首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have shown recently that fasting permits leptin to modulate both luteinizing hormone (LH) and insulin secretion in cows. In rodents, leptin causes divergent effects on LH and insulin release that are dose dependent. To test the hypothesis that leptin effects on LH and insulin secretion in fasted cows are dose related, we examined the effects of various doses of recombinant ovine leptin (oleptin) in mature cows. Twenty ovariectomized beef cows, each bearing an estradiol implant to maintain basal estradiol concentrations, were used. All cows were fasted for 60 hr with free access to water and were assigned randomly to one of four groups (n = 5/group): 1) saline control; 2) leptin, 0.2 microg/kg; 3) leptin, 2.0 microg/kg; and 4) leptin, 20 microg/kg body wt. Blood samples were collected at 10-min intervals for 6 hr on Days 0 and 2, with saline or oleptin injected intravenously immediately after the first intensive sample on Day 2 (54 hr). Leptin caused a dose-related increase (P < 0.001) in mean concentrations of circulating LH. Stimulation of LH release by leptin was significant at the lowest (141% of control) and middle (122% of control) doses used, but no increase was observed for the highest dose. Increased mean concentrations of LH appeared to result from an augmentation of basal secretion, as pulse characteristics were not affected. After 54 hr of fasting, plasma insulin concentrations were lowered (P < 0.01) in all treatment groups compared to Day 0. After leptin injections, plasma insulin concentrations increased (P < 0.01) and reached highest concentrations during the first hour of sampling. However, this increase was sustained for several hours only in the intermediate (2.0 microg/kg) dose group. Collectively, our results show that leptin has potent positive effects on both LH and insulin secretion in fasted cows, but the anterior pituitary and endocrine pancreas appear to become downregulated in the presence of excess ligand.  相似文献   

2.
Studies assessed, either directly or indirectly, the role of GnRH in leptin-mediated stimulation of LH release in cattle before and after sexual maturation. In experiment 1, the objectives were to determine whether leptin could acutely accelerate the frequency of LH pulses, and putatively GnRH pulses, in prepubertal heifers at different stages of development. In experiment 2, we determined directly whether acute, leptin-mediated increases in LH secretion in the fasted, mature female are accompanied by an increase in GnRH secretion. Ten-month-old prepubertal heifers (experiment 1) fed normal- (n = 5) and restricted-growth (n = 5) diets received three injections of saline or recombinant ovine leptin (oleptin; 0.2 microg/kg body weight, i.v.) at hourly intervals during 5-h experiments conducted every 5 wk until all normal-growth heifers were pubertal. Leptin increased mean concentrations of circulating LH regardless of diet, but pulse characteristics were not altered at any age. In experiment 2, ovariectomized, estradiol-implanted cows (n = 5) were fasted twice for 72 h and treated with either saline or oleptin i.v. (as in experiment 1) on Day 3 of each fast. Leptin increased plasma concentrations of LH and third ventricle cerebrospinal fluid concentrations of GnRH, and increased the amplitude of LH and the size of GnRH pulses, respectively, on Day 3 of fasting compared to saline. Overall, results indicate that leptin is unable to accelerate the pulse generator in heifers at any developmental stage. However, leptin-mediated augmentation of LH concentrations and pulse amplitude in the nutritionally stressed, mature female are associated with modifications in GnRH secretory dynamics.  相似文献   

3.
We tested the hypothesis that leptin could prevent fasting-mediated reductions in pulsatile secretion and modify GnRH-mediated release of LH in heifers approaching puberty. Thirteen crossbred, prepubertal heifers (13.5-16 mo; 280-350 kg) exhibiting frequencies of pulses of LH between 0.67 and 1 pulse/h, were assigned randomly to two groups: 1). control (n = 6), fasted for 72 h with s.c. injections of saline at 12-h intervals, and 2). leptin (n = 7), fasted for 72 h with s.c. injections of oleptin (19.2 microg/kg) at 12-h intervals. Blood samples were collected intensively for 6 h on Days 0 and 3. This was followed on Day 3 with sequential administration of physiological (0.0011 microg/kg, i.v.) and pharmacological (0.22 microg/kg, i.v.) doses of GnRH and additional blood sampling. Leptin treatment increased (P = 0.0003) plasma concentrations of leptin 5-6-fold compared to controls. Fasting caused a marked decline (P = 0.01) between Days 0 and 3 in the frequency of LH pulses in controls; however, this effect was prevented in the leptin group, with pulse frequency increasing (P < 0.008) from Day 0 to 3. Leptin treatment increased GnRH-induced release of LH at both low (P = 0.04) and high (P = 0.02) doses. Plasma insulin and insulin-like growth factor-1 were reduced by fasting and unaffected by leptin. Leptin increased mean concentrations of growth hormone. Results indicate, for the first time, that exogenous leptin can prevent fasting-mediated reductions in the frequency of LH pulses and modify GnRH-mediated release of LH in intact, prepubertal heifers.  相似文献   

4.
Recombinant ovine leptin (oleptin) stimulates an acute increase in the secretion of LH in fasted, but not in normal-fed, cows through an augmentation of the magnitude of individual pulses of LH. Herein, we tested the hypothesis that this effect could be accounted for by functional changes at the adenohypophyseal (AP) level. Eleven ovariectomized, estradiol-implanted cows were assigned to one of two dietary groups: normal-fed (n = 6) and fasted (fasted for 72 h; n = 5). After the animals were killed, the adenohypophyses were collected and AP explants were perifused with Krebs-Ringer bicarbonate buffer (KRB) for a total of 6.5 h, including a 2-h treatment at 2.5 h with KRB or increasing doses of oleptin and a challenge at 4.5 h with 50 ng of GnRH. To test for effects of leptin at the hypothalamic level, explants encompassing the medial basal hypothalamus-infundibular complex (HYP) were incubated in KRB alone (control) or in KRB containing 1000 ng of oleptin. Basal release of LH from AP explants treated with leptin was greater (P < 0.02) than that from control-treated explants in fasted, but not in normal-fed, cows. To the contrary, leptin-treated explants from normal-fed, but not from fasted, cows released more (P < 0.001) LH in response to GnRH than control-treated tissues. Neither fasting nor leptin affected (P > 0.1) the secretion of GnRH from HYP explants. These observations support the hypothesis that leptin modulates the secretion of LH in mature cows, to a large extent, by its direct actions at the AP. Differential manifestations of these effects are dependent upon nutritional history.  相似文献   

5.
In the present study, we tested the hypothesis that short-term fasting would reduce leptin gene expression, circulating leptin, and LH pulsatility in prepubertal heifers in association with a decrease in circulating concentrations of insulin and insulin-like growth factor I (IGF-I). Twelve prepubertal crossbred heifers (mean +/- SD = 315 +/- 5 kg body weight) were assigned randomly to one of two treatments in two replicates: 1) control; normal feed consumption (n = 6) and 2) fasted; 48 h of total feed restriction (n = 6). Blood samples were collected at 15-min intervals for 8 h on Days 0 and 2 of the experiment and twice on Day 1. Subcutaneous fat samples were collected before treatment onset (Day -1) and at the end of the intensive blood sampling on Day 2. Acute feed restriction markedly reduced leptin mRNA in adipose tissue (P < 0.01) and circulating concentrations of leptin (P < 0.05), IGF-I (P < 0.01), and insulin (P = 0.05) as compared with controls on Day 2. Moreover, the treatment x day interaction (P < 0.076) and within-day contrasts (expressed as a percentage of Day 0 values) revealed that the mean frequency of LH pulses in the fasted group was lower (P < 0.06) than in controls on Day 2. Neither mean concentrations of growth hormone (GH) nor GH secretory dynamics were affected by acute feed restriction. Fasting-mediated decreases in leptin gene expression and circulating leptin, in association with reductions in secretion of IGF-I, insulin, and LH, provide a basis for investigating leptin as a hormone signaling energy status to the central reproductive axis in cattle.  相似文献   

6.
Prevention of high plasma progesterone concentrations in the early postpartum period may improve fertility. Our objective was to determine whether a Deslorelin implant (DESL; 2100 microg, s.c.) would reduce secretion of LH and alter follicle dynamics, plasma concentrations of progesterone, estradiol and PGF2alpha metabolite (PGFM) in postpartum dairy cows. Cows received DESL on Day 7 postpartum (Day 7, n=8) or were untreated (Control, n=9). All cows were injected with GnRH (100 microg, i.m.) on Day 14 to assess LH response. A protocol for synchronization of ovulation with timed AI was initiated on Day 60 (GnRH [Day 60], CIDR [Day 60 to Day 67], PGF2alpha [Day 67, 25 mg and Day 68, 15 mg], GnRH [Day 69] , AI [Day 70]). The LH response to injection of GnRH on Day 14 was blocked in animals treated with DESL. Numbers of Class 1 (<6 mm) follicles were unaffected (P > 0.05) whereas numbers of Class 2 (6 to 9 mm) (P < 0.01) and Class 3 (>9 mm) follicles were less (P < 0.01) in DESL cows between Day 7 and Day 21. From Day 22 to Day 60, DESL-treated cows had more of Class 1 follicles and less Class 2 (P < 0.01) and Class 3 (P < 0.01) follicles, and lower plasma concentrations of progesterone and estradiol (P < 0.01). Concentrations of PGFM between Day 7 and Day 42 were not affected by treatment (P > 0.05). All cows ovulated in response to GnRH on Day 69. Subsequent luteal phase increases in plasma progesterone concentrations (Day 70 to Day 84) did not differ. The use of the DESL implant associated with PGF2alpha given 14 days later suppressed ovarian activity and caused plasma progesterone concentrations to remain < 1 ng/mL between Day 22 and Day 51. The DESL implant did not affect milk production.  相似文献   

7.
The secretion of leptin is dually regulated. In fasting animals, plasma leptin concentrations reflect body fat stores, whereas the incremental leptin response to fasting or refeeding most likely reflects insulin-mediated energy flux and metabolism within adipocytes. Impaired secretion of leptin in either pathway could result in obesity. We therefore measured plasma leptin concentrations in fasted animals and plasma leptin concentrations after an intravenous glucose infusion in a rat model of obesity. Young Sprague-Dawley (S-D) and Fischer 344 (F344) rats had similar percent body fat and fasting glucose and fasting leptin concentrations. However, F344 animals had higher insulin concentrations and leptin responses to intravenous glucose than did the S-D animals. The animals were then fed a control or high-fat diet for 6 wk. High-fat fed animals gained more weight and body fat than did the control fed animals. Control and high-fat fed F344 animals gained approximately 40% (P < 0.0001) more weight and >100% (P < 0.01) more body fat than did the S-D animals. Fasting leptin concentrations and leptin concentrations after intravenous glucose infusions and feeding were more than double (P < 0.05) in F344 animals compared with S-D animals. Whether an animal is fed a control or high-fat diet had little effect on the leptin response to intravenous glucose. In conclusion, young, lean F344 animals, before the onset of obesity, demonstrated a greater acute leptin response to intravenous glucose than similarly lean S-D animals. After a 6-wk diet, F344 animals had a greater percent increase in body weight and insulin resistance and exhibited higher fasting leptin concentrations and a greater absolute leptin response to intravenous glucose compared with the S-D animals. The chronic diet (control or high fat) had little impact on the acute leptin response to intravenous glucose. F344 animals exhibit leptin resistance in young, lean animals and after aging and fat accumulation.  相似文献   

8.
This study's aim was to examine whether fasting and refeeding would influence leptin levels in both plasma and follicular fluid from prepubertal gilts, and whether insulin affects leptin levels in fasting gilts. In experiment 1, four gilts were fasted for 72 h and then refed. Blood samples were withdrawn during normoalimentation, at the end of fasting, and for 4 h after refeeding. All samples were assayed for leptin; alternate samples were assayed for insulin, glucose and non-esterified fatty acids (NEFA). Fasting caused a decrease in leptin, glucose and insulin levels in plasma, while NEFA concentrations increased. In experiment 2, four gilts were given insulin as a bolus (0.2 IU/kg body weight) after 68 h of fasting. Blood samples were collected every 15 min around insulin administration and were assayed for leptin, insulin and glucose. This experiment shows that insulin administration increases leptin levels during fasting. In experiment 3, gilts were ovariectomized during normal alimentation (n=4), after 48 h of fasting (n=4), and after 48 h of realimentation following 48 h of fasting (n=4). Leptin levels in both plasma and follicular fluid collected after 48 h of fasting were significantly lower than those observed during normoalimentation or refeeding. In conclusion, a transient increase in insulin during fasting is effective in restoring leptin concentrations; in addition, leptin levels in follicular fluid parallel those in plasma.  相似文献   

9.
The effects of fasting between Days 8 and 16 of the estrous cycle on plasma concentrations of luteinizing hormone (LH), progesterone, cortisol, glucose and insulin were determined in 4 fasted and 4 control heifers during an estrous cycle of fasting and in the subsequent cycle after fasting. Cortisol levels were unaffected by fasting. Concentrations of insulin and glucose, however, were decreased (p less than 0.05) by 12 and 36 h, respectively, after fasting was begun and did not return to control values until 12 h (insulin) and 4 to 7 days (glucose) after fasting ended. Concentrations of progesterone were greater (p less than 0.05) in fasted than in control heifers from Day 10 to 15 of the estrous cycle during fasting, while LH levels were lower (p less than 0.01) in fasted than in control heifers during the last 24 h of fasting. Concentrations of LH increased (p less than 0.01) abruptly in fasted heifers in the first 4 h after they were refed on Day 16 of the fasted cycle. Concentrations (means +/- SEM) of LH also were greater (p less than 0.05) in fasted (11.2 +/- 2.6 ng/ml) than in control (4.7 +/- 1.2 ng/ml) heifers during estrus of the cycle after fasting; this elevated LH was preceded by a rebound response in insulin levels in the fasted-refed heifers, with insulin increasing from 176 +/- 35 pg/ml to 1302 +/- 280 pg/ml between refeeding and estrus of the cycle after fasting. Concentrations of LH, glucose and insulin were similar in both groups after Day 2 of the postfasting cycle. Concentrations of progesterone in two fasted heifers and controls were similar during the cycle after fasting, whereas concentrations in the other fasted heifers were less than 1 ng/ml until Day 10, indicating delayed ovulation and (or) reduced luteal function. Thus, aberrant pituitary and luteal functions in fasted heifers were associated with concurrent fasting-induced changes in insulin and glucose metabolism.  相似文献   

10.
Reproductive hormone secretions are inhibited by fasting and restored by feeding. Metabolic signals mediating these effects include fluctuations in serum glucose, insulin, and leptin. Because ATP-sensitive potassium (K(ATP)) channels mediate glucose sensing and many actions of insulin and leptin in neurons, we assessed their role in suppressing LH secretion during food restriction. Vehicle or a K(ATP) channel blocker, tolbutamide, was infused into the lateral cerebroventricle in ovariectomized mice that were either fed or fasted for 48 h. Tolbutamide infusion resulted in a twofold increase in LH concentrations in both fed and fasted mice compared with both fed and fasted vehicle-treated mice. However, tolbutamide did not reverse the suppression of LH in the majority of fasted animals. In sulfonylurea (SUR)1-null mutant (SUR1(-/-)) mice, which are deficient in K(ATP) channels, and their wild-type (WT) littermates, a 48-h fast was found to reduce serum LH concentrations in both WT and SUR(-/-) mice. The present study demonstrates that 1) blockade of K(ATP) channels elevates LH secretion regardless of energy balance and 2) acute fasting suppresses LH secretion in both SUR1(-/-) and WT mice. These findings support the hypothesis that K(ATP) channels are linked to the regulation of gonadotropin-releasing hormone (GnRH) release but are not obligatory for mediating the effects of fasting on GnRH/LH secretion. Thus it is unlikely that the modulation of K(ATP) channels either as part of the classical glucose-sensing mechanism or as a component of insulin or leptin signaling plays a major role in the suppression of GnRH and LH secretion during food restriction.  相似文献   

11.
Pluriparous suckled Brahman and Angus cows were utilized to evaluate the effect of breed, day after calving and endogenous opioid peptides (EOP) on hormonal profiles during postpartum anestrus. On Days 17 and 34 after calving, blood samples with and without heparin were collected at 15- and 30-min intervals, respectively, for a 7-h period via jugular cannula. Two hours after the start of blood sampling, cows of each breed were administered either 1 mg/kg iv naloxone or saline. Three hours later, all animals received 10 ng/kg iv GnRH. On Day 34 after calving cows received 0.2 IU/kg iv ACTH. Mean LH, basal LH and area under the LH curve increased (P < 0.01) from Day 17 to Day 34 after calving. Height of LH pulses increased (P < 0.05) by Day 34 after calving. Brahman cows had higher (P < 0.05) mean LH, basal LH, LH pulse frequency and area under the LH curve than Angus cows. Naloxone increased postchallenge area under the LH curve in treated cows above that of control cows (P < 0.06). Naloxone also increased the postchallenge area under the LH curve above that of the prechallenge level (P < 0.01). No breed differences in the response to the naloxone challenge were observed. The LH response to naloxone challenge occurred earlier on Day 34 than on Day 17 after calving but the amount of LH released was similar between days. The GnRH-induced LH release was greater in Brahman than in Angus cows (P < 0.04). Mean cortisol concentrations and area under the cortisol curve decreased (P < 0.05) between Day 17 and Day 34 after calving. Mean cortisol concentrations and area under the cortisol curve were lower (P < 0.01) in Brahman than in Angus cows. Cortisol secretion after ACTH treatment was similar between Brahman and Angus cows. The cortisol response after ACTH challenge was positively correlated (r=0.68; P < 0.001) to the prechallenge area under the cortisol curve. Under optimal environmental conditions Brahman cows have a greater LH release and their anterior hypophysis is more sensitive to GnRH challenge than the Angus cows.  相似文献   

12.
The influence of fasting and winter-acclimatization (cold and short-day acclimatization) on mouse plasma leptin, ghrelin, growth hormone (GH) and melatonin concentrations was determined from blood samples taken at mid-day and midnight. A 16-h fast decreased the plasma leptin but almost doubled the plasma ghrelin concentrations which contribute to energy saving, appetite stimulation and, in the case of leptin, to inhibition of reproduction. Winter-acclimatization did not affect plasma ghrelin concentrations, whereas leptin decreased to the same level as in fasting. The low leptin concentrations possibly enable an increased caloric intake for the purpose of thermogenesis. Fasting and winter-acclimatization seemed to abolish the diurnal leptin rhythm, but had no effect on that of ghrelin. Plasma melatonin concentration correlated negatively with ghrelin, suggesting a possible role for melatonin in the regulation of ghrelin concentration. SNS-activity and insulin appear to be the main regulators of leptin plasma concentration in the mouse, rather than melatonin as in some seasonal mammals. Interestingly, endogenous ghrelin did not stimulate GH secretion, which is a well-documented reaction to exogenous ghrelin injections.  相似文献   

13.
Chronic hyperglycemia inhibits the male gonadal axis. The present analyses test the hypothesis that acute glucose ingestion also suppresses LH and testosterone (T) secretion and blunts the LH-T dose-response function. The design comprised a prospectively randomized crossover comparison of LH and T secretion after glucose vs. water ingestion in a Clinical Translational Research Center. The participants were healthy men (n = 57) aged 19-78 yr with body mass index (BMI) of 20-39 kg/m(2). The main outcome measurements were deconvolution and LH-T dose-response analyses of 10-min data. LH-T responses were regressed on glucose, insulin, leptin, adiponectin, age, BMI, and CT-estimated abdominal visceral fat. During the first 120 min after glucose ingestion, for each unit decrease in LH concentrations, T concentrations decreased by 86 (27-144) ng/dl (r = 0.853, P < 0.001). Based upon deconvolution analysis, glucose compared with water ingestion reduced 1) basal (nonpulsatile; P < 0.001) and total (P < 0.001) T secretion without affecting pulsatile T output and 2) pulsatile (P = 0.043) but not basal LH secretion. By multivariate analysis, pulsatile LH secretion positively predicted basal T secretion after glucose ingestion (r = 0.374, P = 0.0042). In addition, the glucose-induced fall in pulsatile LH secretion was exacerbated by higher fasting insulin concentrations (P = 0.054) and attenuated by higher adiponectin levels (P = 0.0037). There were no detectable changes in the analytically estimated LH-T dose-response curves (P > 0.30). In conclusion, glucose ingestion suppresses pulsatile LH and basal T secretion acutely in healthy men. Suppression is influenced by age, glucose, adiponectin, and insulin concentrations.  相似文献   

14.
The influence of Buserelin injection and Deslorelin (a GnRH analogue) implants administered on Day 5 of the estrous cycle on plasma concentrations of LH and progesterone (P4), accessory CL formation, and follicle and CL dynamics was examined in nonlactating Holstein cows. On Day 5 (Day 1 = ovulation) following a synchronized estrus, 24 cows were assigned randomly (n = 4 per group) to receive 2 mL saline, i.m. (control), 8 micrograms, i.m. Buserelin or a subcutaneous Deslorelin (DES) implant in concentrations of 75 micrograms, 150 micrograms, 700 micrograms or 2100 micrograms. Blood samples were collected (for LH assay) at 30-min intervals for 2 h before and 12 h after GnRH-treatment from cows assigned to Buserelin, DES-700 micrograms and DES-2100 micrograms treatments and thereafter at 4-h intervals for 48 h. Beginning 24 h after treatment, ovaries were examined by ultrasound at 2-h intervals until ovulation was confirmed. Thereafter, ultrasonography and blood sampling (for P4 assay) was performed daily until a spontaneous ovulation before Day 45. A greater release of LH occurred in response to Deslorelin implants than to Buserelin injection (P < 0.01). Basal levels of LH between 12 and 48 h were higher in DES-700 micrograms group than in DES-2100 micrograms and Buserelin (P < 0.05). The first wave dominant follicle ovulated in all cows following GnRH treatment. Days to CL regression did not differ between treatments, but return to estrus was delayed (44.2 vs 27.2 d; P < 0.01) in cows of DES-2100 micrograms group. All GnRH treatments elevated plasma P4 concentrations, and the highest P4 responses were observed in the DES-700 micrograms and DES-2100 micrograms groups. The second follicular wave emerged earlier in GnRH-treated than in control cows (9.9 vs 12.8 d; P < 0.01). However, emergence of the third dominant follicle was delayed in cows of DES-2100 micrograms treatment (37.0 d) compared with DES-700 micrograms (22.2 d), Buserelin (17.8 d) or control (19.0 d). In conclusion, Deslorelin implants of 700 micrograms increased plasma P4 and LH concentrations and slightly delayed the emergence of the third dominant follicle. On the contrary, Deslorelin implants of 2100 micrograms drastically altered the P4 profiles and follicle dynamics.  相似文献   

15.
We used immunoneutralization of endogenous estradiol to investigate deficiencies in the estradiol-feedback regulation of LH secretion as a primary cause of follicular cysts in cattle. Twenty-one cows in the prostaglandin (PG) F(2alpha)-induced follicular phase were assigned to receive either 100 ml of estradiol antiserum produced in a castrated male goat (n = 11, immunized group) or the same amount of castrated male goat serum (n = 10, control group). The time of injection of the sera was designated as 0 h and Day 0. Five cows in each group were assigned to subgroups in which we determined the effects of estradiol immunization on LH secretion and follicular growth during the periovulatory period. The remaining six estradiol-immunized cows were subjected to long-term analyses of follicular growth and hormonal profiles, including evaluation of pulsatile secretion of LH. The remaining five control cows were used to determine pulsatile secretion of LH on Day 0 (follicular phase) and Day 14 (midluteal phase). The control cows exhibited a preovulatory LH surge within 48 h after injection of the control serum, followed by ovulation of the dominant follicle that had developed during the PGF(2alpha)-induced follicular phase. In contrast, the LH surge was not detected after treatment with estradiol antiserum. None of the 11 estradiol-immunized cows had ovulation of the dominant follicle, which had emerged before estradiol immunization and enlarged to more than 20 mm in diameter by Day 10. Long-term observation of the six immunized cows revealed that five had multiple follicular waves, with maximum follicular sizes of 20-45 mm at 10- to 30-day intervals for more than 50 days. The sixth cow experienced twin ovulations of the initial persistent follicles on Day 18. The LH pulse frequency in the five immunized cows that showed the long-term turnover of cystic follicles ranged from 0.81 +/- 0.13 to 0.97 +/- 0.09 pulses/h during the experiment, significantly (P < 0.05) higher than that in the midluteal phase of the control cows (0.23 +/- 0.07). The mean LH concentration in the immunized cows was also generally higher than that in the luteal phase of the control cows. However, the LH pulse and mean concentration of LH after immunization were similar to those in the follicular phase of the control cows. Plasma concentrations of total inhibin increased (P < 0.01) concomitant with the emergence of cystic follicles and remained high during the growth of cystic follicles, whereas FSH concentrations were inversely correlated with total inhibin concentrations. In conclusion, neutralization of endogenous estradiol resulted in suppression of the preovulatory LH surge but a normal range of basal LH secretion, and this circumstance led to an anovulatory situation similar to that observed with naturally occurring follicular cysts. These findings provide evidence that lack of LH surge because of dysfunction in the positive-feedback regulation of LH secretion by estradiol can be the initial factor inducing formation of follicular cysts.  相似文献   

16.
Mean concentrations of luteinizing hormone (LH) increase during the follicular phase of the estrous cycle in cows. The working hypotheses in the present study were (1) that increasing concentrations of 17 beta-estradiol (E2) during the follicular phase of the estrous cycle cause an increase in mean concentration of LH by increasing amplitude of pulses of LH, and (2) that increasing E2 concentrations during this stage of the estrous cycle decrease frequency of pulses of LH in bovine females. Day of estrus was synchronized in seventeen mature cows. Treatments were initiated on Day 16 of the experimental estrous cycle (Day 0 = estrus). At Hour 0 (on Day 16), 4 cows were lutectomized. Lutectomy of these cows (EE; n = 4) allowed for endogenous secretion of E2. The remaining cows were ovariectomized at Hour 0 and were assigned to one of three E2 treatments: luteal phase E2 (LE, n = 5), increasing then decreasing E2 (DE, n = 5), and no E2 (NE, n = 3). Cows in the group that received LE were administered one E2 implant at Hour 0, which provided low circulating concentrations of E2 similar to those observed during the luteal phase of the estrous cycle. Cows in the group that received DE were administered one E2 implant at Hour 0, and additional implants were administered at 8-h intervals through Hour 40; then, two implants were removed at Hours 48 and 56, and one implant was removed at Hour 64.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Artificially induced cessation of egg laying caused regression of the reproductive tract in hens, as well as changes in circulating concentrations of sex steroids. Hens were bled at several stages during and after artificial moult induced by fasting or overfeeding a diet low in calcium or high in zinc. Hens received a single injection of 200 i.u. of horse LH at Day 0, 7, 21, 35 and 77 (Exp. 1) or Day 0, 8, 23, 35 and 71 (Exp. 2) after start of the treatment to induce moult. Blood samples were taken before and 20, 40 and 60 min (Exp. 1) or 15, 30 and 45 min (Exp. 2) after LH injection. Hens which were fasted or given the diet high in zinc had low plasma progesterone concentrations and the response to LH was reduced or delayed. In hens fed low calcium the reduction in plasma progesterone was less pronounced and the responsiveness to LH was more or less maintained. Conversely, there was no response of oestradiol to LH in laying hens. However, oestradiol concentrations increased in moulting hens after LH injection, due to the high oestradiol secretion from the small white follicles, since all yolky follicles were atretic.  相似文献   

18.
This study evaluated the effect of exogenous PGF(2)alpha on circulating LH concentrations in postpartum multiparous (n = 32) and primiparous (n = 46) Brahman cows. The cows were randomly allotted within parity and calving date to receive 0, 1, 2 or 3 mg im PGF(2)alpha (alfaprostol)/100 kg body weight (BW), with or without GnRH on Day 30 after calving. Blood samples were collected at weekly intervals from calving through treatment. Serum progesterone concentrations were determined using RIA procedures to assure that only anestrous cows were treated. Sterile marker bulls were maintained with cows on Coastal bermudagrass pastures until the first estrus was detected. Multiparous cows had a shorter (P < 0.05) interval from calving to estrus than did primiparous cows. Serum LH was affected by time (P < 0.0001), PGF(2)alpha dose (P < 0.0002), GnRH (P < 0.0001), parity by PGF(2)alpha dose (P < 0.0003), PGF(2)alpha dose by GnRH (P < 0.0009), parity by GnRH (P < 0.0008), and by parity by PGF(2)alpha dose by GnRH (P < 0.0005). Multiparous cows not receiving GnRH had higher mean serum LH (P < 0.02), LH peak pulse height (P < 0.03), and area under the LH release curve (P < 0.03) compared with primiparous cows. The number of LH pulses/6 h was greater (P < 0.06) in multiparous than primiparous cows, and was greater (P < 0.02) in multiparous cows receiving 3 mg/100 kg BW than in cows receiving 2 mg/100 kg BW, but not in the controls or in cows receiving 1 mg/100 kg BW. Exogenous GnRH resulted in increased (P < 0.0001) serum LH concentrations in all cows, and LH was enhanced (P < 0.0009) by simultaneous treatment with PGF(2)alpha. Primiparous cows had a greater response (P < 0.0005) to PGF(2)alpha and GnRH compared with multiparous cows. Pituitary release of LH in response to GnRH was enhanced by simultaneous exposure to PGF(2)alpha in Day 30 postpartum cows.  相似文献   

19.
Our working hypothesis was that the low concentrations of progesterone (P4) and synthetic progestins administered in hormonal regimens to control estrous cycles of cows would have similar effects on secretion of LH and 17 beta-estradiol (E2). In addition, we hypothesized that concentrations of exogenous P4 typical of the midluteal phase of the estrous cycle and the corpus luteum (CL) would have similar effects on LH and E2, and the effects would be different from those of synthetic progestins and low concentrations of P4. Cows (n = 29) were randomly assigned to one of five treatment groups: 1) one Progesterone Releasing Intravaginal Device (1PRID; n = 6); 2) two PRIDs (2PRID; n = 6); 3) norgestomet, as in Syncro-Mate-B regimen (SMB; n = 6); 4) melengestrol acetate (MGA; 0.5 mg/day; n = 5); and 5) control (CONT; n = 6). Treatments were administered for 9 days (Day 0 = initiation of treatment). All cows from 1PRID, 2PRID, SMB, and MGA groups were injected with prostaglandin F2 alpha (PGF2 alpha) on Days 2 and 5 of the treatment period to regress CL. Cows in the 1PRID and SMB groups were also administered exogenous estrogen according to the respective estrous synchronization protocol for these products. Daily blood samples were collected from Day 0 to 35 to determine concentrations of P4. On Day 8, blood samples were collected at 15-min intervals for 24 h to determine pattern of LH secretion. On Day 9, all treatments ceased and cows in the CONT group received injections of PGF2 alpha.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Leptin has been shown to regulate feed intake and energy expenditure. Insulin stimulates leptin secretion in rodents, but its action on leptin secretion is still obscure in ruminants. If insulin stimulates leptin secretion in ruminants, circulating leptin concentrations may change during exposure to cold, because of fluctuating insulin secretion and action in the cold environment. The present experiment was designed to determine whether feeding or exogenous administration of insulin affects circulating leptin levels in sheep exposed to thermoneutral and cold environments. Suffolk rams that were shorn and fed a diet once daily were subjected to a thermoneutral (20 degrees C) or cold (0 degrees C) environment for at least 1 week. Overall mean concentrations of plasma leptin in the feeding experiment were lower (P<0.05) in the cold environment than in the thermoneutral environment. Plasma leptin levels remained relatively unchanged after feeding in both environments, though plasma insulin response to feeding in both environments increased (P<0.01). The euglycemic clamps (insulin infusion rate: 4 mUkgBW(-1)min(-1) for 2 h) increased (P<0.01) circulating leptin concentrations in the thermoneutral, but not in the cold environment. These results suggest that lower circulating leptin levels in ruminants exposed to the cold environment could be partly due to the depressed insulin action on leptin secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号