首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein-protein interaction networks are useful in contextual annotation of protein function and in general to achieve a system-level understanding of cellular behavior. This work reports on the social behavior of the yeast protein-protein interaction network and concludes that it is non-random. This work, while providing an analysis of organization of genes into functional societies, can potentially be useful in assessing the accuracy of contextual gene annotation based on such interaction networks.  相似文献   

2.
MOTIVATION: Identification of functional modules in protein interaction networks is a first step in understanding the organization and dynamics of cell functions. To ensure that the identified modules are biologically meaningful, network-partitioning algorithms should take into account not only topological features but also functional relationships, and identified modules should be rigorously validated. RESULTS: In this study we first integrate proteomics and microarray datasets and represent the yeast protein-protein interaction network as a weighted graph. We then extend a betweenness-based partition algorithm, and use it to identify 266 functional modules in the yeast proteome network. For validation we show that the functional modules are indeed densely connected subgraphs. In addition, genes in the same functional module confer a similar phenotype. Furthermore, known protein complexes are largely contained in the functional modules in their entirety. We also analyze an example of a functional module and show that functional modules can be useful for gene annotation. CONTACT: yuan.33@osu.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

3.
Protein-protein interaction networks (PINs) are structured by means of a few highly connected proteins linked to a large number of less-connected ones. Essential proteins have been found to be more abundant among these highly connected proteins. Here we demonstrate that the likelihood that removal of a protein in a PIN will prove lethal to yeast correlates with the lack of bipartivity of the protein. A protein is bipartite if it can be partitioned in such a way that there are two groups of proteins with intergroup, but not intragroup, interactions. The abundance of essential proteins found among the least bipartite proteins clearly exceeds that found among the most connected ones. For instance, among the top 50 proteins ranked by their lack of bipartivity 62% are essential proteins. However, this percentage is only 38% for proteins ranked according to their number of interactions. Protein bipartivity also surpasses another 5 measures of protein centrality in yeast PIN in identifying essential proteins and doubles the number of essential proteins selected at random. We propose a possible mechanism for the evolution of essential proteins in yeast PIN based on the duplication-divergence scheme. We conclude that a replica protein evolving from a nonbipartite target will also be nonbipartite with high probability. Consequently, these new replicas evolving from nonbipartite (essential) targets will with high probability be essential.  相似文献   

4.

Background  

The abundant data available for protein interaction networks have not yet been fully understood. New types of analyses are needed to reveal organizational principles of these networks to investigate the details of functional and regulatory clusters of proteins.  相似文献   

5.
Bu D  Zhao Y  Cai L  Xue H  Zhu X  Lu H  Zhang J  Sun S  Ling L  Zhang N  Li G  Chen R 《Nucleic acids research》2003,31(9):2443-2450
Interaction detection methods have led to the discovery of thousands of interactions between proteins, and discerning relevance within large-scale data sets is important to present-day biology. Here, a spectral method derived from graph theory was introduced to uncover hidden topological structures (i.e. quasi-cliques and quasi-bipartites) of complicated protein-protein interaction networks. Our analyses suggest that these hidden topological structures consist of biologically relevant functional groups. This result motivates a new method to predict the function of uncharacterized proteins based on the classification of known proteins within topological structures. Using this spectral analysis method, 48 quasi-cliques and six quasi-bipartites were isolated from a network involving 11,855 interactions among 2617 proteins in budding yeast, and 76 uncharacterized proteins were assigned functions.  相似文献   

6.
Pang E  Tan T  Lin K 《Molecular bioSystems》2012,8(3):766-771
Domain-domain interactions are a critical type of the mechanisms mediating protein-protein interactions (PPIs). For a given protein domain, its ability to combine with distinct domains is usually referred to as promiscuity or versatility. Interestingly, a previous study has reported that a domain's promiscuity may reflect its ability to interact with other domains in human proteins. In this work, promiscuous domains were first identified from the yeast genome. Then, we sought to determine what roles promiscuous domains might play in the PPI network. Mapping the promiscuous domains onto the proteins in this network revealed that, consistent with the previous knowledge, the hub proteins were significantly enriched with promiscuous domains. We also found that the set of hub proteins were not the same set as those proteins with promiscuous domains, although there was some overlap. Analysis of the topological properties of this yeast PPI network showed that the characteristic path length of the network increased significantly after deleting proteins with promiscuous domains. This indicated that communication between two proteins was longer and the network stability decreased. These observations suggested that, as the hub proteins, proteins with promiscuous domains might play a role in maintaining network stability. In addition, functional analysis revealed that proteins with promiscuous domains mainly participated in the "Folding, Sorting, and Degradation" and "Replication and Repair" biological pathways, and that they significantly execute key molecular functions, such as "nucleoside-triphosphatase activity (GO:0017111)."  相似文献   

7.
Wu X  Zhu L  Guo J  Zhang DY  Lin K 《Nucleic acids research》2006,34(7):2137-2150
A map of protein–protein interactions provides valuable insight into the cellular function and machinery of a proteome. By measuring the similarity between two Gene Ontology (GO) terms with a relative specificity semantic relation, here, we proposed a new method of reconstructing a yeast protein–protein interaction map that is solely based on the GO annotations. The method was validated using high-quality interaction datasets for its effectiveness. Based on a Z-score analysis, a positive dataset and a negative dataset for protein–protein interactions were derived. Moreover, a gold standard positive (GSP) dataset with the highest level of confidence that covered 78% of the high-quality interaction dataset and a gold standard negative (GSN) dataset with the lowest level of confidence were derived. In addition, we assessed four high-throughput experimental interaction datasets using the positives and the negatives as well as GSPs and GSNs. Our predicted network reconstructed from GSPs consists of 40753 interactions among 2259 proteins, and forms 16 connected components. We mapped all of the MIPS complexes except for homodimers onto the predicted network. As a result, ~35% of complexes were identified interconnected. For seven complexes, we also identified some nonmember proteins that may be functionally related to the complexes concerned. This analysis is expected to provide a new approach for predicting the protein–protein interaction maps from other completely sequenced genomes with high-quality GO-based annotations.  相似文献   

8.
Protein-protein interaction networks (PINs) are scale-free networks with a small-world property. In a small-world network, the average cluster coefficient () is much higher than in a random network, but the average shortest path length () is similar between the two networks. To understand the evolutionary mechanisms shaping the structure of PINs, simulation studies using various network growth models have been performed. It has been reported that the heterodimerization (HD) model, in which a new link is added between duplicated nodes with a uniform probability, could reproduce scale-freeness and a high . In this paper, however, we show that the HD model is unsatisfactory, because (i) to reproduce the high in the yeast PIN, a much larger number (n(HI)) of HD links (links between duplicated nodes) are required than the estimated number of n(HI) in the yeast PIN and (ii) the spatial distribution of triangles in the yeast PIN is highly skewed but the HD model cannot reproduce the skewed distribution. To resolve these discrepancies, we here propose a new model named the non-uniform heterodimerization (NHD) model. In this model, an HD link is preferentially attached between duplicated nodes when they share many common neighbors. Simulation studies demonstrated that the NHD model can successfully reproduce the high , the low n(HI), and the skewed distribution of triangles in the yeast PIN. These results suggest that the survival rate of HD links is not uniform in the evolution of PINs, and that an HD link between high-degree nodes tends to be evolutionarily conservative. The non-uniform survival rate of HD links can be explained by assuming a low mutation rate for a high-degree node, and thus this model appears to be biologically plausible.  相似文献   

9.
A network of protein-protein interactions in yeast   总被引:29,自引:0,他引:29  
A global analysis of 2,709 published interactions between proteins of the yeast Saccharomyces cerevisiae has been performed, enabling the establishment of a single large network of 2,358 interactions among 1,548 proteins. Proteins of known function and cellular location tend to cluster together, with 63% of the interactions occurring between proteins with a common functional assignment and 76% occurring between proteins found in the same subcellular compartment. Possible functions can be assigned to a protein based on the known functions of its interacting partners. This approach correctly predicts a functional category for 72% of the 1,393 characterized proteins with at least one partner of known function, and has been applied to predict functions for 364 previously uncharacterized proteins.  相似文献   

10.
Lu H  Zhu X  Liu H  Skogerbø G  Zhang J  Zhang Y  Cai L  Zhao Y  Sun S  Xu J  Bu D  Chen R 《Nucleic acids research》2004,32(16):4804-4811
The refinement and high-throughput of protein interaction detection methods offer us a protein–protein interaction network in yeast. The challenge coming along with the network is to find better ways to make it accessible for biological investigation. Visualization would be helpful for extraction of meaningful biological information from the network. However, traditional ways of visualizing the network are unsuitable because of the large number of proteins. Here, we provide a simple but information-rich approach for visualization which integrates topological and biological information. In our method, the topological information such as quasi-cliques or spoke-like modules of the network is extracted into a clustering tree, where biological information spanning from protein functional annotation to expression profile correlations can be annotated onto the representation of it. We have developed a software named PINC based on our approach. Compared with previous clustering methods, our clustering method ADJW performs well both in retaining a meaningful image of the protein interaction network as well as in enriching the image with biological information, therefore is more suitable in visualization of the network.  相似文献   

11.
The functional importance of protein-protein interactions indicates that there should be strong evolutionary constraint on their interaction interfaces. However, binding interfaces are frequently affected by amino acid replacements. Change due to coevolution within interfaces can contribute to variability but is not ubiquitous. An alternative explanation for the ability of surfaces to accept replacements may be that many residues can be changed without affecting the interaction. Candidates for these types of residues are those that make interchain interaction only through the protein main chain, β-carbon, or associated hydrogen atoms. Since almost all residues have these atoms, we hypothesize that this subset of interface residues may be more easily substituted than those that make interactions through other atoms. We term such interactions "residue type independent." Investigating this hypothesis, we find that nearly a quarter of residues in protein interaction interfaces make exclusively interchain residue-type-independent contacts. These residues are less structurally constrained and less conserved than residues making residue-type-specific interactions. We propose that residue-type-independent interactions allow substitutions in binding interfaces while the specificity of binding is maintained.  相似文献   

12.
The information of protein subcellular localization is vitally important for in-depth understanding the intricate pathways that regulate biological processes at the cellular level. With the rapidly increasing number of newly found protein sequence in the Post-Genomic Age, many automated methods have been developed attempting to help annotate their subcellular locations in a timely manner. However, very few of them were developed using the protein-protein interaction (PPI) network information. In this paper, we have introduced a new concept called "tethering potential" by which the PPI information can be effectively fused into the formulation for protein samples. Based on such a network frame, a new predictor called Yeast-PLoc has been developed for identifying budding yeast proteins among their 19 subcellular location sites. Meanwhile, a purely sequence-based approach, called the "hybrid-property" method, is integrated into Yeast-PLoc as a fall-back to deal with those proteins without sufficient PPI information. The overall success rate by the jackknife test on the 4,683 yeast proteins in the training dataset was 70.25%. Furthermore, it was shown that the success rate by Yeast- PLoc on an independent dataset was remarkably higher than those by some other existing predictors, indicating that the current approach by incorporating the PPI information is quite promising. As a user-friendly web-server, Yeast-PLoc is freely accessible at http://yeastloc.biosino.org/.  相似文献   

13.

Background

Currently a huge amount of protein-protein interaction data is available from high throughput experimental methods. In a large network of protein-protein interactions, groups of proteins can be identified as functional clusters having related functions where a single protein can occur in multiple clusters. However experimental methods are error-prone and thus the interactions in a functional cluster may include false positives or there may be unreported interactions. Therefore correctly identifying a functional cluster of proteins requires the knowledge of whether any two proteins in a cluster interact, whether an interaction can exclude other interactions, or how strong the affinity between two interacting proteins is.

Methods

In the present work the yeast protein-protein interaction network is clustered using a spectral clustering method proposed by us in 2006 and the individual clusters are investigated for functional relationships among the member proteins. 3D structural models of the proteins in one cluster have been built – the protein structures are retrieved from the Protein Data Bank or predicted using a comparative modeling approach. A rigid body protein docking method (Cluspro) is used to predict the protein-protein interaction complexes. Binding sites of the docked complexes are characterized by their buried surface areas in the docked complexes, as a measure of the strength of an interaction.

Results

The clustering method yields functionally coherent clusters. Some of the interactions in a cluster exclude other interactions because of shared binding sites. New interactions among the interacting proteins are uncovered, and thus higher order protein complexes in the cluster are proposed. Also the relative stability of each of the protein complexes in the cluster is reported.

Conclusions

Although the methods used are computationally expensive and require human intervention and judgment, they can identify the interactions that could occur together or ones that are mutually exclusive. In addition indirect interactions through another intermediate protein can be identified. These theoretical predictions might be useful for crystallographers to select targets for the X-ray crystallographic determination of protein complexes.
  相似文献   

14.
A catalog of all human protein-protein interactions would provide scientists with a framework to study protein deregulation in complex diseases such as cancer. Here we demonstrate that a probabilistic analysis integrating model organism interactome data, protein domain data, genome-wide gene expression data and functional annotation data predicts nearly 40,000 protein-protein interactions in humans-a result comparable to those obtained with experimental and computational approaches in model organisms. We validated the accuracy of the predictive model on an independent test set of known interactions and also experimentally confirmed two predicted interactions relevant to human cancer, implicating uncharacterized proteins into definitive pathways. We also applied the human interactome network to cancer genomics data and identified several interaction subnetworks activated in cancer. This integrative analysis provides a comprehensive framework for exploring the human protein interaction network.  相似文献   

15.
Following recent advances in high-throughput mass spectrometry (MS)-based proteomics, the numbers of identified phosphoproteins and their phosphosites have greatly increased in a wide variety of organisms. Although a critical role of phosphorylation is control of protein signaling, our understanding of the phosphoproteome remains limited. Here, we report unexpected, large-scale connections revealed between the phosphoproteome and protein interactome by integrative data-mining of yeast multi-omics data. First, new phosphoproteome data on yeast cells were obtained by MS-based proteomics and unified with publicly available yeast phosphoproteome data. This revealed that nearly 60% of ~6,000 yeast genes encode phosphoproteins. We mapped these unified phosphoproteome data on a yeast protein-protein interaction (PPI) network with other yeast multi-omics datasets containing information about proteome abundance, proteome disorders, literature-derived signaling reactomes, and in vitro substratomes of kinases. In the phospho-PPI, phosphoproteins had more interacting partners than nonphosphoproteins, implying that a large fraction of intracellular protein interaction patterns (including those of protein complex formation) is affected by reversible and alternative phosphorylation reactions. Although highly abundant or unstructured proteins have a high chance of both interacting with other proteins and being phosphorylated within cells, the difference between the number counts of interacting partners of phosphoproteins and nonphosphoproteins was significant independently of protein abundance and disorder level. Moreover, analysis of the phospho-PPI and yeast signaling reactome data suggested that co-phosphorylation of interacting proteins by single kinases is common within cells. These multi-omics analyses illuminate how wide-ranging intracellular phosphorylation events and the diversity of physical protein interactions are largely affected by each other.  相似文献   

16.
17.

Background  

Studying the evolution of the function of duplicated genes usually implies an estimation of the extent of functional conservation/divergence between duplicates from comparison of actual sequences. This only reveals the possible molecular function of genes without taking into account their cellular function(s). We took into consideration this latter dimension of gene function to approach the functional evolution of duplicated genes by analyzing the protein-protein interaction network in which their products are involved. For this, we derived a functional classification of the proteins using PRODISTIN, a bioinformatics method allowing comparison of protein function. Our work focused on the duplicated yeast genes, remnants of an ancient whole-genome duplication.  相似文献   

18.
Determination of the binding specificity of SH3 domain, a peptide recognition module (PRM), is important to understand their biological functions and reconstruct the SH3-mediated protein-protein interaction network. In the present study, the SH3-peptide interactions for both class I and II SH3 domains were characterized by the intermolecular residue-residue interaction network. We developed generic MIEC-SVM models to infer SH3 domain-peptide recognition specificity that achieved satisfactory prediction accuracy. By investigating the domain-peptide recognition mechanisms at the residue level, we found that the class-I and class-II binding peptides have different binding modes even though they occupy the same binding site of SH3. Furthermore, we predicted the potential binding partners of SH3 domains in the yeast proteome and constructed the SH3-mediated protein-protein interaction network. Comparison with the experimentally determined interactions confirmed the effectiveness of our approach. This study showed that our sophisticated computational approach not only provides a powerful platform to decipher protein recognition code at the molecular level but also allows identification of peptide-mediated protein interactions at a proteomic scale. We believe that such an approach is general to be applicable to other domain-peptide interactions.  相似文献   

19.
To optimize photosynthetic activity, chloroplasts change their intracellular location in response to ambient light conditions; chloroplasts move toward low intensity light to maximize light capture and away from high intensity light to avoid photodamage. Although several proteins have been reported to be involved in chloroplast photorelocation movement response, any physical interaction among them was not found so far. We recently found a physical interaction between two plant-specific coiled-coil proteins, WEB1 (Weak Chloroplast Movement under Blue Light 1) and PMI2 (Plastid Movement Impaired 2), that were indentified to regulate chloroplast movement velocity. Since the both coiled-coil regions of WEB1 and PMI2 were classified into an uncharacterized protein family having DUF827 (DUF: Domain of Unknown Function) domain, it was the first report that DUF827 proteins could mediate protein-protein interaction. In this mini-review article, we discuss regarding molecular function of WEB1 and PMI2, and also define a novel protein family composed of WEB1, PMI2 and WEB1/PMI2-like proteins for protein-protein interaction in land plants.Key words: Arabidopsis, blue light, chloroplast velocity, coiled-coil region, organelle movement, phototropin, protein-protein interactionIntracellular locations of chloroplasts change in response to different light conditions to capture sunlight efficiently for energy production through photosynthesis. Chloroplasts move toward weak light to maximize light capture (the accumulation response),1,2 and away from strong light to reduce photodamage (the avoidance response).3 In higher plants such as Arabidopsis thaliana, the responses are induced by blue light-dependent manner.1,2 Recently, chloroplast actin (cp-actin) filaments were found to be involved in chloroplast photorelocation movement and positioning.4,5 The cp-actin filaments are localized at the interface between the chloroplast and the plasma membrane to anchor the chloroplast to the plasma membrane, and are relocalized to the leading edge of chloroplasts before and during the movement.4,5 The difference of cp-actin filament amounts between the front and the rear halves of chloroplasts determines the chloroplast movement velocity; as the difference increases, chloroplast velocity also increases.4,5Several proteins have been reported to be involved in chloroplast movement. The blue light receptors, phototropin 1 (phot1) and phot2, mediate the accumulation response,6 and phot2 solely mediates the avoidance response.7,8 Chloroplast Unusual Positioning 1 (CHUP1), Kinesin-like Protein for Actin-Based Chloroplast Movement 1 (KAC1) and KAC2 are involved in the cp-actin filament formation.4,911 Other proteins with unknown molecular function involved in the chloroplast movement responses have also been reported. They are J-domain Protein Required for Chloroplast Accumulation Response 1 (JAC1),12,13 Plastid Movement Impaired 1 (PMI1),14 a long coiled-coil protein Plastid Movement Impaired 2 (PMI2), a PMI2-homologous protein PMI15,15 and THRUMIN1.16Recently, we characterized two plant-specific coiled-coil proteins, Weak Chloroplast Movement under Blue Light 1 (WEB1) and PMI2, which regulate the velocity of chloroplast photorelocation movement.17 In this mini-review article, we discuss about molecular function of WEB1 and PMI2 in chloroplast photorelocation movement, and also define the WEB1/PMI2-related (WPR) protein family as a new protein family for protein-protein interaction.  相似文献   

20.
BACKGROUND: The yeast Saccharomyces cerevisiae is the most commonly used organism for studying protein- protein interactions. In this report we demonstrate the use of flow cytometry in observing fluorescence resonance energy transfer (FRET) between cyan and yellow fluorescent fusion proteins (CFP and YFP, respectively) as a marker for protein interaction in live yeast cells. Probability binning is also employed to provide a statistical confirmation of our observations. METHODS: We coexpressed CFP and YFP fusions containing the N-terminal transmembrane domain (NTM) of Tom70p in yeast and analyzed FRET in live cells with a multilaser flow cytometer. The Tom70p NTM was previously shown to be sufficient for mitochondrial localization and protein-protein interaction (Millar and Shore, 1994, J Biol Chem 269:12229-12232). RESULTS: FRET was observed only in cells that expressed CFP and YFP fusions that each contained the wild-type NTM. The introduction of mutations previously shown to disrupt NTM interaction eliminated FRET. Probability binning confirmed that differences between the FRET channels of experimental and control samples were statistically and physiologically significant. CONCLUSION: Flow cytometric analysis of FRET in yeast is a powerful technique for studying protein-protein interactions. The use of flow cytometry allows FRET data to be gathered from a large number of individual cells, thus providing important advantages unavailable to other techniques. Its application to yeast presents a new method to a popular system widely used in proteomic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号