首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Comparative quantitative structure–activity relationship (QSAR) analyses of peptide deformylase (PDF) inhibitors were performed with a series of previously published (British Biotech Pharmaceuticals, Oxford, UK) reverse hydroxamate derivatives having antibacterial activity against Escherichia coli PDF, using 2D and 3D QSAR methods, comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), and hologram QSAR (HQSAR). Statistically reliable models with good predictive power were generated from all three methods (CoMFA r 2 = 0.957, q 2 = 0.569; CoMSIA r 2 = 0.924, q 2 = 0.520; HQSAR r 2 = 0.860, q 2 = 0.578). The predictive capability of these models was validated by a set of compounds that were not included in the training set. The models based on CoMFA and CoMSIA gave satisfactory predictive r 2 values of 0.687 and 0.505, respectively. The model derived from the HQSAR method showed a low predictability of 0.178 for the test set. In this study, 3D prediction models showed better predictive power than 2D models for the test set. This might be because 3D information is more important in the case of datasets containing compounds with similar skeletons. Superimposition of CoMFA contour maps in the active site of the PDF crystal structure showed a meaningful correlation between receptor–ligand binding and biological activity. The final QSAR models, along with information gathered from 3D contour and 2D contribution maps, could be useful for the design of novel active inhibitors of PDF. Figure Superimposition of comparative molecular field analysis (CoMFA) contour plot in the active site of peptide deformylase (PDF)  相似文献   

2.
Cancer is a significant world health problem for which efficient therapies are in urgent demand. c-Src has emerged as an attractive target for drug discovery efforts toward antitumor therapies. Toward this target several series of c-Src inhibitors that showed activity in the assay have been reported. In this article, 3D-QSAR models have been built with 156 anilinoquinazoline and quinolinecarbonitrile derivative inhibitors by using CoMFA and CoMSIA methods. These studies indicated that the QSAR models were statistically significant with high predictabilities (CoMFA model, q 2 = 0.590, r 2 = 0.855; CoMSIA model, q 2 = 0.538, r 2 = 0.748). The details of c-Src kinase/inhibitor binding interactions in the crystal structure of complex provided new information for the design of new inhibitors. As a result, docking simulations were also conducted on the series of potent inhibitors. The flexible docking method, which was performed by the DOCK program, positioned all of the inhibitors into the active site to determine the probable binding conformation. The CoMFA and CoMSIA models based on the flexible docking conformations also yielded statistically significant and highly predictive QSAR models (CoMFA model, q 2 = 0.507, r 2 = 0.695; CoMSIA model, q 2 = 0.463, r 2 = 0.734). Our models would offer help to better comprehend the structure-activity relationships that exist for this class of compounds and also facilitate the design of novel inhibitors with good chemical diversity.  相似文献   

3.
Phenols and its analogues are known to induce caspase-mediated apoptosis activity and cytotoxicity on various cancer cell lines. In the current work, two types of molecular field analysis techniques were used to perform the three dimension quantitative structure activity relationship (3D-QSAR) modeling between structural characters and anticancer activity of two sets of phenolic compounds, which are comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). Then two 3D-QSAR models for two sets of phenolic analogues were obtained with good results. The first QSAR model, which was derived from CoMFA for phenols with caspase-mediated apoptosis activity against L1210 cells, had good predictability (q 2 = 0.874, r 2 = 0.930), and the other one was derived from CoMSIA for electron-attracting phenols with cytotoxicity in L1210 cell (q 2 = 0.836, r 2 = 0.950). In addition, the CoMFA and CoMSIA contour maps provide valuable guidance for designing highly active phenolic compounds.  相似文献   

4.
Infection with hepatitis B virus (HBV) is a major cause of liver diseases such as cirrhosis and hepatocellular carcinoma. In our previous studies, we identified indole derivatives that have anti-HBV activities. In this study, we optimize a series of 5-hydroxy-1H-indole-3-carboxylates, which exhibited potent anti-HBV activities, using three-dimensional quantitative structure-activity relationship (3D QSAR) studies with comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). The lowest energy conformation of compound 3, which exhibited the most potent anti-HBV activity, obtained from systematic search was used as the template for alignment. The best predictions were obtained with the CoMFA standard model (q 2 = 0.689, r 2 = 0.965, SEE = 0.082, F = 148.751) and with CoMSIA combined steric, electrostatic, hydrophobic and H-bond acceptor fields (q 2 = 0.578, r 2 = 0.973, SEE = 0.078, F = 100.342). Both models were validated by an external test set of six compounds giving satisfactory prediction. Based on the clues derived from CoMFA and CoMSIA models and their contour maps, another three compounds were designed and synthesized. Pharmacological assay demonstrated that the newly synthesized compounds possessed more potent anti-HBV activities than before (IC50: compound 35a is 3.1 μmol/l, compound 3 is 4.1 μmol/l). Combining the clues derived from the 3D QSAR studies and from further validation of the 3D QSAR models, the activities of the newly synthesized indole derivatives were well accounted for. Furthermore, this showed that the CoMFA and CoMSIA models proved to have good predictive ability.  相似文献   

5.
3D-QSAR studies on the derivatives of 1-(3,3-diphenylpropyl)-piperidinyl amide and urea as CCR5 receptor antagonists were performed by comparative molecular field analysis (CoMFA) and comparative molecular similarity indices (CoMSIA) methods to rationalize the structural requirements responsible for the inhibitory activity of these compounds. The global minimum energy conformer of the template molecule, the most active and pharmacokinetically stable molecule of the series, was obtained by systematic search and used to build structures of the molecules in the dataset. The best predictions for the CCR5-receptor were obtained with the CoMFA standard model (q 2 = 0.787, r 2 = 0.962) and CoMSIA model combined steric, electrostatic and hydrophobic fields (q 2 = 0.809, r 2 = 0.951). The predictive ability of CoMFA and CoMSIA were determined using a test set of 12 compounds giving predictive correlation coefficients of 0.855 and 0.83, respectively, indicating good predictive power. Further, the robustness of the model was verified by bootstrapping analysis. The contour maps produced by the CoMFA and CoMSIA models were used to identify the structural features relevant to the biological activity in this series. Based on the CoMFA and CoMSIA analysis, we have identified some key features in the series that are responsible for CCR5 antagonistic activity which may be used to design more potent 1-(3,3-diphenylpropyl)-piperidinyl derivatives and predict their activity prior to synthesis. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Molecular modeling and docking studies along with three-dimensional quantitative structure relationships (3D-QSAR) studies have been used to determine the correct binding mode of glycogen synthase kinase 3β (GSK-3β) inhibitors. The approaches of comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) are used for the 3D-QSAR of 51 substituted benzofuran-3-yl-(indol-3-yl)maleimides as GSK-3β inhibitors. Two binding modes of the inhibitors to the binding site of GSK-3β are investigated. The binding mode 1 yielded better 3D-QSAR correlations using both CoMFA and CoMSIA methodologies. The three-component CoMFA model from the steric and electrostatic fields for the experimentally determined pIC50 values has the following statistics: R2(cv) = 0.386 nd SE(cv) = 0.854 for the cross-validation, and R2 = 0.811 and SE = 0.474 for the fitted correlation. F (3,47) = 67.034, and probability of R2 = 0 (3,47) = 0.000. The binding mode suggested by the results of this study is consistent with the preliminary results of X-ray crystal structures of inhibitor-bound GSK-3β. The 3D-QSAR models were used for the estimation of the inhibitory potency of two additional compounds.  相似文献   

7.
Protein kinase B (PKB; also known as Akt kinase) is located downstream in the PI-3 kinase pathway. Overexpression and constitutive activation of PKB/Akt leads to human prostate, breast and ovarian carcinomas. A series of 69 PKB/Akt inhibitors were examined to explore their binding modes using FlexX, and three-dimensional quantitative structure–activity relationship (3D-QSAR) studies based on comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed to provide structural insights into these compounds. CoMFA produced statistically significant results, with cross-validated q 2 and non-cross validated correlation r 2 coefficients of 0.53 and 0.95, respectively. For CoMSIA, steric, hydrophobic and hydrogen bond acceptor fields jointly yielded ‘leave one out’ q 2  = 0.51 and r 2  = 0.84. The predictive power of CoMFA and CoMSIA was determined using a test set of 13 molecules, which gave correlation coefficients, of 0.58 and 0.62, respectively. Molecular docking revealed that the binding modes of these molecules in the ATP binding sites of the Akt kinase domain were very similar to those of the co-crystallized ligand. The information obtained from 3D contour maps will allow the design of more potent and selective Akt kinase inhibitors.  相似文献   

8.
9.
Orvinols are potent analgesics that target opioid receptors. However, their analgesic mechanism remains unclear and no significant preference for subtype opioid receptor has been achieved. In order to find new orvinols that target the κ-receptor, comparative 3D–QSAR studies were performed on 26 orvinol analogs using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). The best predictions for the κ-receptor were obtained with the CoMFA standard model (q 2=0.686, r 2=0.947) and CoMSIA model combined steric, electrostatic, hydrophobic, and hydrogen bond donor/acceptor fields (q 2=0.678, r 2=0.914). The models built were further validated by a test set made up of seven compounds, leading to predictive r 2 values of 0.672 for CoMFA and 0.593 for CoMSIA. The study could be helpful for designing and prepare new category κ-agonists from orvinols.   相似文献   

10.
Three-dimensional quantitative structure–activity relationship studies were performed on a series of 88 histamine receptor 4 (H4R) antagonists in an attempt to elucidate the 3D structural features required for activity. Several in silico modeling approaches, including comparative molecular field analysis (CoMFA), comparative similarity indices analysis (CoMSIA), molecular docking, and molecular dynamics (MD), were carried out. The results show that both the ligand-based CoMFA model (Q 2 = 0.548, R ncv2 = 0.870, R pre2 = 0.879, SEE = 0.410, SEP = 0.386) and the CoMSIA model (Q 2 = 0.526, R ncv2 =0.866, R pre2 = 0.848, SEE = 0.416, SEP = 0.413) are acceptable, as they show good predictive capabilities. Furthermore, a combined analysis incorporating CoMFA, CoMSIA contour maps and MD results shows that (1) compounds with bulky or hydrophobic substituents at positions 4–6 in ring A (R2 substituent), positively charged or hydrogen-bonding (HB) donor groups in the R1 substituent, and hydrophilic or HB acceptor groups in ring C show enhanced biological activities, and (2) the key amino acids in the binding pocket are TRP67, LEU71, ASP94, TYR95, PHE263 and GLN266. To our best knowledge, this work is the first to report the 3D-QSAR modeling of these H4R antagonists. The conclusions of this work may lead to a better understanding of the mechanism of antagonism and aid in the design of new, more potent H4R antagonists.  相似文献   

11.
As a tumor suppressor, p53 protein regulates the cell cycle and is involved in preventing tumorgenesis. The protein level of p53 is under the tight control of its negative regulator human double minute 2 (HDM2) via ubiquitination. Therefore, the design of inhibitors of HDM2 has attracted much interest of research on developing novel anticancer drugs. Presently, two classes of molecules, i.e., the 1,4-benzodiazepine-2,5-diones (BDPs) and N-Acylpolyamine (NAPA) derivatives were studied by three-dimensional quantitative structure–activity relationship (3D-QSAR) modeling approaches including the comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) as promising p53-HDM2 inhibitors. Based on both the ligand-based and receptor-guided (docking) alignments, two optimal 3D-QSAR models were obtained with good predictive power of q 2 = 0.41, r 2 pred = 0.60 for BDPs, and q 2 = 0.414, r 2 pred = 0.69 for NAPA analogs, respectively. By analysis of the model and its related contour maps, it is revealed that the electrostatic interactions contributed much larger to the compound binding affinity than the steric effects. And the contour maps intuitively suggested where to modify the molecular structures in order to improve the binding affinity. In addition, molecular dynamics simulation (MD) study was also carried out on the dataset with purpose of exploring the detailed binding modes of ligand in the HDM2 binding pocket. Based on the CoMFA contour maps and MD-based docking analyses, some key structural aspects responsible for inhibitory activity of these two classes of compounds were concluded as follows: For BDPs, the R1 and R3 regions should have small electronegativity groups; substituents R2 and R4 should be larger, and R3 substituent mainly involves in H-bonds forming. For NAPA derivatives, bulky and electropositive groups in ring B and ring A, small substituent at region P is favorable for the inhibitory activity. The models and related information, we hope, may provide important insight into the inhibitor-p53-HDM2 interactions and be helpful for facilitating the design of novel potent inhibitors.  相似文献   

12.
13.
HIV-1 protease is an obligatory enzyme in the replication process of the HIV virus. The abundance of structural information on HIV-1PR has made the enzyme an attractive target for computer-aided drug design strategies. The daunting ability of the virus to rapidly generate resistant mutants suggests that there is an ongoing need for new HIV-1PR inhibitors with better efficacy profiles and reduced toxicity. In the present investigation, molecular modeling studies were performed on a series of 54 cyclic urea analogs with symmetric P2/P2′ substituents. The binding modes of these inhibitors were determined by docking. The docking results also provided a reliable conformational superimposition scheme for the 3D-QSAR studies. To gain insight into the steric, electrostatic, hydrophobic and hydrogen-bonding properties of these molecules and their influence on the inhibitory activity, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed. Two different alignment schemes viz. receptor-based and atom-fit alignment, were used in this study to build the QSAR models. The derived 3D-QSAR models were found to be robust with statistically significant r 2 and r 2 pred values and have led to the identification of regions important for steric, hydrophobic and electronic interactions. The predictive ability of the models was assessed on a set of molecules that were not included in the training set. Superimposition of the 3D-contour maps generated from these models onto the active site of enzyme provided additional insight into the structural requirements of these inhibitors. The CoMFA and CoMSIA models were used to design some new inhibitors with improved binding affinity. Pharmacokinetic and toxicity predictions were also carried out for these molecules to gauge their ADME and safety profile. The computational results may open up new avenues for synthesis of potent HIV-1 protease inhibitors.  相似文献   

14.
Yang Y  Liu H  Du J  Qin J  Yao X 《Journal of molecular modeling》2011,17(12):3241-3250
Inhibition of the protein chaperone Hsp90α is a promising approach for cancer therapy. In this work, a molecular modeling study combining pharmacophore model, molecular docking and three-dimensional quantitative structure-activity relationships (3D-QSAR) was performed to investigate a series of pyrazole/isoxazole scaffold inhibitors of human Hsp90α. The pharmacophore model can provide the essential features required for the biological activities of the inhibitors. The molecular docking study can give insight into the binding mode between Hsp90α and its inhibitors. 3D-QSAR based on CoMFA and CoMSIA models were performed from three different strategies for conformational selection and alignment. The receptor-based models gave the most statistically significant results with cross-validated q 2 values of 0.782 and 0.829 and r 2 values of 0.909 and 0.968, for CoMFA and CoMSIA respectively. Furthermore, the 3D contour maps superimposed within the binding site of Hsp90α could help to understand the pivotal interaction and the structural requirements for potent Hsp90α inhibitors. The results show 4-position of pyrazole/isoxazole ring requires bulky and hydrophobic groups, and bulky and electron repulsion substituent of 5-amides is favorable for enhancing activity. This study will be helpful for the rational design of new potent Hsp90α inhibitors.  相似文献   

15.
Surflex-Dock was applied to study interactions between 30 thiourea analogs and neuraminidase (NA). The docking results showed that hydrogen bonding and electrostatic interactions were highly correlated with the activities of neuraminidase inhibitors (NIs), followed by hydrophobic and steric factors. Moreover, there was a strong correlation between the predicted binding affinity (total score) and experimental pIC50 (correlation coefficient r = 0.870; P < 0.0001). A three dimensional holographic vector of atomic interaction field (3D-HoVAIF) was employed to construct a QSAR model. The r 2, q 2 and r 2 test values of the optimal QSAR model were 0.849, 0.724 and 0.689, respectively. From the QSAR model, it could be seen that electrostatic, hydrophobic and steric interactions were closely related to inhibitory activity, which was consistent with the docking results. Based on the docking and QSAR results, five new compounds with high predicted activities were designed.  相似文献   

16.
Three-dimensional quantitative structure-activity relationship (3D-QSAR) and molecular docking studies were carried out to explore the binding of 73 inhibitors to dipeptidyl peptidase IV (DPP-IV), and to construct highly predictive 3D-QSAR models using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). The negative logarithm of IC50 (pIC50) was used as the biological activity in the 3D-QSAR study. The CoMFA model was developed by steric and electrostatic field methods, and leave-one-out cross-validated partial least squares analysis yielded a cross-validated value (rcv2 {\hbox{r}}_{{\rm{cv}}}^{\rm{2}} ) of 0.759. Three CoMSIA models developed by different combinations of steric, electrostatic, hydrophobic and hydrogen-bond fields yielded significant rcv2 {\hbox{r}}_{{\rm{cv}}}^{\rm{2}} values of 0.750, 0.708 and 0.694, respectively. The CoMFA and CoMSIA models were validated by a structurally diversified test set of 18 compounds. All of the test compounds were predicted accurately using these models. The mean and standard deviation of prediction errors were within 0.33 and 0.26 for all models. Analysis of CoMFA and CoMSIA contour maps helped identify the structural requirements of inhibitors, with implications for the design of the next generation of DPP-IV inhibitors for the treatment of type 2 diabetes.  相似文献   

17.
A 3D-QSAR investigation of 95 diaminobenzophenone yeast farnesyltransferase (FT) inhibitors selected from the work of Schlitzer et al. showed that steric, electrostatic, and hydrophobic properties play key roles in the bioactivity of the series. A CoMFA/CoMSIA combined model using the steric and electrostatic fields of CoMFA together with the hydrophobic field of CoMSIA showed significant improvement in prediction compared with the CoMFA steric and electrostatic fields model. The similarity of the 3D-QSAR field maps for yeast FT inhibition activity (from this work) and for antimalarial activity data (from previous work) and the correlation between those activities are discussed.  相似文献   

18.
The dopamine hypothesis states that decreased dopaminergic neurotransmission reduces schizophrenia symptoms. Neurokinin-3 receptor (NK3) antagonists reduce dopamine release and have shown positive effects in pre-clinical and clinical trials. We employed 2D and 3D-QSAR analysis on a series of 40 non-peptide NK3 antagonists. Multivariate statistical analysis, PCA and HCA, were performed to rational training/test set splitting and PLS regression was employed to construct all QSAR models. We constructed one highly predictive CoMFA model (q2?=?0.810 and r2?=?0.929) and acceptable HQSAR and CoMSIA models (HQSAR q2?=?0.644 and r2?=?0.910; CoMSIA q2?=?0.691, r2?=?0.911). The three different techniques provided convergent physicochemical results. All models indicate cyclopropane, piperidine and di-chloro-phenyl ring attached to cyclopropane ring and also the amide group attached to the piperidine ring could play an important role in ligand–receptor interactions. These findings may contribute to develop potential NK3 receptor antagonists for schizophrenia.  相似文献   

19.
ETA subtype selective antagonists constitute a novel and potentially important class of agents for the treatment of pulmonary hypertension, heart failure, and other pathological conditions. In this paper, 60 benzodiazepine derivatives displaying potent activities against ETA and ETB subtypes of endothelin receptor were selected to establish the 3D-QSAR models using CoMFA and CoMSIA approaches. These models show excellent internal predictability and consistency, external validation using test-set 19 compounds yields a good predictive power for antagonistic potency. Statistical parameters of models were obtained with CoMFA-ETA (q 2 = 0.787, r 2 = 0.935, r 2 pred  = 0.901), CoMFA-ETB (q 2 = 0.842, r 2 = 0.984, r 2 pred  = 0.941), CoMSIA-ETA (q 2 = 0.762, r 2 = 0.971, r 2 pred  = 0.958) and CoMSIA-ETB (q 2 = 0.771, r 2 = 0.974, r 2 pred  = 0.953) respectively. Field contour maps (CoMFA and CoMSIA) corresponding to the ETA and ETB subtypes reflects the characteristic similarities and differences between these types. The results of this paper provide valuable information to facilitate structural modifications of the title compounds to increase the inhibitory potency and subtype selectivity of endothelin receptor.  相似文献   

20.
Urease (EC 3.5.1.5) serves as a virulence factor in pathogens that are responsible for the development of many diseases in humans and animals. Urease allows soil microorganisms to use urea as a source of nitrogen and aid in the rapid break down of urea-based fertilizers resulting in phytopathiCIT000y. It has been well established that hydroxamic acids are the potent inhibitors of urease activity. The 3D-QSAR studies on thirty five hydroxamic acid derivatives as known urease inhibitors were performed by Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) methods to determine the factors required for the activity of these compounds. The CoMFA model produced statistically significant results with cross-validated (q2) 0.532 and conventional (r2) correlation coefficients 0.969.The model indicated that the steric field (70.0%) has greater influence on hydroxamic acid inhibitors than the electrostatic field (30.0%). Furthermore, five different fields: steric, electrostatic, hydrophobic, H-bond donor and H-bond acceptor assumed to generate the CoMSIA model, which gave q2 0.665 and r2 0.976.This model showed that steric (43.0%), electrostatic (26.4%) and hydrophobic (20.3%) properties played a major role in urease inhibition. The analysis of CoMFA and CoMSIA contour maps provided insight into the possible modification of the hydroxamic acid derivatives for improved activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号