首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Murein hydrolase activities were analyzed in synchronized cultures of Escherichia coli B/r. Cell wall-bound murein hydrolase activities, including the penicillin-sensitive endopeptidase, increased discontinuously during the cell cycle and showed maximum activity at a cell age of 30 to 35 min (generation time, 43 min). Maximum activity was observed at the same time that the rate of cell wall synthesis reached its maximum. These oscillations depended on the termination of replication: no increase in hydrolase activity was found if deoxyribonucleic acid synthesis was inhibited at an early time in the life cycle. In contrast, the activity of another murein hydrolase that was not tightly bound to the membrane (transglycosylase) increased exponentially with time, even when deoxyribonucleic acid synthesis was inhibited.  相似文献   

2.
Murein hydrolases cleave bonds in the bacterial exoskeleton, the murein (peptidoglycan) sacculus, a covalently closed bag-shaped polymer made of glycan strands that are crosslinked by peptides. During growth and division of a bacterial cell, these enzymes are involved in the controlled metabolism of the murein sacculus. Murein hydrolases are believed to function as pacemaker enzymes for the enlargement of the murein sacculus since opening of bonds in the murein net is needed to allow the insertion of new subunits into the sacculus. Furthermore, they are responsible for splitting the septum during cell division. The murein turnover products that are released during growth are further degraded by these hydrolases to products that can be recycled by the biosynthetic enzymes. As potentially suicidal (autolytic) enzymes, murein hydrolases must be strictly controlled by the cell, Inhibition of murein synthesis, for example by penicillin, triggers an unbalanced action of murein hydrolases causing bacteriolysis. InEscherichia coli, 14 different murein hydrolases have so far been identified, includingN-acetylmuramyl-l-alanine amidases,dd-endopeptidases,dd-carboxypeptidases,ld-carboxypeptidases, andN-acetylglucosaminidases. In addition lysozyme-like enzymes, called “lytic transglycosylases,” produce (1→6)-anhydromuramic acid derivatives by an intramolecular transglycosylation reaction.  相似文献   

3.
Recycling of murein by Escherichia coli.   总被引:21,自引:15,他引:6  
The tripeptide (L-Ala-D-Glu-meso-diaminopimelic acid [A2pm]), tetrapeptide (L-Ala-D-Glu-A2pm-D-Ala), and dipeptide (A2pm-D-Ala) which are shed by Escherichia coli from the murein sacculus were found to be reused by the cells to synthesize murein. The tripeptide was used directly, without degradation, to form UDP-N-acetylmuramyl-L-Ala-D-Glu-A2pm. The tetrapeptide lost its carboxy-terminal D-Ala, apparently in the periplasm, before being used. The dipeptide was degraded to D-Ala and A2pm before uptake.  相似文献   

4.
Optimal conditions were chosen for cultivation of Escherichia coli 85 cells with a rather high fumarate-hydratase activity on a cheap medium containing no edible raw material. An active biocatalyst for the synthesis of L-malic acid from fumaric acid was obtained based on E. coli 85 cells immobilized in carrageenan. The enzymatic synthesis of L-malic acid from potassium fumarate was kinetically studied and optimized. Some thermodynamic parameters of fumaric acid hydration into malic acid were determined. A technique for assaying the reaction mixture was developed that involved high performance liquid chromatography.  相似文献   

5.
Three members of the Nudix (nucleoside diphosphate X) hydrolase superfamily have been cloned from Escherichia coli MG1655 and expressed. The proteins have been purified and identified as enzymes active on nucleoside diphosphate derivatives with the following specificities. Orf141 (yfaO) is a nucleoside triphosphatase preferring pyrimidine deoxynucleoside triphosphates. Orf153 (ymfB) is a nonspecific nucleoside tri- and diphosphatase and atypically releases inorganic orthophosphate from triphosphates instead of pyrophosphate. Orf191 (yffH) is a highly active GDP-mannose pyrophosphatase. All three enzymes require a divalent cation for activity and are optimally active at alkaline pH, characteristic of the Nudix hydrolase superfamily. The question of whether or not Orf1.9 (wcaH) is a bona fide member of the Nudix hydrolase superfamily is discussed.  相似文献   

6.
The penicillin-binding protein (PBP) 1A is a major murein (peptidoglycan) synthase in Escherichia coli. The murein synthesis activity of PBP1A was studied in vitro with radioactive lipid II substrate. PBP1A produced murein glycan strands by transglycosylation and formed peptide cross-links by transpeptidation. Time course experiments revealed that PBP1A, unlike PBP1B, required the presence of polymerized glycan strands carrying monomeric peptides for cross-linking activity. PBP1A was capable of attaching nascent murein synthesized from radioactive lipid II to nonlabeled murein sacculi. The attachment of the new material occurred by transpeptidation reactions in which monomeric triand tetrapeptides in the sacculi were the acceptors.  相似文献   

7.
On the basis of the published N-terminal amino acid sequence of the soluble lytic transglycosylase 35 (Slt35) of Escherichia coli, an open reading frame (ORF) was cloned from the 60.8 min region of the E. coli chromosome. The nucleotide sequence of the ORF, containing a putative lipoprotein-processing site, was shown by [3H]-palmitate labelling to encode a lipoprotein with an apparent molecular mass of 36 kDa. A larger protein, presumably the prolipoprotein form, accumulated in the presence of globomycin. Over-expression of the gene, designated mltB (for membrane-bound lytic transglycosylase B), caused a 55-fold increase in murein hydrolase activity in the membrane fraction and resulted in rapid cell lysis. After membrane fractionation by sucrose-density-gradient centrifugation, most of the induced enzyme activity was present in the outer and intermediate membrane fractions. Murein hydrolase activity in the soluble fraction of a homogenate of cells induced for MltB increased with time. This release of enzyme activity into the supernatant could be inhibited by the addition of the serine-protease inhibitor phenylmethyl-sulphonyl fluoride. It is concluded that the previously isolated Slt35 protein is a proteolytic degradation product of the murein hydrolase lipoprotein MltB. Surprisingly, a deletion in the mltB gene showed no obvious phenotype.  相似文献   

8.
Lysis of Escherichia coli induced by either D-cycloserine, moenomycin, or penicillin G was monitored by studying murein metabolism. The levels of the soluble murein precursor UDP-N-acetylmuramyl-L-alanyl-D-glutamyl-m-diaminopimelyl-D-alanyl- D-alanine (UDP-MurNAc-pentapeptide) and the carrier-linked MurNAc-(pentapeptide)-pyrophosphoryl-undecaprenol as well as N-acetylglucosamine-beta-1,4-MurNAc-(pentapeptide)-pyrophosphoryl- undecaprenol varied in a specific way. In the presence of penicillin, which is known to interfere with the cross-linking of murein, the concentration of the lipid-linked precursors unexpectedly decreased before the onset of lysis, although the level of UDP-MurNAc-pentapeptide remained normal. In the case of moenomycin, which specifically blocks the formation of the murein polysaccharide strands, the lipid-linked precursors as well as UDP-MurNAc-pentapeptide accumulated as was expected. D-Cycloserine, which inhibits the biosynthesis of UDP-MurNAc-pentapeptide, consequently caused a decrease in all three precursors. The muropeptide composition of the murein showed general changes such as an increase in the unusual DL-cross bridge between two neighboring meso-diaminopimelic acid residues and, as a result of uncontrolled DL- and DD-carboxypeptidase activity, an increase in tripeptidyl and a decrease in tetrapeptidyl and pentapeptidyl moieties. The average length of the glycan strands decreased. When the glycan strands were fractionated according to length, a dramatic increase in the amount of single disaccharide units was observed not only in the presence of penicillin but also in the presence of moenomycin. This result is explained by the action of an exo-muramidase, such as the lytic transglycosylases present in E. coli. It is proposed that antibiotic-induced bacteriolysis is the result of a zipperlike splitting of the murein net by exo-muramidases locally restricted to the equatorial zone of the cell.  相似文献   

9.
The multiplicity of murein hydrolases found in most bacteria presents an obstacle to demonstrating the necessity of these potentially autolytic enzymes. Therefore, Escherichia coli mutants with deletions in multiple murein hydrolases, including lytic transglycosylases, amidases, and DD-endopeptidases, were constructed. Even a mutant from which seven different hydrolases were deleted was viable and grew at a normal rate. However, penicillin-induced lysis was retarded. Most of the mutants were affected in septum cleavage, which resulted in the formation of chains of cells. All three enzymes were shown to be capable of splitting the septum. Failure to cleave the septum resulted in an increase in outer membrane permeability, and thus the murein hydrolase mutants did not grow on MacConkey agar plates. In addition, the hydrolase mutants not only could be lysed by lysozyme in the absence of EDTA but also were sensitive to high-molecular-weight antibiotics, such as vancomycin and bacitracin, which are normally ineffective against E. coli.  相似文献   

10.
Enzymatic activities of the RecA protein of Escherichia coli   总被引:1,自引:0,他引:1  
G M Weinstock 《Biochimie》1982,64(8-9):611-616
  相似文献   

11.
12.
Comparison of two hydrolytic murein transglycosylases of Escherichia coli   总被引:8,自引:0,他引:8  
Escherichia coli has two murein transglycosylases, which are found in the soluble and the particulate fraction, respectively. The enzymes have been purified and have been shown to differ in some of their molecular properties [Mett, H., Keck, W., Funk, A. & Schwarz, U. (1980) J. Bacteriol. 144, 45-52]. We improved and simplified the purification procedure for the membrane-derived transglycosylase and characterized the two enzymes in more detail by peptide mapping and by immunological procedures. The peptide pattern obtained after tryptic digestion of the purified enzymes differed for the two enzymes. Antisera to the transglycosylases reacted only with their own antigen as shown by specific inhibition of the enzymatic activity, double immunodiffusion and by immunochemical staining of protein blots on nitrocellulose filters. Thus we conclude that the transglycosylases are two distinct proteins and that the one is not a precursor of the other.  相似文献   

13.
Absence of oligomeric murein intermediates in Escherichia coli.   总被引:4,自引:2,他引:2  
The intermediates in the biosynthetic pathway of murein were examined in two strains of Escherichia coli to determine whether they synthesized oligomeric precursors in vivo. No oligomeric precursors could be detected; the only intermediates found were the previously described UDP-N-acetylmuramyl peptides, and the two lipid-linked compounds, N-acetylglucosamyl-N-acetylmuramyl-(pentapeptide)-pyrophosphoryl-undecaprenol and N-acetylmuramyl-(pentapeptide)-pyrophosphoryl-undecaprenol. It was concluded that lipid-linked monomers are directly incorporated into the murein sacculus in vivo and do not pass through an oligomeric stage.  相似文献   

14.
Novel type of murein transglycosylase in Escherichia coli.   总被引:41,自引:30,他引:11       下载免费PDF全文
The purification and properties of a novel type of murein transglycosylase from Escherichia coli are described. The purified enzyme appears as a single band on sodium dodecyl sulfate-polyacrylamide gels and has an apparent molecular weight of approximately 65,000 as estimated by gel filtration and gel electrophoresis. It degrades pure murein sacculi from E. coli almost completely into low-molecular-weight products. The two prominent muropeptide fragments in the digest are the disaccharide-tripeptide N-acetylglucosamine-N-acetylmuramic acid-L-alanine-D-iso-glutamic acid-meso-diaminopimelic acid and the corresponding disaccharide-tetrapeptide N-acetylglucosamine-N-acetylmuramic acid-L-alanine-D-iso-glutamic acid-meso-diaminopimelic acid-D-alanine. The unique feature of these compounds is that the disaccharide has no reducing end group and that the muramic acid residue possesses an internal 1 leads to 6 anhydro linkage. The new lytic enzyme is designated as a murein: murein transglycosylase. Its possible role in the rearrangement of murein during cell growth and division is discussed.  相似文献   

15.
16.
The specific activities of three murein hydrolases, carboxypeptidase I, carboxypeptidase II, and amidase were studied with respect to cell division in toluene-treated cells of Escherichia coli K-12. Carboxypeptidase I and amidase activities were constant throughout the division cycle in cells of D11/lac+pro+. Detectable carboxypeptidase II activity varied and was highest at the time of division by a factor of three. Carboxypeptidase II specific activity was also correlated with cell division in BUG 6, a temperature-sensitive mutant (J.N Reeve, D.J. Groves, and D.J. Clark, 1970). Fifteen minutes after shifting BUG 6 from 42 C (nondividing conditions) to 32 C (dividing conditions), there was a rapid resumption of cell division, accompanied by a 10-fold increase in the specific activity of carboxypeptidase II. These results demonstrate a correlation between detectable carboxypeptidase II activity and cell division as reflected by activity in toluene-treated cells. The subcellular location of carboxypeptidase II, a soluble enzyme was found to be periplasmic since it was released by tris(hydroxymethyl)-aminomethane-ethylenediaminetetraacetate treatment and osmotic shock, two methods known to release periplasmic enzymes.  相似文献   

17.
18.
Bacterial protein secretion is important in the life cycles of most bacteria, in which it contributes to the formation of pili and flagella and makes available extracellular enzymes to digest polymers for nutritional purposes and toxins to kill host cells in infections of humans, animals and plants. It is generally accepted that nonpathogenic laboratory strains of Escherichia coli, particularly K12 strains, do not secrete proteins into the extracellular medium under routine growth conditions. In this study, we report that commonly used laboratory strains secrete YebF, a small (10.8 kDa in the native form), soluble endogenous protein into the medium, challenging the status quo view that laboratory strains do not secrete proteins to the medium. We further show that 'passenger' proteins linked to the carboxyl end of YebF are efficiently secreted. The function of YebF is unknown, but its use as a carrier for transgenic proteins provides a tool to circumvent toxicity and other contamination issues associated with protein production in E. coli.  相似文献   

19.
A rod-like structure is proposed for the murein lipoprotein of Escherichia coli, built of two parallel unbroken α-helices arranged in a coiled coil of the same type as in the muscle protein tropomyosin. The amino acid sequence has the required regular pattern of hydrophobic amino acids at intervals of three and four residues and the secondary structure predicted from the sequence is 80% helical. A space-filling model confirms that the coiled coil model is stereochemically reasonable, and energy calculations for a series of coils with different radii suggest that the best structure is one with the helix axes 8.25 Å apart. Energyrefined atomic co-ordinates have been calculated which show that the hydrophobic side-chains form a series of close-packed unstrained contacts between the two helices along the entire length of the sequence. On the basis of this study the hexagonal membrane pore model and the segmented helix model proposed by others seem unlikely. The coiled coil has a strongly hydrophilic outer surface, suggesting that the protein has a watery environment within the E. coli cell envelope and is not strictly a membrane protein. Probably only the fatty acid portion of the lipoprotein penetrates into the lipid region of the outer membrane, so that the protein may act as a tie or a spacer between the lipid and the murein wall.  相似文献   

20.
A deletion in the structural gene for the soluble lytic transglycosylase, the predominant murein hydrolase in the soluble fraction of Escherichia coli, has been constructed. The mutant grows normally but exhibits increased sensitivity toward mecillinam, a beta-lactam specific for penicillin-binding protein 2. In the presence of furazlocillin or other beta-lactams with a specificity for penicillin-binding protein 3 which normally cause filamentation, bulges were formed prior to rapid bacteriolysis. Similar morphological alterations are known to develop in wild type E. coli cells when furazlocillin is combined with bulgecin, an antibiotic of unusual glucosaminyl structure. It turned out that bulgecin specifically inhibits the Sl-transglycosylase in a noncompetitive manner. Since bulgecin shows some structural analogy to the murein subunits we postulate that the soluble lytic transglycosylase, in addition to its active site, has a recognition site for specific murein structures. The possibility of an allosteric modulation of the activity of the enzyme by changes in the structure of the murein sacculus is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号