共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Laranjo M Alexandre A Rivas R Velázquez E Young JP Oliveira S 《FEMS microbiology ecology》2008,66(2):391-400
Chickpea has been considered as a restrictive host for nodulation by rhizobia. However, recent studies have reported that several Mesorhizobium species may effectively nodulate chickpea. With the purpose of investigating the evolutionary relationships between these different species with the ability of nodulating the same host, we analysed 21 Portuguese chickpea rhizobial isolates. Symbiosis genes nifH and nodC were sequenced and used for phylogenetic studies. Symbiotic effectiveness was determined to evaluate its relationship with symbiosis genes. The comparison of 16S rRNA gene-based phylogeny with the phylogenies based on symbiosis genes revealed evidence of lateral transfer of symbiosis genes across different species. Chickpea is confirmed as a nonpromiscuous host. Although chickpea is nodulated by many different species, they share common symbiosis genes, suggesting recognition of only a few Nod factors by chickpea. Our results suggest that sequencing of nifH or nodC genes can be used for rapid detection of chickpea mesorhizobia. 相似文献
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
Irene Majerfeld Jana Chocholousova Vikas Malaiya Jeremy Widmann Daniel McDonald Jens Reeder Matthew Iyer Mali Illangasekare Michael Yarus Rob Knight 《RNA (New York, N.Y.)》2010,16(10):1915-1924
Conservation is often used to define essential sequences within RNA sites. However, conservation finds only invariant sequence elements that are necessary for function, rather than finding a set of sequence elements sufficient for function. Biochemical studies in several systems—including the hammerhead ribozyme and the purine riboswitch—find additional elements, such as loop–loop interactions, required for function yet not phylogenetically conserved. Here we define a critical test of sufficiency: We embed a minimal, apparently sufficient motif for binding the amino acid tryptophan in a random-sequence background and ask whether we obtain functional molecules. After a negative result, we use a combination of three-dimensional structural modeling, selection, designed mutations, high-throughput sequencing, and bioinformatics to explore functional insufficiency. This reveals an essential unpaired G in a diverse structural context, varied sequence, and flexible distance from the invariant internal loop binding site identified previously. Addition of the new element yields a sufficient binding site by the insertion criterion, binding tryptophan in 22 out of 23 tries. Random insertion testing for site sufficiency seems likely to be broadly revealing. 相似文献