首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of the rate of oxygen supply on biomass growth, consumption of carbon source formation of metabolic by-products, biomass yeilds referred to C-source and oxygen, respiration rate and the respiratory quotient was studied in a multistage tower fermentor with an interstage backflow, i.e. with a continuous reinoculation of the preceding stages. Experiments were done with Klebsiella aerogenes CCM 2318 in a synthetic glucose medium with constant glucose concentration in the feed, at pH 7.0. temperature 30 degrees C, and dilution rates 0.6 and 0.178 h-1 (referred to one stage). Different behavior of the culture was found at different dilution rates both with oxygen and under oxygen limitation. As compared with the chemostat system, the regime with an interstage backflow exhibited differences in respiration rate and CO2 formation; this attests to a considerably different physiological state of the cells.  相似文献   

2.
Hybridomas are finding increased use for the production of a wide variety of monoclonal antibodies. Understanding the roles of physiological and environmental factors on the growth and metabolism of mammalian cells is a prerequisite for the development of rational scale-up procedures. An SP2/0-derived mouse hybridoma has been employed in the present work as a model system for hybridoma suspension culture. In preliminary shake flask studies to determine the effect of glucose and glutamine, it was found that the specific growth rate, the glucose and glutamine metabolic quotients, and the cumulative specific antibody production rate were independent of glucose concentration over the range commonly employed in cell cultures. Only the specific rate of glutamine uptake was found to depend on glutamine concentration. The cells were grown in continuous culture at constant pH and oxygen concentration at a variety of dilution rates. Specific substrate consumption rates and product formation rates were determined from the steady state concentrations. The specific glucose uptake rate deviated from the maintenance energy model(1) at low specific growth rates, probably due to changes in the metabolic pathways of the cells. Antibody production was not growth-associated; and higher specific antibody production rates were obtained at lower specific growth rates. The effect of pH on the metabolic quotients was also determined. An optimum in viable cell concentration was obtained between pH 7.1 and 7.4. The viable cell number and viability decreased dramatically at pH 6.8. At pH 7.7 the viable cell concentration initially decreased, but then recovered to values typical of pH 7.1-7.4. Higher specific nutrient consumption rates were found at the extreme pH values; however, glucose consumption was inhibited at low pH. The pH history also influenced the behavior at a given pH. Higher antibody metabolic quotients were obtained at the extreme pH values. Together with the effect of specific growth rate, this suggests higher antibody production under environmental or nutritional stress.  相似文献   

3.
Hybridomas are finding increased use for the production of a wide variety of monoclonal antibodies. Understanding the roles of physiological and environmental factors on the growth and metabolism of mammalian cells is a prerequisite for the development of rational scale-up procedures. An SP2/0-derived mouse hybridoma has been employed in the present work as a model system for hybridoma suspension culture. In preliminary shake flask studies to determine the effect of glucose and glutaminE, it was found that the specific growth rate, the glucose and glutamine metabolic quotients, and the cumulative specific antibody production rate were independent of glucose concentration over the range commonly employed in cell cultures. Only the specific rate of glutamine uptake was found to depend on glutamine concentration. The cells were grown in continuous culture at constant pH and oxygen concentration at a variety of dilution rates. Specific substrate consumption rates and product formation rates were determined from the steady state concentrations. The specific glucose uptake rate deviated from the maintenance energy model(1) at low specific growth rates, probably due to changes in the metabolic pathways of the cells. Antibody production was not growth-associated; and higher specific antibody production rates were obtained at lower specific growth rates. The effect of pH on the metabolic quotients was also determined. An optimum in viable cell concentration was obtained between pH 7.1 and 7.4. The viable cell number and viability decreased dramatically at pH 6.8. At pH 7.7 the viable cell concentration initially decreased, but then recovered to values typical of pH 7.1-7.4. Higher specific nutrient consumption rates were found at the extreme pH values; however, glucose consumption was inhibited at low pH. The pH history also influenced the behavior at a given pH. Higher antibody metabolic quotients were obtained at the extreme pH values. Together with the effect of specific growth rate, this suggests higher antibody production under environmental or nutritional stress.  相似文献   

4.
The significance of the interstage mixing on important process parameters of biomass production was studied. The experiments were performed in a multistage tower fermentor and in fermentors in series. The interstage mixing effect can be evaluated under conditions of geometrical similarity, identity of oxygen transfer rate, and identity of dilution rate per stage in the individual stages of both culture systems. Candida utilis was cultivated on a synthetic medium with ethanol as the sole carbon and energy source in the concentration range 10–100 g/liter. Dilution rate, temperature, and pH in each stage of both culture systems were kept constant. It was demonstrated that in the multistage tower fermentor the definite backflow which ensures the permanent reinoculation by adapted cells significantly decreases the inhibitory effect of higher ethanol concentrations on the cell growth and on the rate of ethanol utilization.  相似文献   

5.
The effect of dilution rate on important process parameters of biomass production in two multistage culture systems with different interstage mixing has been examined. Experiments were performed in a multistage tower fermenter and in a cascade of fermenters. Measurements were made at steady-state of continuous culture under constant and identical values of ethanol concentration of 50 gl?1 in the feed, temperature, OTR and pH in both culture systems used. The microorganism used was Candida utilis. Ethanol inhibition influenced cell growth rate due to the complete dissimilation of the restricted quantity of acetate to H2O and CO2, leading to insufficient energy generation. The value of ethanol concentration at which ethanol started to inhibit cell growth was a combined function of OTR, SR and D. The presence of the interstage mixing resulted in more efficient ethanol conversion to biomass in the whole range of dilution rates and significantly lowered the risk of washing-out at high values of both SR and D.  相似文献   

6.
7.
Streptococcus bovis JB1 grew nearly twice as fast (0.9 versus 1.6 h-1) and had a 40% greater growth yield (18 versus 12.5 mg of protein per mmol of glucose) when an ammonia-based medium was supplemented with amino acids, but the glucose consumption rate (88 mumol mg of protein-1 h-1) and specific rate of heat production (2.1 mW/mg of protein) were unaffected. Amino acid availability had little effect on the catabolic rate, but the specific heat decreased 40% (8.8 to 5.2 J/mg of protein). These growth rate-dependent changes in metabolic efficiency were fivefold greater than the maintenance energy. Chloramphenicol (100 mg/l), an inhibitor of protein synthesis, caused a gradual decrease in anabolic (growth) rate, but there was little change in the rate of glucose consumption and the specific heat increased. When growth was inhibited by iodoacetate, the catabolic and anabolic rates both declined and there was not increase in specific heat. On the basis of these results, the benefit of amino acid supplementation was largely explained by the balance of anabolic and catabolic rates. When amino acids were available, the anabolic and catabolic rates were more closely matched and less energy was spilled as heat.  相似文献   

8.
9.
Citrobacter freundii was grown aerobically in a chemostat on a mineral medium witn galactose or glucose as carbon and energy sources under limitation by carbon or nitrogen source respectively. At various specific growth rates ranging from 7 to 95% μmax the culture in steady state was analysed and growth yield, specific metabolic rate of substrate utilization, intracellular concentration of pyruvate, ATP, ADP, AMP and energy charge were determined and plotted as functions of dilution rate. In all four types of experiments the physiological state of cells remained practically independent of dilution rate up toD = 0.6 μmax, and at a given specific growth rate nearly independent on μmax and type of limitation. At approximatelyD = 0.6 μmax, which is close to the maximum output dilution rateD m, the physiological state of the cells changed: growth yields decreased and intr cellular pyruvate and adenylates concentrations increased. Consequently, in a given medium two dilution rates exist at which growth rate dx/dt is the same but the physiology of the population is quite different.  相似文献   

10.
The kinetic behavior of a nonproducing hybridoma clone AFP-27-NP was investigated in continuous culture under glucose-limited conditions. A total of more than 21, 000 h of cultures were operated at dilution rates ranging from 0.01 to 0.06 h(-1). The viable cell concentrations, dead cell concentrations, and cell volumes all varied with the dilution rate. A steady-state model was developed based on the biomass concentration and the glucose concentration. The specific growth rate as a function of glucose concentration is described by a model similar to the Monod model with a threshold glucose concentration and a minimum specific growth rate incorporated; the model is meaningful only at glucose concentrations and specific growth rates above these levels. A death rate is included in the model which is described by an inverted Monod-type function of glucose concentration. The yield coefficient based on glucose is constant in the lower range of specific growth rates and changes to a new constant value in the upper region of specific growth rates. No maintenance term for glucose consumption was needed; in the plot of specific glucose consumption rate vs. specific growth rate, the line intercepted the specific growth rate axis at a value close to the minimum growth rate. The values for the model parameters were determined from regression analysis of the steady-state data. The model predictions and experimental results fit very well.  相似文献   

11.
PER.C6(R) cell growth, metabolism, and adenovirus production were studied in head-to-head comparisons in stirred bioreactors under different pH conditions. Cell growth rate was found to be similar in the pH range of 7.1-7.6, while a long lag phase and a slower growth rate were observed at pH 6.8. The specific consumption rates of glucose and glutamine decreased rapidly over time during batch cell growth, as did the specific lactate and ammonium production rates. Cell metabolism in both infected and uninfected cultures was very sensitive to culture pH, resulting in dramatic differences in glucose/glutamine consumption and lactate/ammonium production under different pH conditions. It appeared that glucose metabolism was suppressed at low pH but the efficiency of energy production from glucose was enhanced. Adenovirus infection resulted in profound changes in cell growth and metabolism. Cell growth was largely arrested under all pH conditions, while glucose consumption and lactate production were elevated post virus infection. Virus infection induced a reduction in glutamine consumption at low pH but an increase at high pH. The optimal pH for adenovirus production was found to be 7.3 under the experimental conditions used in the study. Deviations from this optimum resulted in significant reductions of virus productivity. The results indicate that culture pH is a very critical process parameter in PER.C6(R) cell culture and adenovirus production.  相似文献   

12.
The production of the extracellular alkaline protease Savinase (EC 3.4.21.62) and glucose uptake in a non-sporulating strain of Bacillus clausii were investigated by analysing steady-state and transients during continuous cultivations. The specific production rate was found to have an optimum at a dilution rate between 0.14 and 0.17 h(-1), whereas the yield of Savinase on glucose was found to increase with decreasing specific growth rate. A linear relationship between the ribosomal RNA content and the specific production rate was found, indicating that the translational capacity may be limiting for product formation. The dynamics of the production of Savinase were studied during step changes in the dilution rate. During a step down in the dilution rate the specific production rate decreased immediately until it reached a new steady value. During a step-up an initial cease in the production rate was observed, but when glucose stopped to accumulate the production rate was regained. The glucose uptake was further investigated when chemostat cultures growing at different dilution rates were exposed to glucose pulses. The maximal glucose uptake capacity was found to be dependent on the initial specific growth rate. Furthermore, the adaptation to high glucose concentrations was faster at high dilution rates than at low dilution rates.  相似文献   

13.
A hybridoma cell line, AFP-27-P, was cultivated in continuous culture under glucose-limited conditions. The viable cell concentration, dead-cell concentration, and cell volume all varied with the dilution rate. A model previously developed for a nonproducing clone of the same cell line, AFP-27-NP, was extended to describe the behavior of the cells. The relationship between the specific growth rate and glucose concentration is described by a function similar to the Monod model. A threshold glucose concentration and a minimum specific growth rate are incorporated; the model is meaningful only at glucose concentration and a minimum specific growth rate are incorporated; the model is meaningful only at glucose concentrations and specific growth rates above these levels. The relationship between the death rate and the glucose concentration is described by an inverted Monod-type function. Furthermore, the yield coefficient based on glucose is constant in the lower range of specific growth rates and changes to a new constant value in the upper range of specific growth rates. No maintenance term for glucose consumption is used; in the plot of specific glucose consumption rate vs. specific growth rate, the line intercepts the specific growth rate at a value close to the minimum growth rate. The productivity of antibody as a function of the specific growth rate is described by a mixed type model with a noon-growth-associated term and a negative-growth-associated term. The values for the model parameters were determined from regression analysis of the steady state data.  相似文献   

14.
The influence of the agitation conditions on biomass growth, morphology, carbon metabolism, viability, and 6-pentyl-alpha-pyrone (6PP) production by Trichoderma harzianum were studied in an extractive fermentation system. Batch spore-inoculated cultures developed at dissolved oxygen concentrations above 35% of air saturation were carried out in a 14 L bioreactor. The effect of energy dissipation rate over culture performance was assessed using two sets of three Rushton turbines (having different diameters) operated at different agitation speeds. Higher mechanical stress enhanced cellular differentiation (i.e., sporulation), while yielding lower specific growth rates and increased specific CO(2) production rates (CPRs) at relatively constant specific glucose consumption rates. In addition, fungal viability and clump mean diameter decreased gradually at higher energy dissipation rates. 6PP biosynthesis was growth associated and its specific productivity showed a bell-shaped relationship with the energy dissipation rate. T. harzianum physiology was, therefore, strongly influenced by the prevailing hydrodynamic conditions as it triggered cellular metabolism and differentiation shifts.  相似文献   

15.
We studied the physiological response of Escherichia coli central metabolism to the expression of heterologous pyruvate carboxylase (PYC) in the presence and absence of pyruvate oxidase (POX). These studies were complemented with expression analysis of central and intermediary metabolic genes and conventional in vitro enzyme assays to evaluate glucose metabolism at steady-state growth conditions (chemostats). The absence of POX activity reduced nongrowth-related energy metabolism (maintenance coefficient) and increased the maximum specific rate of oxygen consumption. The presence of PYC activity (i.e., with POX activity) increased the biomass yield coefficient and reduced the maximum specific oxygen consumption rate compared to the wildtype. The presence of PYC in a poxB mutant resulted in a 42% lower maintenance coefficient and a 42% greater biomass yield compared to the wildtype. Providing E. coli with PYC or removing POX increased the threshold specific growth rate at which acetate accumulation began, with an 80% reduction in acetate accumulation observed at a specific growth rate of 0.4 h-1 in the poxB-pyc+ strain. Gene expression analysis suggests utilization of energetically less favorable glucose metabolism via glucokinase and the Entner-Doudoroff pathway in the absence of functional POX, while the upregulation of the phosphotransferase glucose uptake system and several amino acid biosynthetic pathways occurs in the presence of PYC. The physiological and expression changes resulting from these genetic perturbations demonstrate the importance of the pyruvate node in respiration and its impact on acetate overflow during aerobic growth.  相似文献   

16.
The constitutive cytoplasmic expression in E. coli of human growth hormone (hGH) with different N-terminal extensions (3 or 4 amino acids) has been studied. These hGH precursors were used for in vitro cleavage to obtain the mature, authentic hormone. Small changes in the amino acid extensions of the hGH precursors led to three-fold differences in specific expression rates. The specific expression rate of the hGH precursors was inversely proportional to the ratios of the specific growth rates of plasmid containing and plasmid free cells (micro(+)/micro(-)) and also to the genetic stability. To ensure a satisfactory genetic stability in production fermentors, an hGH precursor with a moderate expression efficiency was chosen.The medium composition and growth conditions were studied, resulting in the choice of a glucose fed batch fermentation process using a complex medium. In this process a yield of 2000 mg/L of met-ala-glu-hGH (MAE-hGH) was obtained. The fermentation process comprised a glucose-limited growth phase followed by a second phase with increased glucose feed and exhaustion of phosphate from the medium. The second phase is characterized by an MAE-hGH production, whereas further biomass formation is blocked. High concentrations of glucose led to reduced specific expression of MAE-hGH--the specific and total yield in batch glucose fermentations is only about 30% of the yield in optimized fed batch fermentations. The physiological background for this was investigated. Chemostat experiments showed that the glucose concentration and the metabolic condition of the cells--i.e. with or without formation of acetate--was not critical per se in order to obtain a high specific yield of MAE-hGH. Therefore it is unlikely that formation of MAE-hGH is catabolite repressed by glucose. Furthermore it was shown that the specific production rate of MAE-hGH was independent of the specific growth rate and it was further demonstrated that the decrease in expression efficiency in glucose batch fermentation was a result of an inhibitory effect of acetic acid. In batch fermentations this inhibitory effect was enhanced by a salt effect caused by increased consumption of acid and base used to control pH. The identity of the acid and the base used are not important in this context. From studies of the expression of other proteins in E. coli. with constitutive as well as inducible promoters we conclude that glucose fed batch processes are often superior to batch processes in the production of heterologous proteins E. coli.  相似文献   

17.
Growth yield factors, plasmid stability, cellular plasmid content, and cloned gene product activity for Escherichia coli HB101 containing plasmid pDM246 were measured at several dilution rates in continuous culture. Cell mass yield per mass of glucose consumed declined with increasing dilution rate. There was no evidence of plasmid segregational instability in any experiments, none of which employed selective medium. Plasmid content per cell varied with population-specific growth rate as observed in earlier batch experiments with the same strain. Plasmid content declined with increasing specific growth rate following indication of a maximum number of plasmids per cell at specific growth rates of ca. 0.3 h(-1). Cloned gene product (beta-lactamase) activity exhibited a sharp maximum with respect to dilution rate in continuous culture. Qualitatively different results were observed in previous experiments in batch cultivation in which specific growth rate changes were effected by altering medium composition.  相似文献   

18.
Continuous culture in a cascade of vessels with the addition of supplemental nutrients to any stage permits adjustment of the physiological state of the culture in each stage to best achieve a desired performance goal. The yeast Saccharomyces cerevisiae in two-stage continuous cultivation was selected as a model system. With conditions in the first stage held constant- at a selected glucose concentration in the feed stream, dilution rate for the second stage was varied. Cell numbers, dry weight, glucose concentration, respiration coefficient, and titers of several enzymes were determined. The seed rate was defined as the ratio of glucose concentration in the feeds to stage 1 and to stage 2. At low seed rates, the calculated specific growth rate in the second stage was proportional to dilution rate. At higher seed rates, the specific growth rate based on dry weight behaved differently from that based on cell numbers, and the dependence on dilution rate was not linear.  相似文献   

19.
The maintenance coefficient of glucose-limited Aspergillus nidulans chemostat cultures at 30 C was 0.018 g per g (dry weight) per hr for glucose and 0.55 mmoles per g (dry weight) per hr for oxygen. These values can only be approximate because melanin was produced by the mold at low growth rates and because it is unlikely that this polymer contributed to the maintenance energy requirement although it contributed to the dry weight. Biomass (defined here as dry weight minus melanin) was used to calculate a more meaningful maintenance coefficient for glucose (0.029 g of glucose per g of biomass per hr). At the highest growth rates examined, a nonlinear relationship between growth rate and glucose utilization rate was obtained, suggesting a qualitative change in the metabolic activities of the mold at high growth rates. The oxidative capacity of the mold was highest at the highest growth rates. This observation indicates that the increased substrate utilization rate observed at the higher growth rates is a reflection of enhanced enzyme synthesis. This hypothesis was verified by assaying the specific activities of several enzymes at different growth rates. However, in contrast to all the other enzymes assayed, the activities of reduced nicotinamide adenine dinucleotide phosphate: (acceptor) oxido-reductases were highest at the lowest growth rates.  相似文献   

20.
The physiology of a recombinant Chinese hamster ovary cell line in glucose-limited chemostat culture was studied over a range of dilution rates (D = 0.008 to 0.20 h(-1)). The specific growth rate (mu) deviated from D at low dilution rates due to an increased specific death rate. Extrapolation of these data suggested a minimum specific growth rate of 0.011 h(-1) (mu(max) = 0.025 h(-1)) The metabolism at each steady state was characterized by determining the metabolic quotients for glucose, lactate, ammonia, amino acids, and interferon-gamma (IFN-gamma). The specific rate of glucose uptake increased linearly with mu, and the saturation constant for glucose (K(s)) was calculated to be 59.6 muM. There was a linear increase in the rate of lactate production with a higher yield of lactate from glucose at high growth rates. The decline in the rate of production of lactate, alanine, and serine at low growth rate was consistent with the limitation of the glycolytic pathway by glucose. The specific rate of IFN-gamma production increased with mu in a manner indicative of a growth-related product. Despite changes in the IFN-gamma production rate and cell physiology, the pattern of IFN-gamma glycosylation was similar at all except the lowest growth rates where there was increased production of nonglycosylated IFN-gamma. (c) 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号