首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Conserved two-component system ColRS of Pseudomonas genus has been implicated in several unrelated phenotypes. For instance, deficiency of P. putida ColRS system results in lowered phenol tolerance, hindrance of transposition of Tn4652 and lysis of a subpopulation of glucose-grown bacteria. In order to discover molecular mechanisms behind these phenotypes, we focused here on identification of downstream components of ColRS signal transduction pathway.  相似文献   

2.
A bacterium, CP1, identified as Pseudomonas putida strain, was investigated for its ability to grow on and degrade mono-chlorophenols and phenols as sole carbon sources in aerobic shaking batch culture. The organism degraded up to 1.56 mM 2- and 3-chlorophenol, 2.34 mM 4-chlorophenol and 8.5 mM phenol using an ortho-cleavage pathway. P. putida CP1, acclimated to degrade 2-chlorophenol, was capable of 3-chlorocatechol degradation, while P. putida, acclimated to 4-chlorophenol degradation, degraded 4-chlorocatechol. Growth of P. putida CP1 on higher concentrations of the mono-chlorophenols, ≥1.56 mM 4-chlorophenol and ≥0.78 mM 2- and 3-chlorophenol, resulted in decreases in cell biomass despite metabolism of the substrates, and the formation of large aggregates of cells in the culture medium. Increases in cell biomass with no clumping of the cells resulted from growth of P. putida CP1 on phenol or on lower concentrations of mono-chlorophenol. Bacterial adherence to hydrocarbons (BATH) assays showed cells grown on the higher concentrations of mono-chlorophenol to be more hydrophobic than those grown on phenol and lower concentrations of mono-chlorophenol. The results suggested that increased hydrophobicity and autoaggregation of P. putida CP1 were a response to toxicity of the added substrates. Journal of Industrial Microbiology & Biotechnology (2002) 28, 316–324 DOI: 10.1038/sj/jim/7000249 Received 27 June 2001/ Accepted in revised form 09 February 2002  相似文献   

3.
4.

Background  

Geobacillus stearothermophilus is able to utilize phenol as a sole carbon source. A DNA fragment encoding a phenol hydroxylase catalyzing the first step in the meta-pathway has been isolated previously. Based on these findings a PCR-based DNA walk was performed initially to isolate a catechol 2,3-dioxygenase for biosensoric applications but was continued to elucidate the organisation of the genes encoding the proteins for the metabolization of phenol.  相似文献   

5.
6.
Twenty-five aerobic phenol-degrading bacteria, isolated from different environmental samples on phenol agar after several subcultures in phenol broth, utilized phenol (0.2 g l−1) within 24 h, but removal of phenol was more rapid when other carbon sources were also present. A microtitre plate method was developed to determine growth rate, biofilm formation and respiratory activity of the strains isolated. Pseudomonas putida strains C5 and D6 showed maximum growth (as O.D. at 600 nm), P. putida D6 and unidentified bacterial strain M1 were more stable at high concentrations of phenol (0.8 g l−1), and P. putida C5 formed the greatest amount of biofilm in 0.5 g phenol l−1 medium. Measurement of dehydrogenase activity as reduction of triphenyl tetrazolium chloride supported data on growth rate and biofilm formation. The microtitre plate method provided a selective method for detection of the best phenol degrading and biofilm-forming microorganisms, and was also a rapid, convenient means of studying the effect of phenol concentration on growth rate and biofilm formation.  相似文献   

7.

Background  

The benzoylformate decarboxylase (BFD) from Pseudomonas putida is a biotechnologically interesting biocatalyst. It catalyses the formation of chiral 2-hydroxy ketones, which are important building blocks for stereoselective syntheses. To optimise the enzyme function often the amino acid composition is modified to improve the performance of the enzyme. So far it was assumed that a relatively small modification of the amino acid composition of a protein does not significantly influence the level of expression or media requirements. To determine, which effects these modifications might have on cultivation and product formation, six different BFD-variants with one or two altered amino acids and the wild type BFD were expressed in Escherichia coli SG13009 pKK233-2. The oxygen transfer rate (OTR) as parameter for growth and metabolic activity of the different E. coli clones was monitored on-line in LB, TB and modified PanG mineral medium with the Respiratory Activity MOnitoring System (RAMOS).  相似文献   

8.

Background  

Previous studies showed the ability of Pseudomonas putida strain BTP1 to promote induced systemic resistance (ISR) in different host plants. Since ISR is long-lasting and not conducive for development of resistance of the targeted pathogen, this phenomenon can take part of disease control strategies. However, in spite of the numerous examples of ISR induced by PGPR in plants, only a few biochemical studies have associated the protective effect with specific host metabolic changes.  相似文献   

9.

Background  

Only a small number of Pseudomonas putida strains possess the typical N-acyl homoserine lactone quorum sensing system (AHL QS) that consists of a modular LuxR family protein and its cognate LuxI homolog that produces the AHL signal. Moreover, AHL QS systems in P. putida strains are diverse in the type of AHLs they produce and the phenotypes that they regulate.  相似文献   

10.
Wang C  Li Y 《Biotechnology letters》2007,29(9):1353-1356
Granular activated carbon (GAC) was incorporated into hollow fiber membrane bioreactors for the biodegradation of 1,000 mg phenol l−1 through immobilization of Pseudomonas putida. The phenol was removed within 25 h in the hybrid bioreactor, comparing with 31 h for a GAC-free bioreactor. Sorption, biodegradation, desorption, and bioregeneration were four steps for the phenol removal during batch operation.  相似文献   

11.
Twenty-five aerobic phenol-degrading bacteria, isolated from different environmental samples on phenol agar after several subcultures in phenol broth, utilized phenol (0.2 g l−1) within 24 h, but removal of phenol was more rapid when other carbon sources were also present. A microtitre plate method was developed to determine growth rate, biofilm formation and respiratory activity of the strains isolated. Pseudomonas putida strains C5 and D6 showed maximum growth (as O.D. at 600 nm), P. putida D6 and unidentified bacterial strain M1 were more stable at high concentrations of phenol (0.8 g l−1), and P. putida C5 formed the greatest amount of biofilm in 0.5 g phenol l−1 medium. Measurement of dehydrogenase activity as reduction of triphenyl tetrazolium chloride supported data on growth rate and biofilm formation. The microtitre plate method provided a selective method for detection of the best phenol degrading and biofilm-forming microorganisms, and was also a rapid, convenient means of studying the effect of phenol concentration on growth rate and biofilm formation.  相似文献   

12.

Background  

Plant growth-promoting bacteria can alleviate the inhibitory effects of various heavy metals on plant growth, via decreasing levels of stress-induced ethylene. However, little has been done to detect any mechanisms specific for heavy metal resistance of this kind of bacteria. Here, we investigate the response of the wild-type plant growth-promoting bacterium Pseudomonas putida UW4 to nickel stress using proteomic approaches. The mutant strain P. putida UW4/AcdS-, lacking a functional 1-aminocyclopropane-1-carboxylic acid deaminase gene, was also assessed for its response to nickel stress.  相似文献   

13.

Background  

Recombinant antibody fragments have a wide range of applications in research, diagnostics and therapy. For many of these, small fragments like single chain fragment variables (scFv) function well and can be produced inexpensively in bacterial expression systems. Although Escherichia coli K-12 production systems are convenient, yields of different fragments, even those produced from codon-optimized expression systems, vary significantly. Where yields are inadequate, alternative production systems are needed. Pseudomonas putida strain KT2440 is a versatile biosafety strain known for good expression of heterologous genes, so we have explored its utility as a cell factory for production of scFvs.  相似文献   

14.
Summary A defined mixed culture of the yeast Cryptococcus elinovii H1 and the bacterium Pseudomonas putida P8 was immobilized by adsorption on activated carbon and sintered glass, respectively. Depending on its adsorption capacity for phenol the activated carbon system could completely degrade 17 g/l in batch culture, whereas the sintered glass system was able to degrade phenol up to 4 g/l. During semicontinuous degradation of phenol (1 g/l) both systems reached constant degradation times with the fourth batch that lasted 8 h when using the activated carbon system and 10 h in the sintered glass system. In the course of continuous degradation of phenol the activated carbon system reached a maximum degradation rate of 9.2 g l–1 day–1 compared to 6.4 g l–1 day–1degraded by the sintered glass system. 2-Hydroxymuconic acid semialdehyde could be identified and quantitatively determined as a metabolite of phenol degradation by P. putida P8. Increased membrane permeability under the influence of phenol was demonstrated by the examination of K+ efflux from P. putida P8. Offprint requests to: H.-J. Rehm  相似文献   

15.

Background  

The release of heavy metal-containing nanoparticles (NP) into the environment may be harmful to the efficacy of beneficial microbes that function in element cycling, pollutant degradation and plant growth. Nanoparticles of Ag, CuO and ZnO are of interest as antimicrobials against pathogenic bacteria. We demonstrate here their antimicrobial activity against the beneficial soil microbe, Pseudomonas putida KT2440.  相似文献   

16.
Degradation rates of salicylate and phenol by Pseudomonas putida PpG1064 carrying the nahG gene on a multicopy plasmid were compared with those in NAH-carrying P. putida. Degradation rates of salicylate and phenol and the growth rate of the recombinant were higher than those in NAH-carrying P. putida in SP medium. The catechol 1,2 oxygenase activity of the recombinant in Sp medium was about twice that of the catechol 2,3 oxygenase and catechol 1,2 oxygenase activities of NAH-carrying P. putida. It was suggested that in simultaneous degradation of phenol and salicylate, the recombinant stimulated its ortho cleavage pathway and attained the higher degradation rates and growth rate.  相似文献   

17.

Aims

To investigate the effects of temperature and medium composition on growth/aflatoxin inhibitory activities of terpenoids gossypol, gossypolone and apogossypolone against Aspergillus flavus and A. parasiticus.

Methods and Results

The compounds were tested at a concentration of 100 μg ml?1 in a Czapek Dox (Czapek) agar medium at 25, 31 and 37°C. Increased incubation temperature marginally increased growth inhibition caused by these compounds, but reduced the aflatoxin inhibition effected by gossypol. Gossypolone and apogossypolone retained good aflatoxin inhibitory activity against A. flavus and A. parasiticus at higher incubation temperatures. However, increased temperature also significantly reduced aflatoxin production in control cultures. The effects of the terpenoids on fungal growth and aflatoxin production against the same fungi were also determined in Czapek, Czapek with a protein/amino acid addendum and yeast extract sucrose (YES) media. Growth of these fungi in the protein‐supplemented Czapek medium or in the YES medium greatly reduced the growth inhibition effects of the terpenoids. Apogossypolone displayed strong anti‐aflatoxigenic activity in the Czapek medium, but this activity was significantly reduced in the protein‐amended Czapek and YES media. Gossypol, which displayed little to no aflatoxin inhibitory activity in the Czapek medium, did yield significant anti‐aflatoxigenic activity in the YES medium.

Conclusions

Incubation temperature and media composition are important parameters involved in the regulation of aflatoxin production in A. flavus and A. parasiticus. These parameters also affect the potency of growth and aflatoxin inhibitory activities of these gossypol‐related compounds against aflatoxigenic fungi.

Significance and Impact of the Study

Studies utilizing gossypol‐related compounds as inhibitory agents of biological activities should be interpreted with caution due to compound interaction with multiple components of the test system, especially serum proteins.  相似文献   

18.
The ability of the white rot fungus Trametes versicolor strain 1 to degrade and utilize methylated phenols (cresols) was established for the first time in a medium not containing any other carbon components. The data obtained demonstrated the better potential of the strain to assimilate p-cresol instead of o- or m- cresol. The 0.5 g/l p-cresol provided was degraded in full after 96 h. The effect of a dual substrate mixture (0.3 g/l phenol + 0.2 g/l p-cresol) on the growth behavior and degradation capacity of the investigated strain was examined. The cell-free supernatants were analyzed by HPLC. It was established that the presence of p-cresol had not prevented complete phenol degradation but had a significant delaying effect on the phenol degradation dynamics. Phenol hydroxylase, catechol 1.2-dioxygenase and cis,cis-muconate cyclase activities were obtained in conditions of single and mixed substrates cultivation. The influence of different phenolic substrates on phenol hydroxylase activity in Trametes versicolor 1 was established. The mathematical models describing the dynamics of single substrates’ utilization as well as the mutual influence of phenol and p-cresol in the mixture were developed on the bases of Haldane kinetics. The estimated interaction coefficients (I ph/cr = 4.72, I cr/ph = 7.46) demonstrated the significant inhibition of p-cresol on phenol biodegradation and comparatively low level of influence of phenol presence on the p-cresol degradation. Molecular 18S RNA gene taxonomy of the investigated strain was performed.  相似文献   

19.
Arene cis-diols are interesting chemicals because of their chiral structures and great potentials in industrial synthesis of useful chiral chemical products. Pseudomonas putida KT2442 was genetically modified to transform benzoic acid (benzoate) to 1,2-dihydroxy-cyclohexa-3,5-diene-1-carboxylic acid (DHCDC) or named benzoate cis-diol. BenD gene encoding cis-diol dehydrogenase was deleted to generate a mutant named P. putida KTSY01. Genes benABC encoding benzoate dioxygenase were cloned into plasmid pSYM01 and overexpressed in P. putida KTSY01. The recombinant bacteria P. putida KTSY01 (pSYM01) showed strong ability to transform benzoate to DHCDC. DHCDC of 2.3 g/L was obtained with a yield of 73% after 24 h of cultivation in shake flasks incubated under optimized growth conditions. Transformation of benzoate carried out in a 6-L fermentor using a benzoate fed-batch process produced over 17 g/L DHCDC after 48 h of fermentation. The average DHCDC production rate was 0.356 g L−1 h−1. DHCDC purified from the fermentation broth showed a purity of more than 95%, and its chemical structure was confirmed by nuclear magnetic resonance.  相似文献   

20.

Background  

Recombinant antibodies are essential reagents for research, diagnostics and therapy. The well established production host Escherichia coli relies on the secretion into the periplasmic space for antibody synthesis. Due to the outer membrane of Gram-negative bacteria, only a fraction of this material reaches the medium. Recently, the Gram-positive bacterium Bacillus megaterium was shown to efficiently secrete recombinant proteins into the growth medium. Here we evaluated B. megaterium for the recombinant production of antibody fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号