共查询到20条相似文献,搜索用时 11 毫秒
1.
Dopico AM 《American journal of physiology. Cell physiology》2003,284(6):C1468-C1480
Ethanol inhibition of large-conductance,Ca2+-activated K+ (BKCa) channelsin aortic myocytes may contribute to the direct contraction of aorticsmooth muscle produced by acute alcohol exposure. In this tissue,BKCa channels consist of pore-forming (bslo) and modulatory () subunits. Here, modulation of aortic myocyteBKCa channels by acute alcohol was explored by expressingbslo subunits in Xenopus oocytes, in the absenceand presence of 1-subunits, and studying channelresponses to clinically relevant concentrations of ethanol in excisedmembrane patches. Overall, average values of bslo channelactivity (NPo, with N = no. ofchannels present in the patch; Po = probability of a single channel being open) in response to ethanol(3-200 mM) mildly decrease when compared with pre-ethanol,isosmotic controls. However, channel responses show qualitativeheterogeneity at all ethanol concentrations. In the majority of patches(42/71 patches, i.e., 59%), a reversible reduction inNPo is observed. In this subset, the maximaleffect is obtained with 100 mM ethanol, at whichNPo reaches 46.2 ± 9% of control. Thepresence of 1-subunits, which determines channel sensitivity to dihydrosoyaponin-I and 17-estradiol, fails to modifyethanol action on bslo channels. Ethanol inhibition of bslo channels results from a marked increase in the meanclosed time. Although the voltage dependence of gating remainsunaffected, the apparent effectiveness of Ca2+ to gate thechannel is decreased by ethanol. These changes occur withoutmodifications of channel conduction. In conclusion, a new molecularmechanism that may contribute to ethanol-induced aortic smooth musclecontraction has been identified and characterized: a functionalinteraction between ethanol and the bslo subunit and/or itslipid microenvironment, which leads to a decrease in BKCachannel activity. 相似文献
2.
Interaction of charybdotoxin S10A with single maxi-K channels: kinetics of blockade depend on the presence of the beta 1 subunit 总被引:1,自引:0,他引:1
The maxi-K channel from bovine aortic smooth muscle consists of a pore-forming alpha subunit and a regulatory beta1 subunit that modifies the biophysical and pharmacological properties of the alpha subunit. In the present study, we examine ChTX-S10A blocking kinetics of single maxi-K channels in planar lipid bilayers from smooth muscle or from tsA-201 cells transiently transfected with either alpha or alpha+beta 1 subunits. Under low external ionic strength conditions, maxi-K channels from smooth muscle showed ChTX-S10A block times, 48 +/- 12 s, that were similar to those expressing alpha+beta 1 subunits, 51 +/- 16 s. In contrast, with the alpha subunit alone, ChTX-S10A block times were much shorter, 5 +/- 0.6 s, and were qualitatively similar to previously reported values for the skeletal muscle maxi-K channel. Increasing the external ionic strength caused a decrease in ChTX-S10A block times for maxi-K channel complexes of alpha+beta 1 subunits but not of alpha subunits alone. These findings indicate that it may be possible to predict the association of beta 1 subunits with native maxi-K channels by monitoring the kinetics of ChTX blockade of single channels, and they suggest that maxi-K channels in skeletal muscle do not contain a beta 1 subunit like the one present in smooth muscle. To further test this hypothesis, we examined the binding and cross-linking properties of [(125)I]-IbTX-D19Y/Y36F to both bovine smooth muscle and rabbit skeletal muscle membranes. [(125)I]-IbTX-D19Y/Y36F binds to rabbit skeletal muscle membranes with the same affinity as it does to smooth muscle membranes. However, specific cross-linking of [(125)I]-IbTX-D19Y/Y36F was observed into the beta 1 subunit of smooth muscle but not in skeletal muscle. Taken together, these data suggest that studies of ChTX block of single maxi-K channels provide an approach for characterizing structural and functional features of the alpha/beta 1 interaction. 相似文献
3.
Communication between the oocyte and its somatic cells has been shown to be important in oocyte development. Here we examined how the oocyte may be involved in bovine cumulus cell expansion. Intact bovine cumulus oocyte complexes (COC) were obtained by puncturing antral follicles. From the intact COC, oocytectomised complexes (OOX) were produced by micro surgical removal of the oocyte. Clumps of cumulus cells (CC) were obtained by micro-dissection. Intact or OOX complexes or CC were matured in the presence of fetal calf serum and hFSH (6 mlU/ml) for 24 hr and the degree of expansion measured. The presence of the oocyte is not essential to allow bovine cumulus expansion to occur as expansion occurred in all groups. Murine OOX complexes from eCG primed 35–40-day-old C57BL6/CBA F1 hybrids (known to require the presence of an oocyte secreted factor for cumulus expansion) were cultured with or without denuded bovine oocytes (1 oocyte/μl). Murine OOX complexes expanded only in the presence of denuded bovine oocytes. Thus some factor produced by bovine oocytes enabled expansion of murine OOX complexes. To determine whether the factor is secreted by bovine oocytes, murine OOX were cultured with or without media conditioned by bovine oocytes (1 oocyte/μl for 4 hr). Significant expansion of murine OOX occurred in media conditioned by bovine oocytes. This shows that the cumulus expansion enabling effect of bovine oocytes is released into the surrounding media. Media conditioned by bovine oocytes and then frozen for up to 1 month showed that the activity by the factor can withstand freezing. © 1995 wiley-Liss, Inc. 相似文献
4.
Kasiphak Kaikaew Jacobie Steenbergen Axel P. N. Themmen Jenny A. Visser Aldo Grefhorst 《Biology of sex differences》2017,8(1):24
Background
The thermoneutral zone (TNZ) is a species-specific range of ambient temperature (T a), at which mammals can maintain a constant body temperature with the lowest metabolic rate. The TNZ for an adult mouse is between 26 and 34 °C. Interestingly, female mice prefer a higher T a than male mice although the underlying mechanism for this sex difference is unknown. Here, we tested whether gonadal hormones are dominant factors controlling temperature preference in male and female mice.Methods
We performed a temperature preference test in which 10-week-old gonadectomized and sham-operated male and female C57BL/6J mice were allowed to choose to reside at the thermoneutral cage of 29 °C or an experimental cage of 26, 29, or 32 °C.Results
All mice preferred a T a higher than 26 °C, especially in the inactive phase. Choosing between 29 and 32 °C, female mice resided more at 32 °C while male mice had no preference between the temperatures. Hence, the preferred T a for female mice was significantly higher (0.9?±?0.2 °C) than that for male mice. However, gonadectomy did not influence the T a preference.Conclusions
Female mice prefer a warmer environment than male mice, a difference not affected by gonadectomy. This suggests that thermal-sensing mechanisms may be influenced by sex-specific pathways other than gonadal factors or that the thermoregulatory set point has already been determined prior to puberty.5.
Inhibition of cells in culture by polyamines does not depend on the presence of ruminant serum 总被引:1,自引:0,他引:1
Using T-lymphocyte (T-LC) and granulocyte colony (GC) assays with truly proliferating cells, the inhibitory dose-response relationships of spermine and spermidine in the presence of selected sera have been examined. In contrast to previous studies which used [3H]thymidine uptake as an index of proliferation, in vitro inhibition by polyamines was shown to require neither foetal calf serum (FCS) nor the addition of any exogenous polyamine oxidase. Cells grown in the absence of FCS were between 5-50% as sensitive to polyamines as in its presence. By using specific inhibitors of polyamine oxidase, it was shown that polyamine-elicited mitotic inhibition in the absence of FCS was still dependent on a polyamine oxidase, and evidence is presented to show that the source of the enzyme is the cells themselves. 相似文献
6.
7.
Cell-wall acidification and electrical reactions (depolarization and hyperpolarization) are typical auxin responses in maize (Zea mays L.) coleoptiles. In an attempt to test the role of the outer epidermis in these responses, they have been measured and compared in intact and peeled coleoptile fragments. To exclude interactions between parenchymal and epidermal cells, the coleoptile pieces were completely stripped of their outer epidermis. This preparation was monitored by means of a scanning electron microscope. When externally applied indole-3-acetic acid was tested, we found that neither cell-wall acidification nor the electrical membrane responses depended on the presence of intact epidermal cells.Abbreviations IAA
Indole-3-acetic acid
- MES
2-[N morpholino-ethane-sulfonic acid
- TRIS
2-Amino-2-hydroxymethyl-1,3-propanediol
We thank Kuki Kaethner for her excellent technical assistance. This work was supported by the Hessische Graduiertenförderung and the Deutsche Forschungsgemeinschaft. 相似文献
8.
Armulik A Svineng G Wennerberg K Fässler R Johansson S 《Experimental cell research》2000,254(1):55-63
We have expressed the beta1B integrin subunit in beta1-deficient GD25 cells to examine beta1B functions without the interference of endogenous beta1A expression. As previously reported [Retta et al., 1998, Mol. Biol. Cell 9, 715-731], the beta1B integrins did not mediate cell adhesion under normal culture conditions, while the presence of 0.3 mM Mn(2+) allowed beta1B integrins to support adhesion. Mn(2+), as well as the small soluble peptide GRGDS, induced a beta1B conformation, which was recognized by the mAb 9EG7, a marker for active or ligand-bound integrins. beta1B integrins were found to localize to a subset of focal contacts in a ligand-independent manner on fibronectin, but not on vitronectin. However, clustering of beta1B did not induce tyrosine phosphorylation of FAK, p130(Cas), or paxillin, as studied by beta1B-mediated adhesion, to fibronectin in the presence of Mn(2+) or to anti-beta1 antibody in DMEM. Induction of ligand-occupied conformation by the GRGDS peptide during the adhesion to anti-beta1 antibody also failed to trigger FAK phosphorylation. Stimulation of tyrosine phosphorylation on FAK, p130(Cas), and paxillin by adhesion via integrin alphaVbeta3 to fibronectin or vitronectin was not disturbed in GD25-beta1B cells compared to the untransfected GD25 cells, nor were any negative effects of beta1B observed on alphaVbeta3-mediated cell attachment, spreading, and actin organization, or on the cell proliferation rate. These results show that the reported negative effects of beta1B on adhesive events do not apply to alphaVbeta3-dependent interactions and suggest that they may specifically act on beta1 integrins. 相似文献
9.
Eshcar Meisel William Tobelaim Meidan Dvir Yoni Haitin Asher Peretz 《Channels (Austin, Tex.)》2018,12(1):89-99
Inactivation is an intrinsic property of numerous voltage-gated K+ (Kv) channels and can occur by N-type or/and C-type mechanisms. N-type inactivation is a fast, voltage independent process, coupled to activation, with each inactivation particle of a tetrameric channel acting independently. In N-type inactivation, a single inactivation particle is necessary and sufficient to occlude the pore. C-type inactivation is a slower process, involving the outermost region of the pore and is mediated by a concerted, highly cooperative interaction between all four subunits. Inactivation of Kv7.1 channels does not exhibit the hallmarks of N- and C-type inactivation. Inactivation of WT Kv7.1 channels can be revealed by hooked tail currents that reflects the recovery from a fast and voltage-independent inactivation process. However, several Kv7.1 mutants such as the pore mutant L273F generate an additional voltage-dependent slow inactivation. The subunit interactions during this slow inactivation gating remain unexplored. The goal of the present study was to study the nature of subunit interactions along Kv7.1 inactivation gating, using concatenated tetrameric Kv7.1 channel and introducing sequentially into each of the four subunits the slow inactivating pore mutation L273F. Incorporating an incremental number of inactivating mutant subunits did not affect the inactivation kinetics but slowed down the recovery kinetics from inactivation. Results indicate that Kv7.1 inactivation gating is not compatible with a concerted cooperative process. Instead, adding an inactivating subunit L273F into the Kv7.1 tetramer incrementally stabilizes the inactivated state, which suggests that like for activation gating, Kv7.1 slow inactivation gating is not a concerted process. 相似文献
10.
11.
Previous investigations in our laboratory demonstrated the existence of an intrinsic mechanism, termed membrane modulation, capable of restoring sensitivity to aspirin treated platelets, resulting in irreversible aggregation in response to arachidonic acid (AA). The mechanism underlying correction of aspirin induced inhibition of platelet function, however, was not clear. In the present study we have evaluated the role of lipoxygenase (LO) metabolites of AA in securing irreversible aggregation of drug induced cyclooxygenase (CO) deficient platelets. Platelets treated with aspirin or Ibuprofen did not convert radiolabeled AA to thromboxane, but generated significant quantities of hydroxy acids via the LO pathway. However, drug exposed platelets, when stirred with epinephrine first and then challenged with AA, aggregated irreversibly. Eicosatetraynoic acid (ETYA 1, U53119) inhibited AA conversion by the LO pathway, whereas 5,8,11,14-eicosatetraynoic acid (ETYA 2) inhibited AA conversion by both CO and LO enzymes. Yet, at the inhibitory concentration these fatty acids failed to prevent AA induced irreversible aggregation of CO deficient, alpha adrenergic receptor stimulated platelets. Results of four studies show that the generation of LO metabolites of AA are not essential for securing irreversible aggregation of platelets. 相似文献
12.
Micha Guy 《Physiologia plantarum》1990,79(3):526-530
Enzymatic synthesis of ethylene in the vacuole is assumed to require membrane integrity. The possibility that this reflects dependence on the vacuolar membrane potential was investigated. Vacuoles were released from protoplasts isolated from leaves of Vicia faba L. cv. Cyprus. The dependence of the ethylene-forming activity on tonoplast integrity was re-examined by immobilization of the vacuoles in a cross-linked polymeric matrix and subsequent permeabilization of the tonoplast with toluene, a pore-forming reagent. The relationship between the vacuolar ethylene formation and the membrane potential of free vacuoles was investigated by following the uptake of thiocyanate using permeabilized, depolarized and hyperpolarized vacuoles. Toluene and the proton conductor carbonyl cyanide m -chlorophenylhydrazone (CCCP) caused loss of ethylene-forming activity and depolarized the vacuolar membrane potential. However, depolarization of the membrane potential with choline chloride and hyperpolarization by ATP did not affect ethylene biosynthesis. These conflicting results lead to the conclusion that vacuolar ethylene biosynthesis is not dependent on the vacuolar membrane potential. The possibility that the inhibition of ethylene biosynthesis by toluene and CCCP may result from direct hydrophobic interactions between these compounds and hydrophobic components of the ethylene-forming enzyme is discussed. 相似文献
13.
Functional properties of rat brain sodium channels lacking the beta 1 or beta 2 subunit 总被引:1,自引:0,他引:1
D J Messner D J Feller T Scheuer W A Catterall 《The Journal of biological chemistry》1986,261(32):14882-14890
The sodium channel purified from rat brain is a heterotrimeric complex of alpha (Mr 260,000), beta 1 (Mr 36,000), and beta 2 (Mr 33,000) subunits. alpha and beta 2 are attached by disulfide bonds. Removal of beta 1 subunits by incubation in 1.0 M MgCl2 followed by reconstitution into phospholipid vesicles yielded a preparation of alpha beta 2 which did not bind [3H]saxitoxin, mediate veratridine-activated 22Na+ influx, or bind the 125I-labeled alpha-scorpion toxin from Leiurus quinquestriatus (LqTx). In contrast, removal of beta 2 subunits by reduction of disulfide bonds with 1.5 mM dithiothreitol followed by reconstitution into phospholipid vesicles yielded a preparation of alpha beta 1 that retained full sodium channel function. Alpha beta 1 bound [3H]saxitoxin with a KD of 4.1 nM at 36 degrees C. It mediated veratridine-activated 22Na+ influx at a comparable initial rate as intact sodium channels with a K0.5 for veratridine of 46 microM. Tetracaine and tetrodotoxin blocked 22Na+ influx. Like intact sodium channels, alpha beta 1 bound 125I-LqTx in a voltage-dependent manner with a KD of approximately 6 nM at a membrane potential of -60 mV and was specifically covalently labeled by azidonitrobenzoyl 125I-LqTx. When incorporated into planar phospholipid bilayers, alpha beta 1 formed batrachotoxin-activated sodium channels of 24 pS whose voltage-dependent activation was characterized by V50 = -110 mV and an apparent gating charge of 3.3 +/- 0.3. These results indicate that beta 2 subunits are not required for the function of purified and reconstituted sodium channels while a complex of alpha and beta 1 subunits is both necessary and sufficient for channel function in the purified state. 相似文献
14.
Moran O Tammaro P Nizzari M Conti F 《Biochemical and biophysical research communications》2000,275(3):839-844
Several observations suggest an interaction of the sodium channel alpha-subunit with the cytoskeletal structures. However, there is a wide variability in the results of experiments of heterologous expression in Xenopus oocytes and studies on mammalian cells are sometimes contradictory. In general, there has been no direct demonstration that ad hoc large perturbations of the cytoskeleton modify the intrinsic properties of the sodium channels expressed endogenously or heterologously in plasma membranes. We have studied in CHO cells transfected with the rat muscle sodium channel alpha-subunit the effects of two substances expected to produce drastic perturbations of the cytoskeletal structure: Cytochalasin-D, which depolymerizes microfilaments, and Colchicine, which inhibits the microtubules polymerization. We observed no significant differences in the voltage dependence, kinetic parameters and surface density of the expressed sodium channels after treatment of the cells with these substances. We conclude that the two known main components of the cytoskeleton do not interfere directly with the sodium channel function or with the heterologous expression of channels in the cell membrane. 相似文献
15.
Moran O Tammaro P Nizzari M Conti F 《Biochemical and biophysical research communications》2000,276(1):204-209
Several observations suggest an interaction of the sodium channel alpha-subunit with the cytoskeletal structures. However, there is a wide variability in the results of experiments of heterologous expression in Xenopus oocytes and studies on mammalian cells are sometimes contradictory. In general, there has been no direct demonstration that ad hoc large perturbations of the cytoskeleton modify the intrinsic properties of the sodium channels expressed endogenously or heterologously in plasma membranes. We have studied in CHO cells transfected with the rat muscle sodium channel alpha-subunit the effects of two substances expected to produce drastic perturbations of the cytoskeletal structure: Cytochalasin-D, which depolymerizes microfilaments, and Colchicine, which inhibits the microtubules polymerization. We observed no significant differences in the voltage dependence, kinetic parameters and surface density of the expressed sodium channels after treatment of the cells with these substances. We conclude that the two known main components of the cytoskeleton do not interfere directly with the sodium channel function or with the heterologous expression of channels in the cell membrane. 相似文献
16.
Filippo Renò Sabrina Burattini Stefano Rossi Francesca Luchetti Marta Columbaro Spartaco Santi Stefano Papa E. Falcieri 《Histochemistry and cell biology》1998,110(5):467-476
The behaviour of plasma membrane was studied in UV-treated cells to investigate its involvement in apoptosis. It was studied
in HL60 cells, in which DNA oligonucleosomic cleavage occurs, and in Molt-4 cells, which are characterised by a different
fragmentation pattern. During the early stages of apoptosis, a membrane lipid rearrangement occurs, which involves phosphatidylserine
translocation from the inner to the outer leaflet. This molecular alteration was investigated by annexin V-FITC binding, analysed
by flow cytometry and confocal microscopy. It was correlated with transmission electron microscopy, subdiploid peak appearance
and DNA fragmentation. Our data indicate that the plasma membrane represents an early apoptotic target, even if its alterations
are not detectable by ultrastructural analysis, which indicates its good preservation until late apoptotic stages. In addition,
the study of apoptotic cells with absent or inactivated endonuclease demonstrates the independence of this membrane mechanism
from nuclear activity.
Accepted: 16 April 1998 相似文献
17.
To verify whether the sleep-inducing properties of oleamide were related to its ability to perturb membrane homeoviscosity, affecting 5-HT(2A) receptors, we compared the effects of oleamide and oleic acid, the latter lacking both the sleep-inducing effect and the action on 5-HT(2A) receptors. In binding studies the two compounds did not directly interact with rat brain cortex 5-HT(2A) receptors, nor did they increase the affinity of a 5-HT(2A) agonist, either in vitro or ex vivo. They had similar fluidizing effects, in vitro at high concentrations (>/=10 microM), and ex vivo after a dose of 100 mg/kg, and they reduced locomotor activity with similar potency. There thus appears to be no causal relationship between the fluidizing effects of oleamide and its sleep-inducing properties. 相似文献
18.
G M Dick C F Rossow S Smirnov B Horowitz K M Sanders 《The Journal of biological chemistry》2001,276(37):34594-34599
Estrogen (17beta-estradiol; 17betaE) and xenoestrogens, estrogenic compounds that are not steroid hormones, have non-genomic actions at plasma membrane receptors unrelated to the nuclear estrogen receptor. The open probability (P(o)) of large conductance Ca(2+)/voltage-sensitive k(+)(BK) channels is increased by 17betaE through the regulatory beta1 subunit. The pharmacological nature of the putative membrane binding site is unclear. We probed the site by determining whether tamoxifen ((Z)-1-(p-dimethylaminoethoxy-phenyl)-1,2-diphenyl-1-butene; Tx), a chemotherapeutic xenoestrogen, increased P(o) in clinically relevant concentrations (0.1-10 microm). In whole cell patch clamp recordings on canine colonic myocytes, which express the beta1 subunit, Tx activated charybdotoxin-sensitive K(+) current. In single channel experiments, Tx increased the NP(o) (P(o) x number channels; N) and decreased the unitary conductance (gamma) of BK channels. Tx increased NP(o) (EC(50) = 0.65 microm) in excised membrane patches independent of Ca(2+) changes. The Tx mechanism of action requires the beta1 subunit, as Tx increased the NP(o) of Slo alpha expressed in human embryonic kidney cells only in the presence of the beta1 subunit. Tx decreased gamma of the alpha subunit expressed alone, without effect on NP(o). Our data indicate that Tx increases BK channel activity in therapeutic concentrations and reveal novel pharmacological properties attributable to the alpha and beta1 subunits. These data shed light on BK channel structure and function, non-genomic mechanisms of regulation, and physiologically and therapeutically relevant effects of xenoestrogens. 相似文献
19.
Chemoattractant stimulation of Dictyostelium cells leads to the opening of calcium channels in the plasma membrane, causing extracellular calcium to flux into the cell. The genetically uncharacterised mutants stmF and KI8 show strongly altered chemoattractant-stimulated cGMP responses. The aberrant calcium influx in these strains has provided evidence that the chemoattractant-stimulated calcium influx is potentiated by cGMP. We have tested this hypothesis in genetically defined mutants by measuring the calcium influx in a strain that lacks intracellular cGMP due to the disruption of two guanylyl cyclases, and in a strain with increased cGMP levels caused by the disruption of two cGMP-degrading phosphodiesterases. The results reveal that the calcium influx stimulated by cAMP or folic acid is essentially identical in these strains. We conclude that cGMP is not involved in chemoattractant-stimulated calcium influx. 相似文献
20.
We have studied by electron microscopy the size and morphology of the complexes obtained with different DNAs (between 500 and 5243 base pairs long) and four different proteins: sea urchin histone H1; sea cucumber histone ?0, chicken erythrocyte histone H5, and clupeine. Surprisingly, the type of protein used has only a marginal influence on the complexes formed. The molecular weight and topology of DNA do not show any influence. The size of the complexes depends strongly on the ratio of positive to negative charges and also on the ionic conditions. Our studies have been mainly carried out at a ratio of 0.4. Under these conditions the average thickness of rods and toroids observed varies between 165 Å at 1.5 mM salt to 290 Å at 100 mM salt, with minor variations around these values depending on the type of DNA and protein used. We conclude that the formation of DNA condensates is mainly determined by a balance of electrostatic and intermolecular forces, the influence of specific interactions is only marginal. This conclusion seems to apply not only to the complexes described here, but also to chromatin fibers and to DNA condensed by low molecular weight counterions and other compounds (polyamines, inorganic ions, ethanol, etc.). © 1994 John Wiley & Sons, Inc. 相似文献