首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Arabidopsis FILAMENTOUS FLOWER gene is required for flower formation.   总被引:3,自引:0,他引:3  
A screen for mutations affecting flower formation was carried out and several filamentous flower (fil) alleles were identified. In fil mutants, floral primordia occasionally give rise to pedicels lacking flowers at their ends. This defect is dramatically enhanced in fil rev double mutants, in which every floral primordium produces a flowerless pedicel. These data suggest that the FIL and REV genes are required for an early step of flower formation, possibly for the establishment of a flower-forming domain within the floral primordium. The FIL gene is also required for establishment of floral meristem identity and for flower development. During flower development, the FIL gene is required for floral organ formation in terms of the correct numbers and positions; correct spatial activity of the AGAMOUS, APETALA3, PISTILLATA and SUPERMAN genes; and floral organ development.  相似文献   

2.
3.

Background  

The genetics of spikelet formation, a feature unique to grasses such as rice and maize, is yet to be fully understood, although a number of meristem and organ identity mutants have been isolated and investigated in Arabidopsis and maize. Using a two-element Ac/Ds transposon tagging system we have isolated a rice mutant, designated branched floretless 1 (bfl1) which is defective in the transition from spikelet meristem to floret meristem.  相似文献   

4.
The YABBY (YAB) genes specify abaxial cell fate in lateral organs in Arabidopsis. Loss-of-function mutants in two early-expressing YAB genes, FILAMENTOUS FLOWER (FIL) and YAB3, do not exhibit vegetative phenotypes as a result of redundancy. Mutations in these genes result in the derepression of the KNOX homeobox genes SHOOTMERISTEMLESS (STM), BREVIPEDICELLUS, and KNAT2 in the leaves and in the partial rescue of stm mutants. Here, we show that fil yab3 double mutants exhibit ectopic meristem formation on the adaxial surfaces of cotyledons and leaf blades. We propose that in addition to abaxial specification, lateral organ development requires YAB function to downregulate KNOTTED homeobox genes so that meristem initiation and growth are restricted to the apex.  相似文献   

5.
Arabidopsis thaliana (L.) Heynh. has been used as a model system to investigate the regulatory genes that control and coordinate the determination, differentiation and morphogenesis of the floral meristem and floral organs. We show here that benzylaminopurine (BAP), a cytokinin, influences flower development inArabidopsis and induces partial phenocopies of known floral homeotic mutants. Application of BAP to wild-type inflorescences at three developmental stages results in: (i) increase in floral organ number; (ii) formation of abnormal floral organs and (iii) induction of secondary floral buds in the axils of sepals. These abnormalities resemble the phenotypes of mutants,clv1 (increase in organ number),ap1,ap2,ap3 (abnormal floral organs) andap1 (secondary floral buds in the axils of first-whorl organs). In addition, BAP induces secondary floral buds in the axils of perianth members ofapt2-6, ap3-1 andag mutants, and accentuates the phenotype of theapt2-1 mutant to resemble theapt2-6 mutant. These observations suggest that exogenous BAP suppresses the normal functioning of the genes for floral meristem identity and thereby affects flower development and the later stages of floral organ differentiation.Abbreviations BAP N6-benzylaminopurine - CK cytokinin  相似文献   

6.
7.

Background

Understanding and modelling early events of floral meristem patterning and floral development requires consideration of positional information regarding the organs surrounding the floral meristem, such as the flower-subtending bracts (FSBs) and floral prophylls (bracteoles). In common with models of regulation of floral patterning, the simplest models of phyllotaxy consider only unbranched uniaxial systems. Racemose inflorescences and thyrses offer a useful model system for investigating morphogenetic interactions between organs belonging to different axes.

Scope

This review considers (1) racemose inflorescences of early-divergent and lilioid monocots and their possible relationship with other inflorescence types, (2) hypotheses on the morphogenetic significance of phyllomes surrounding developing flowers, (3) patterns of FSB reduction and (4) vascular patterns in the primary inflorescence axis and lateral pedicels.

Conclusions

Racemose (partial) inflorescences represent the plesiomorphic condition in monocots. The presence or absence of a terminal flower or flower-like structure is labile among early-divergent monocots. In some Alismatales, a few-flowered racemose inflorescence can be entirely transformed into a terminal ‘flower’. The presence or absence and position of additional phyllomes on the lateral pedicels represent important taxonomic markers and key features in regulation of flower patterning. Racemose inflorescences with a single floral prophyll are closely related to thyrses. Floral patterning is either unidirectional or simultaneous in species that lack a floral prophyll or possess a single adaxial floral prophyll and usually spiral in the outer perianth whorl in species with a transversely oriented floral prophyll. Inhibitory fields of surrounding phyllomes are relevant but insufficient to explain these patterns; other important factors are meristem space economy and/or the inhibitory activity of the primary inflorescence axis. Two patterns of FSB reduction exist in basal monocots: (1) complete FSB suppression (cryptic flower-subtending bract) and (2) formation of a ‘hybrid’ organ by overlap of the developmental programmes of the FSB and the first abaxial organ formed on the floral pedicel. FSB reduction affects patterns of interaction between the conductive systems of the flower and the primary inflorescence axis.  相似文献   

8.
Mutations associated with floral organ number in rice   总被引:14,自引:0,他引:14  
How floral organ number is specified is an interesting subject and has been intensively studied in Arabidopsis thaliana. In rice (Oryza sativa L.), mutations associated with floral organ number have been identified. In three mutants of rice, floral organ number 1 (fon1) and the two alleles, floral organ number 2-1 (fon2-1) and floral organ number 2-2 (fon2-2), the floral organs were increased in number centripetally. Lodicules, homologous to petals, were rarely affected, and stamens were frequently increased from six to seven or eight. Of all the floral organs the number of pistils was the most frequently increased. Among the mutants, fon1 showed a different spectrum of organ number from fon2 -1 and fon2 -2. Lodicules were the most frequently affected in fon1, but pistils of more than half of fon1 flowers were unaffected; in contrast, the pistils of most flowers were increased in fon2 -1 and fon2-2. Homeotic conversion of organ identity was also detected at a low frequency in ectopically formed lodicules and stamens. Lodicules and stamens were partially converted into anthers and stigmas, respectively. Concomitant with the increased number of floral organs, each mutant had an enlarged apical meristem. Although meristem size was comparable among the three mutants and wild type in the early phase of flower development, a significant difference became apparent after the lemma primordium had differentiated. In these mutants, the size of the shoot apical meristem in the embryo and in the vegetative phase was not affected, and no phenotypic abnormalities were detected. These results do not coincide with those for Arabidopsis in which clavatal affects the sizes of both shoot and floral meristems, leading to abnormal phyllotaxis, inflorescence fasciation and increased floral organs. Accordingly, it is considered that FON1 and FON2 function exclusively in the regulation of the floral meristem, not of the vegetative meristem.Abbreviation DIC differential interference contrast This work was supported in part by Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science and Culture of Japan.  相似文献   

9.
The initial event in plant floral organogenesis is bract specification, followed by floral meristem (FM) initiation in bract axils, but initiation signals and the interplay between both lateral organs remain unelucidated. Floral organs are initiated on the flanks of the outgrowing FM and the enormous diversity in floral morphology throughout the plant kingdom reflects variations in organ position, meristy and ontogeny. Classical models of floral development have focused on Arabidopsis, which has mostly actinomorphic flowers, and Antirrhinum, which exhibits zygomorphy, although neither species is typical or representative of angiosperm flower diversity. Although the ABCE model defines a centripetal model of organ identity establishment in different whorls, the characterization of floral organ initiation in many species has relied on their morphological appearance, due to a lack of founder cell-specific markers. Recent progress in early Arabidopsis floral development using histology, molecular markers and mutants has led to refinements of existing floral organ initiation paradigms. In Arabidopsis, sepals initiate unidirectionally, in a temporal window characterized by the absence of CLAVATA3 and WUSCHEL stem cell markers and are partly dependent on PRESSED FLOWER function, whereas initiation of inner-whorl organs occurs centripetally. Arabidopsis mutants reveal that the FM is highly polarized along an ab-/adaxial axis and a comparison of floral development in Arabidopsis and Antirrhinum suggests that heterochrony of conserved gene functions has been evolutionarily adaptive.

This review discusses current views on FM and organ specification signals, the gene regulatory networks that underlie floral meristem polarity, and analogies between the development of floral and leaf primordia as lateral organs. Alternative stem-cell proliferation mechanisms and the bifurcation of founder cell populations can help to explain the diversity in floral diversity throughout the plant kingdom and underpin comparative evolutionary biology and macroevolution. An analysis of plants with divergent body plans at the level of organ specification is urgently needed.  相似文献   


10.
11.
12.

Background  

The pharynx of C. elegans is an epithelial tube whose development has been compared to that of the embryonic heart and the kidney and hence serves as an interesting model for organ development. Several C. elegans mutants have been reported to exhibit a twisted pharynx phenotype but no careful studies have been made to directly address this phenomenon. In this study, the twisting mutants dig-1, mig-4, mnm-4 and unc-61 are examined in detail and the nature of the twist is investigated.  相似文献   

13.
14.

Background  

Despite the importance of the shoot apical meristem (SAM) in plant development and organ formation, our understanding of the molecular mechanisms controlling its function is limited. Genomic tools have the potential to unravel the molecular mysteries of the SAM, and legume systems are increasingly being used in plant-development studies owing to their unique characteristics such as nitrogen fixation, secondary metabolism, and pod development. Garden pea (Pisum sativum) is a well-established classic model species for genetics studies that has been used since the Mendel era. In addition, the availability of a plethora of developmental mutants makes pea an ideal crop legume for genomics studies. This study aims to utilise genomics tools in isolating genes that play potential roles in the regulation of SAM activity.  相似文献   

15.
16.
Plant development going MADS   总被引:10,自引:0,他引:10  
It has been known for a decade that the plant MADS genesare important regulators of meristem and floral organ identity. The MADS family in Arabidopsis consists of more than 80 members and, until recently, the function of the majority of these genes was unknown. With the enhanced ability to generate loss-of-function mutants and over-expression lines, the function of the MADS gene family members is beginning to be elucidated. Recent progress demonstrates that MADS genes in Arabidopsis are important regulators not only of meristem and floral organ identity but also of flowering timing and cell-type specification in floral organs.  相似文献   

17.
18.
Arabidopsis gene FILAMENTOUS FLOWER (FIL) has been demonstrated to control the formation and development of inflorescence and floral meristems. This includes an early step in the establishment of a flower-forming domain within the floral primordium and the establishment of floral meristem identity. Another Arabidopsis gene LEUNIG (LUG) was previously found to specify the identity of the floral organ and control gynoecium fusion. In this paper, we describe floral phenotypes of a newly isolated fil allele, fil-21, and the phenotypic comparison of gynoecia between the fil-21 single mutant and fil-21 lug-101 double mutant. The gynoecium of fil-21 displays a well-fused structure, while that of the strong lug allele, lug-101, is unfused except at the gynoecium apex. However, gynoecia are markedly affected in the fil-21 lug-101 double mutant, being unfused. In late-appearing flowers of the double mutant, the gynoecia can even separate completely into several parts. These results suggest that LUG and FIL have a functional domain that is partially redundant in flower development, and synergistically regulate the gynoecium fusion. Received 18 June 2001/ Accepted in revised form 1 October 2001  相似文献   

19.
Watanabe K  Okada K 《The Plant cell》2003,15(11):2592-2602
Our previous studies showed that a member of the YABBY gene family, FILAMENTOUS FLOWER (FIL), plays a role in specifying the abaxial side tissues in the development of lateral organs such as cotyledons, leaves, young flower buds, and flower organs. We examined the expression pattern of FIL and found a temporal change of expression domains in the developmental process of the floral meristem. We also examined the cis control regions by constructing a series of transgenic plants that carry green fluorescent protein under the control of the FIL promoter with several types of deletions, base changes, and tandem repeats and showed that the unique expression pattern is dependent on at least two cis-acting elements in the 5' regulatory region. One element proximal to the FIL gene would be responsible for the expression of both the abaxial and adaxial sides, and the other element of the 12-bp sequence would work to repress expression on the adaxial side.  相似文献   

20.
The function of the SHOOT MERISTEMLESS (STM) gene in shoot and floral meristems throughout Arabidopsis development has been analyzed. The results show that STM plays a major role in maintaining shoot and floral meristems. In an allelic series of stm mutants the shoot meristem was either reduced or completely absent in mature embryos and mutant seedling cotyledons showed partial fusion, indicating that the STM gene affects embryonic shoot meristem development and spacing of cotyledons. Postembryonically, stm mutants initiated adventitious shoot development at a position corresponding to the shoot meristem in wild-type. Repetitively initiated defective mutant shoot and floral meristems were consumed during primordia formation and typically terminated prematurely in fused ectopic primordia, indicating that STM is required for continuous shoot and floral meristem function. Analogous defects were observed in stm embryonic and postembryonic development suggesting that similar mechanisms are employed in embryonic and postembryonic organ primordia initiation. Allelic combinations suggest different thresholds for STM requirement during plant development. STM requirement could not be bypassed by standard growth factor regimes or by shoot regeneration from calli. The results suggest that STM functions by preventing incorporation of cells in the meristem center into differentiating organ primordia and that this role can completely account for all defects observed in stm mutants. Mutations in the WUSCHEL (WUS) and ZWILLE (ZLL) genes result in defective organization and premature termination of shoot meristems. Genetic interactions between STM, WUS and ZLL were analyzed and the results indicate that STM acts upstream of WUS and ZLL. Therefore, while STM appears to function in keeping central meristem cells undifferentiated, WUS and ZLL seem to be subsequently required for proper function of these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号