroplast genome sequences of rice, maize and wheat to design five pairs of primers that amplify homologous mononucleotide repeats across the Poaceae (grasses). Sequencing confirmed conservation of repeat motifs across subfamilies and a preliminary study in Anthoxanthum odoratum revealed polymorphism at two loci with a haplotype diversity value of 0.495. These primers provide a valuable tool to study cytoplasmic diversity in this extensively studied and economically important range of taxa.  相似文献   

18.
We investigated genetic diversity and structure of urban white‐footed mouse, Peromyscus leucopus, populations in New York City (NYC) using variation at 18 microsatellite loci. White‐footed mice are ‘urban adapters’ that occur at higher population densities as habitat fragments are reduced in area but have a limited ability to disperse through urbanized areas. We hypothesized that this combination of traits has produced substantial genetic structure but minimal loss of genetic variation over the last century in NYC. Allelic diversity and heterozygosity in 14 NYC populations were high, and nearly all of our NYC study sites contained genetically distinct populations of white‐footed mice as measured by pairwise FST, assignment tests, and Bayesian clustering analyses performed by Structure and baps . Analysis of molecular variance revealed that genetic differences between populations separated by a few kilometres are more significant than differences between prehistorically isolated landmasses (i.e. Bronx, Queens, and Manhattan). Allele size permutation tests and lack of isolation by distance indicated that mutation and migration are less important than drift as explanations for structure in urban, fragmented P. leucopus populations. Peromyscus often exhibit little genetic structure over even regional scales, prompting us to conclude that urbanization is a particularly potent driver of genetic differentiation compared to natural fragmentation.  相似文献   

19.
Multiple Genome Rearrangement (MGR) analysis was used to define the trajectory and pattern of chromosome rearrangement within muroid rodents. MGR was applied using 107 chromosome homologies between Mus, Rattus, Peromyscus, the muroid sister taxon Cricetulus griseus, and Sciurus carolinensis as a non-Muroidea outgroup, with specific attention paid to breakpoint reuse and centromere evolution. This analysis revealed a high level of chromosome breakpoint conservation between Rattus and Peromyscus and indicated that the chromosomes of Mus are highly derived. This analysis identified several conserved evolutionary breakpoints that have been reused multiple times during karyotypic evolution in rodents. Our data demonstrate a high level of reuse of breakpoints among muroid rodents, further supporting the “Fragile Breakage Model” of chromosome evolution. We provide the first analysis of rodent centromeres with respect to evolutionary breakpoints. By analyzing closely related rodent species we were able to clarify muroid rodent karyotypic evolution. We were also able to derive several high-resolution ancestral karyotypes and identify rearrangements specific to various stages of Muroidea evolution. These data were useful in further characterizing lineage-specific modes of chromosome evolution.  相似文献   

20.
Lee R. G. Snyder 《Genetics》1978,89(3):511-530
Genetic data, together with molecular structure studies, have demonstrated that the complex hemoglobin phenotypes in four subspecies of P. maniculatus are generated by at least four, and probably five, globin structural loci. The Hba and Hbc loci apparently arose by duplication of an ancestral α-type locus, while Hbb, Hbd, and Hbe apparently were derived from a β-type locus. The Hba and Hbb structural loci are electrophoretically monomorphic, while Hbc, Hbd, and Hbe are each polymorphic for at least two electrophoretic alleles. Alleles at Hbc and Hbd segregate independently. The globin products of Hbc and Hbd are electrophoretically indistinguishable; therefore, it is impossible to enumerate true gene frequencies in population surveys. Combined evidence from Peromyscus, Mus and Rattus indicates a remarkable similarity in the numbers of duplicated globin structural loci and in their linkage relationships to coat color loci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号